植物生态学报 ›› 2016, Vol. 40 ›› Issue (3): 221-235.DOI: 10.17521/cjpe.2015.0243
胡海清1, 陆昕1, 孙龙1,*(), 曲智林2, 梁宇1, 李海洋1
收稿日期:
2015-06-26
修回日期:
2015-11-27
出版日期:
2016-03-10
发布日期:
2016-03-25
通讯作者:
孙龙
基金资助:
Hai-Qing HU1, Xin LU1, Long SUN1,*(), Zhi-Lin QU2, Yu LIANG1, Hai-Yang LI1
Received:
2015-06-26
Revised:
2015-11-27
Online:
2016-03-10
Published:
2016-03-25
Contact:
Long SUN
摘要:
以落叶松(Larix gmelinii)叶片、白桦(Betula platyphylla)叶片、落叶松-白桦叶片混合物为例, 初步研究了气温和空气相对湿度对地表细小死可燃物平衡含水率和时滞的影响, 对这3种可燃物在不同气温、不同空气相对湿度条件下(共20个温湿度组合)失水过程中的含水率进行了测定。通过统计软件建立了相应条件下3种类型可燃物含水率时间动态方程, 并利用此方程估算了3种可燃物平衡含水率和时滞, 同时用估算值分别建立了3种可燃物的平衡含水率-气温模型、平衡含水率-湿度模型、时滞-气温模型、时滞-湿度模型等4种模型。并用已知的4个可燃物平衡含水率模型拟合了该研究得到的平衡含水率数据, 其中, 用Van Wanger模型得到的平均绝对误差和均方根误差均不超过0.01, 拟合效果最好; Nelson模型的拟合效果最差。对气温和空气相对湿度对3种可燃物平衡含水率和时滞的影响的研究结果表明: 气温和空气相对湿度对3种可燃物的平衡含水率和时滞有显著影响, 气温与平衡含水率和时滞呈负相关关系, 而空气相对湿度与二者均呈正相关关系。其中, 时滞-湿度模型高估了可燃物的时滞。该研究具有一定的局限性与不确定性, 在未来的工作中, 应选择在更宽的可燃物类型范围内, 结合更全面的影响因子进行研究。
胡海清, 陆昕, 孙龙, 曲智林, 梁宇, 李海洋. 气温和空气相对湿度对森林地表细小死可燃物平衡含水率和时滞的影响. 植物生态学报, 2016, 40(3): 221-235. DOI: 10.17521/cjpe.2015.0243
Hai-Qing HU, Xin LU, Long SUN, Zhi-Lin QU, Yu LIANG, Hai-Yang LI. Effects of air temperature and relative humidity on equilibrium moisture content and time-lag of forest land surface dead fine fuels. Chinese Journal of Plant Ecology, 2016, 40(3): 221-235. DOI: 10.17521/cjpe.2015.0243
可燃物类型 Fuel type | 相对湿度 Relative humidity (%) | 平衡含水率随气温变化方程 Equations of EMC versus air temperature | 决定系数 Coefficient of determination (R2) |
---|---|---|---|
落叶松叶片 | 20 | y = (0.3933e - 5)x3 - (0.2141e + 3)x2 + 0.7909x + 0.0781 | 0.966 6 |
Larix gmelinii leaves | 40 | y = -(0.2787e + 4)x3 + 0.0014x2 - 0.0253x + 0.2305 | 0.994 7 |
60 | y = (0.3800e - 4)x3 + 00159x2 - 0.0018x + 0.1707 | 0.990 1 | |
80 | y = (0.1347e - 4)x3 - (0.7339e + 3)x2 + 0.0026x + 0.3091 | 0.999 9 | |
白桦叶片 | 20 | y = - (0.6667e + 6)x3 + (0.8943e - 4)x2 - 0.0055x + 0.1337 | 0.988 9 |
Betula platyphylla leaves | 40 | y = - (0.5733e + 5)x3 + (0.4414e - 4)x2 - 0.0145x + 0.2243 | 0.993 9 |
60 | y = (0.8633e - 4)x3 - 0.0037x2 + 0.0357x + 0.1594 | 0.987 5 | |
80 | y = (0.2026e - 4)x3 - 0.0012x2 + 0.0087x + 0.3316 | 0.996 8 | |
落叶松-白桦叶片混合物 | 20 | y = (0.7733e - 5)x3 - (0.2829e + 3)x2 - (0.1876e + 3)x + 0.1024 | 0.999 8 |
Mixture of L. gmelinii | 40 | y = (0.6733e - 5)x3 - (0.1881e + 3)x2 - 0.0046x + 0.1736 | 0.980 7 |
and B. platyphylla leaves | 60 | y = (0.3513e - 4)x3 - 0.0012x2 + (0.7709e - 3)x + 0.2628 | 0.988 9 |
80 | y = (0.1679e - 4)x3 - (0.5594e + 3)x2 - 0.0065x + 0.3746 | 0.999 8 |
表1 不同空气相对湿度下平衡含水率-气温变化方程及决定系数
Table 1 Equations of equilibrium moisture content (EMC) versus air temperature and coefficient of determination under different relative humidity
可燃物类型 Fuel type | 相对湿度 Relative humidity (%) | 平衡含水率随气温变化方程 Equations of EMC versus air temperature | 决定系数 Coefficient of determination (R2) |
---|---|---|---|
落叶松叶片 | 20 | y = (0.3933e - 5)x3 - (0.2141e + 3)x2 + 0.7909x + 0.0781 | 0.966 6 |
Larix gmelinii leaves | 40 | y = -(0.2787e + 4)x3 + 0.0014x2 - 0.0253x + 0.2305 | 0.994 7 |
60 | y = (0.3800e - 4)x3 + 00159x2 - 0.0018x + 0.1707 | 0.990 1 | |
80 | y = (0.1347e - 4)x3 - (0.7339e + 3)x2 + 0.0026x + 0.3091 | 0.999 9 | |
