植物生态学报 ›› 2016, Vol. 40 ›› Issue (9): 912-924.DOI: 10.17521/cjpe.2015.0431
所属专题: 稳定同位素生态学
收稿日期:
2015-12-02
接受日期:
2016-05-12
出版日期:
2016-09-10
发布日期:
2016-09-29
通讯作者:
温学发
基金资助:
Xiao-Ting WANG1,2, Xue-Fa WEN1,*()
Received:
2015-12-02
Accepted:
2016-05-12
Online:
2016-09-10
Published:
2016-09-29
Contact:
Xue-Fa WEN
摘要:
植物水的稳定同位素分馏过程是水在土壤-植物-大气连续体中循环的重要环节。以往研究由于叶片水18O同位素比值(δ18O l,b)和氘(D)同位素比值(δDl,b)(合称δl,b)实测数量少只能作为模型验证数据, 导致δl,b富集机制研究多集中于模型研究, 缺乏基于野外试验条件的δl,b富集的控制机制研究。叶片水δDl,b和δ18O l,b的富集程度(ΔDl,b和Δ18O l,b, 合称Δl,b)通常表示为δl,b与茎秆水D同位素比值(δDx)和18O同位素比值(δ18Ox) (合称δx)之差, 即Δl,b = δl,b - δx。该研究以黑河中游沙漠绿洲春玉米(Zea mays)生态系统为研究对象, 重点采集和分析了季节和日尺度δl,b和δx数据, 配套开展了大气水汽δ18O和δD (合称δv)等辅助变量的原位连续观测, 探讨了季节和日尺度上的δl,b富集特征及其影响因素。结果表明: 叶片水δl,b和Δl,b的季节变化趋势不明显, 而受蒸腾作用影响表现出白天富集夜间贫化的单峰日变化特征。对于D来说, 无论季节尺度上还是日尺度上, 大气水汽δv和相对湿度是δDl,b和ΔDl,b的主要环境控制因素; 而对于18O来说, 无论季节尺度上还是日尺度上, 相对湿度是δ18O l,b和Δ18O l,b的主要环境控制因素。由于D和18O在热力学平衡分馏上有约8倍差异, 直接分析叶片水ΔDl,b和Δ18Ol,b与影响因素的差异性, 有助于理解叶片水δD和δ18O富集过程以及对模型发展有一定的指导意义。
王小婷, 温学发. 黑河中游春玉米叶片水δD和δ18O的富集过程和影响因素. 植物生态学报, 2016, 40(9): 912-924. DOI: 10.17521/cjpe.2015.0431
Xiao-Ting WANG, Xue-Fa WEN. Leaf water δD and δ18O enrichment process and influencing factors in spring maize (Zea mays) grown in the middle reaches of Heihe River Basin. Chinese Journal of Plant Ecology, 2016, 40(9): 912-924. DOI: 10.17521/cjpe.2015.0431
图1 黑河中游绿洲春玉米生长季叶片水同位素比值(δl,b)、茎秆水同位素比值(δx)和大气水汽同位素比值(δv) δD (A)和δ18O (B)的季节变化特征。图中每个数据点为13:00-15:00的观测值。δl,b误差棒为上下冠层的标准偏差。
Fig. 1 Seasonal variations of δD (A) and δ18O (B) of bulk leaf water isotope ratio (δl,b), xylem water isotope ratio (δx) and atmospheric water vapor isotope ratio (δv) at an arid artificial oasis maize field in the Heihe River Basin. Every value was observed in the period of 13:00-15:00. Error bars were the standard deviation of the upper and lower canopy.
图2 黑河中游绿洲春玉米生长季叶片水同位素比值(δl,b)、茎秆水同位素比值(δx)和大气水汽同位素比值(δv) (A, C, E)和δ18O (B, D, F)的日变化特征。图中阴影部分为夜间(19:30-6:30)。
Fig. 2 Daily variations of δD (A, C, E) and δ18O (B, D, F) of bulk leaf water isotope ratio (δl,b), xylem water isotope ratio (δx) and atmospheric water vapor isotope ratio (δv) at an arid artificial oasis maize field in the Heihe River Basin. Shadow areas indicated the nighttime (19:30-6:30).
图3 黑河中游绿洲春玉米生长季叶片水、茎秆水及大气水汽氢稳定同位素比率(δD)和氧稳定同位素比率(δ18O)在季节(A)和日(B)尺度上的关系。图中LMWL是局地大气降水线。
Fig. 3 Seasonal (A) and diurnal (B) regression relationship between D isotope ratio (δD) and 18O isotope ratio (δ18O) of bulk leaf water, xylem water and atmospheric water vapor at an arid artificial oasis maize field in the Heihe River Basin. The local meteoric water lines (LMWL) were plotted in each panel for references.
图4 黑河中游绿洲春玉米生长季叶片水相对于茎秆水的同位素判别(ΔD和Δ18O)与大气水汽相对于茎秆水的同位素判别(ΔDv和Δ18Ov)在季节(A、C)和日(B、D)尺度上的关系。
Fig. 4 Seasonal (A, C) and diurnal (B, D) relationships between bulk leaf water enrichment above source water (ΔD and Δ18O) and atmospheric water vapor enrichment above source water (ΔDv and Δ18Ov) above an arid artificial oasis maize field in the Heihe River Basin.
图5 黑河中游绿洲春玉米生长季叶片水相对于茎秆水的同位素判别(ΔD和Δ18O)与相对湿度(RH)在季节(A、C)和日(B、D)尺度上的关系。
Fig. 5 Seasonal (A, C) and diurnal (B, D) relationships between bulk leaf water enrichment above source water (ΔD and Δ18O) and relative humidity referenced to canopy temperature (RH) above an arid artificial oasis maize field in the Heihe River Basin.
图6 黑河中游绿洲春玉米生长季叶片水相对于茎秆水的同位素判别(ΔD和Δ18O)与冠层温度(T)在季节(A、C)和日(B、D)尺度上的关系。
Fig. 6 Seasonal (A, C) and diurnal (B, D) relationships between bulk leaf water enrichment above source water (ΔD and Δ18O) and canopy temperature (T) above an arid artificial oasis maize field in the Heihe River Basin.
1 | Barbour MM, Farquhar GD (2000). Relative humidity and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell & Environment, 23, 473-485. |
2 | Barbour MM, Farquhar GD, Hanson DT, Bickford CP, Powers H, McDowell NG (2007). A new measurement technique reveals temporal variation in δ18O of leaf-respired CO2. Plant, Cell & Environment, 4, 456-468. |
3 | Barbour MM, Schurr U, Henry BK, Wong SC, Farquhar GD (2000). Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Péclet effect.Plant Physiology, 123, 671-679. |
4 | Barnard RL, de Bello F, Gilgen AK, Buchmann N (2006). The δ18O of root crown water best reflects source water δ18O in different types of herbaceous species.Rapid Commun Mass Spectrom, 20, 3799-3802. |
5 | Butt S, Ali M, Fazil M, Latif Z (2010). Seasonal variations in the isotopic composition of leaf and stem water from an arid region of Southeast Asia.Journal Des Sciences Hydrologiques, 55, 844-848. |
6 | Cernusak LA, Pate JS, Farquhar GD (2002). Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus angustifolius under field conditions. Plant, Cell & Environment, 7, 893-907. |
7 | Craig H, Gordon LI (1965). D and 18O variations in the ocean and the marine atmosphere. In: Tongiorgi E ed. Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto, Italy. 9-130. |
8 | Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974). On the enrichment of H218O in the leaves of transpiring plants.Radiation and Environmental Biophysics, 11, 41-52. |
9 | Ehleringer JR, Roden J, Dawson TE (2000). Assessing ecosystem-level water relations through stable isotope ratio analyses. In: Sala OE, Jackson RB, Mooney HA, Howarth RW eds. Methods in Ecosystem Science. Springer, Berlin. 181-198. |
10 | Farquhar GD, Cernusak LA (2005). On the isotopic composition of leaf water in the non-steady state.Functional Plant Biology, 4, 293-303. |
11 | Farquhar GD, Cernusak LA, Barnes B (2007). Heavy water fractionation during transpiratio.Plant Physiology, 1, 11-18. |
12 | Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR (1993). Vegetation effects on the isotope composition of oxygen in atmospheric CO2.Nature, 363, 439-443. |
13 | Flanagan LB, Comstock JP, Ehleringer JR (1991). Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L.Plant Physiology, 96, 588-596. |
14 | Flanagan LB, Ehleringer JR (1991). Effects of mild water-stress and diurnal changes in temperature and humidity on the stable oxygen and hydrogen isotopic composition of leaf water in Cornus stolonifera L.Plant Physiology, 97, 298-305. |
15 | Gat JR (1996). Oxygen and hydrogen isotopes in the hydrologic cycle.Annual Review of Earth and Planetary Sciences, 24, 225-262. |
16 | Harwood KG, Gillon JS, Griffiths H, Broadmeadow MSJ (1998). Diurnal variation of Δ13CO2, ΔC18O16O and evaporative site enrichment of δH218O in Piper aduncum under field conditions in Trinidad. Plant, Cell & Environment, 21, 269-283. |
17 | Helliker BR, Griffiths H (2007). Toward a plant-based proxy for the isotope ratio of atmospheric water vapor.Global Change Biology, 97, 723-733. |
18 | Huang LJ, Wen XF (2014). Temporal variations of atmospheric water vapor δD and δ18O above an arid artificial oasis cropland in the Heihe River Basin.Journal of Geophysical Research: Atmospheres, 119, 11456-11476. |
19 | Kahmen A, Simonin K, Tu K, Goldsmith GR, Dawson TE (2009). The influence of species and growing conditions on the 18O enrichment of leaf water and its impact on “effective path length”.New Phytologist, 184, 619-630. |
20 | Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2003). Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant, Cell & Environment, 26, 1157-1168. |
21 | Lai CT, Ehleringer JR, Bond BJ, Paw UKT (2006). Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ18O of water vapour in Pacific Northwest coniferous forests. Plant,Cell & Environment, 29, 77-94. |
22 | Lai CT, Ometto JPHB, Berry JA, Martinelli LA, Domingues TF, Ehleringer JR (2008). Life form-specific variations in leaf water 18O enrichment in Amazonian vegetation.Oecologia, 157, 197-210. |
23 | Lee XH, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009). Canopyp-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Global Biogeochemical Cycles, 23, GB1002, doi: 10.1029/2008GB- 003331. |
24 | Lee XH, Kim K, Smith R (2007). Temporal variations of the isotopic signal of the whole-canopy transpiration in a temperate forest.Global Biogeochemical Cycles, 21, doi:10.1029/2006GB002871. |
25 | Lee XH, Sargent S, Smith R, Tanner B (2005).In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications.Journal of Atmospheric and Oceanic Technology, 22, 555-565. |
26 | Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW (2013). Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design.Bulletin of the American Meteorological Society, 94, 1145-1160. |
27 | Lin GH (2013). Stable Isotope Ecology. Higher Education Press, Beijing. 71. (in Chinese)[林光辉 (2013). 稳定同位素生态学. 高等教育出版社, 北京. 71.] |
28 | Meng XJ, Wen XF, Zhang XY, Han JY, Sun XM, Li XB (2012). Potential impacts of organic contaminant on δ18O and δD in leaf and xylem water detected by isotope ratio infrared spectroscopy.Chinese Journal of Eco-Agriculture, 20, 1359-1365. (in Chinese with English abstract)[孟宪菁, 温学发, 张心昱, 韩佳音, 孙晓敏, 李晓波 (2012). 有机物对红外光谱技术测定植物叶片和茎秆水δ18O和δD的影响. 中国生态农业学报, 20, 1359-1365.] |
29 | Pendall E, Williams DG, Leavitt SW (2005). Comparison of measured and modeled variations in pinon pine leaf water isotopic enrichment across a summer moisture gradient.Oecologia, 145, 605-618. |
30 | Ripullone F, Matsuo N, Stuart-Williams H, Wong SC, Borghetti M, Tani M, Farquhar G (2008). Environmental effects on oxygen isotope enrichment of leaf water in cotton leaves.Plant Physiology, 146, 729-736. |
31 | Roden JS, Ehleringer JR (1999). Observations of hydrogen and oxygen isotopes in leaf water confirm the Craigp-Gordon model under wide-ranging environmental conditions.Plant Physiology, 120, 1165-1173. |
32 | Saurer M, Aellen K, Siegwolf R (1997). Correlating δ13C and δ18O in cellulose of trees. Plant, Cell & Environment, 20, 1543-1550. |
33 | Snyder KA, Monnar R, Poulson SR, Hartsough P, Biondi F (2010). Diurnal variations of needle water isotopic ratios in two pine species.Trees—Structure & Function, 24, 585-595. |
34 | Song X, Simonin KA, Loucos KE, Barbour MM (2015). Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment. Plant, Cell & Environment, 38, 2618-2628. |
35 | Webb EA, Longstaffe FJ (2000). The oxygen isotopic compositions of silica phytoliths and plant water in grasses: Implications for the study of paleoclimate. Geochimica Et Cosmochimica Acta, 64, 767-780. |
36 | Welp LR, Lee XH, Kim K, Griffis TJ, Billmark KA, Baker JM (2008). δ18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant, Cell & Environment, 31, 1214-1228. |
37 | Wen XF, Lee XH, Sun XM, Wang JL, Tang YK, Li SG, Yu GR (2012). Intercomparison of four commercial analyzers for water vapor isotope measurement.Journal of Atmospheric & Oceanic Technology, 29, 235-247. doi:10.1175/ JTECH-D-10- 05037.1. |
38 | Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee XH (2008). Continuous measurement of water vapor D/H and18O/16O isotope ratios in the atmosphere.Journal of Hydrology, 349, 489-500. |
39 | Wen XF, Yang B, Sun XM, Lee XH (2016). Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland.Agricultural & Forest Meteorology, doi:10.1016/j.agrformet.2015.12.003. |
40 | Wen XF, Zhang SC, Sun XM, Yu GR (2008). Recent advances in H218O enrichment in leaf water. Journal of Plant Ecology (Chinese Version), 32, 961-966. (in Chinese with English abstract)[温学发, 张世春, 孙晓敏, 于贵瑞 (2008). 叶片水H218O富集的研究进展. 植物生态学报, 32, 961-966.] |
41 | White JWC (1983). The Climate Significance of D/H Ratios in White Pine in the Northeastern United States. PhD dissertation, Columbia University. |
42 | Xiao W, Lee XH, Wen XF, Sun XM, Zhang SC (2012). Modeling biophysical controls on canopy foliage water 18O enrichment in wheat and corn.Global Change Biology, 18, 1769-1780. |
43 | Xu Z, Liu S, Li X, Shi S, Wang J, Zhu Z, Xu T, Wang W, Ma M (2013). Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE.Journal of Geophysical Research: Atmospheres, 118, 13140-13157. |
44 | Yakir D, Sternberg LDL (2000). The use of stable isotopes to study ecosystem gas exchange.Oecologia, 123, 297-311. |
45 | Yang B, Wen XF, Sun XM (2015b). Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin.Scientific Reports, 5, 15206, doi: 10.1038/srep15206. |
46 | Yepez EA, Williams DG, Scott RL, Lin GH (2003). Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor.Agricultural & Forest Meteorology, 119, 53-68. |
47 | Zeng Z, Liu J, Koeneman PH, Zarate E, Hoekstra AY (2012). Assessing water footprint at river basin level: A case study for the Heihe River Basin in northwest China.Hydrology and Earth System Sciences, 16, 2771-2781. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[4] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[5] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[6] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[7] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[8] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[9] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[10] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[11] | 张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 曹坤芳. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传[J]. 植物生态学报, 2021, 45(11): 1241-1250. |
[12] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[13] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[14] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[15] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19