白桦叶片 | 20 | y = - (0.6667e + 6)x3 + (0.8943e - 4)x2 - 0.0055x + 0.1337 | 0.988 9 |
Betula platyphylla leaves | 40 | y = - (0.5733e + 5)x3 + (0.4414e - 4)x2 - 0.0145x + 0.2243 | 0.993 9 |
60 | y = (0.8633e - 4)x3 - 0.0037x2 + 0.0357x + 0.1594 | 0.987 5 | |
80 | y = (0.2026e - 4)x3 - 0.0012x2 + 0.0087x + 0.3316 | 0.996 8 | |
落叶松-白桦叶片混合物 | 20 | y = (0.7733e - 5)x3 - (0.2829e + 3)x2 - (0.1876e + 3)x + 0.1024 | 0.999 8 |
Mixture of L. gmelinii | 40 | y = (0.6733e - 5)x3 - (0.1881e + 3)x2 - 0.0046x + 0.1736 | 0.980 7 |
and B. platyphylla leaves | 60 | y = (0.3513e - 4)x3 - 0.0012x2 + (0.7709e - 3)x + 0.2628 | 0.988 9 |
80 | y = (0.1679e - 4)x3 - (0.5594e + 3)x2 - 0.0065x + 0.3746 | 0.999 8 |
气温 Air tempe- rature (℃) | 相对湿度 Relative humi- dity (%) | 落叶松叶片 Larix gmelinii leaves | 决定 系数 Coefficient of determination (R2) | 白桦叶片 Betula platyphylla leaves | 决定 系数 Coefficient of determi- nation (R2) | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 决定 系数 Coefficient of determination (R2) |
---|---|---|---|---|---|---|---|
5 | 20 | y = 0.0763 + 0.7502exp(-0.0959t) | 0.994 1 | y = 0.1090 + 0.6817exp(-0.0793t) | 0.994 3 | y = 0.0954 + 0.7567exp(-0.0872t) | 0.997 2 |
40 | y = 0.1346 + 0.7134exp(-0.0811t) | 0.994 9 | y = 0.1612 + 0.6449exp(-0.0653t) | 0.990 6 | y = 0.1453 + 0.6858exp(-0.0678t) | 0.988 7 | |
60 | y = 0.2127 + 0.6171exp(-0.0656t) | 0.996 7 | y = 0.2537 + 0.5559exp(-0.0474t) | 0.989 9 | y = 0.2388 + 0.5515exp(-0.0524t) | 0.984 7 | |
80 | y = 0.3056 + 0.5030exp(-0.0454t) | 0.983 6 | y = 0.3493 + 0.4769exp(-0.0357t) | 0.991 8 | y = 0.3304 + 0.5058exp(-0.0416t) | 0.995 3 | |
10 | 20 | y = 0.0723 + 0.7777exp(-0.1144t) | 0.996 3 | y = 0.0843 + 0.7230exp(-0.0974t) | 0.997 2 | y = 0.0796 + 0.7726exp(-0.1043t) | 0.995 5 |
40 | y = 0.0916 + 0.7293exp(-0.0859t) | 0.990 4 | y = 0.1210 + 0.6995exp(-0.0821t) | 0.998 3 | y = 0.1209 + 0.7302exp(-0.0942t) | 0.997 3 | |
60 | y = 0.1854 + 0.6218exp(-0.0673t) | 0.985 9 | y = 0.2403 + 0.5778exp(-0.0631t) | 0.987 4 | y = 0.1916 + 0.6068exp(-0.0645t) | 0.976 2 | |
80 | y = 0.2766 + 0.5367exp(-0.0539t) | 0.992 9 | y = 0.3163 + 0.4952exp(-0.0438t) | 0.977 1 | y = 0.2693 + 0.5429exp(-0.0498t) | 0.993 4 | |
15 | 20 | y = 0.0495 + 0.7928exp(-0.1567t) | 0.992 2 | y = 0.0731 + 0.7392exp(-0.1262t) | 0.996 9 | y = 0.0625 + 0.7660exp(-0.1227t) | 0.994 2 |
40 | y = 0.0667 + 0.7667exp(-0.1246t) | 0.997 1 | y = 0.0815 + 0.7332exp(-0.1139t) | 0.998 1 | y = 0.0766 + 0.7684exp(-0.1098t) | 0.994 6 | |
60 | y = 0.1501 + 0.6801exp(-0.1036t) | 0.995 9 | y = 0.1366 + 0.6214exp(-0.0846t) | 0.994 6 | y = 0.1086 + 0.6858exp(-0.0851t) | 0.994 7 | |
80 | y = 0.2284 + 0.6192exp(-0.0648t) | 0.996 8 | y = 0.2731 + 0.4999exp(-0.0510t) | 0.990 1 | y = 0.2092 + 0.6259exp(-0.0547t) | 0.994 3 | |
20 | 20 | y = 0.0435 + 0.7602exp(-0.2031t) | 0.985 5 | y = 0.0515 + 0.7774exp(-0.1917t) | 0.978 3 | y = 0.0470 + 0.7741exp(-0.1928t) | 0.979 3 |
40 | y = 0.0621 + 0.7208exp(-0.1818t) | 0.992 9 | y = 0.0682 + 0.7349exp(-0.1711t) | 0.992 2 | y = 0.0655 + 0.7504exp(-0.1567t) | 0.989 5 | |
60 | y = 0.0806 + 0.7157exp(-0.1236t) | 0.994 1 | y = 0.0863 + 0.6989exp(-0.0991t) | 0.996 2 | y = 0.0810 + 0.7189exp(-0.1174t) | 0.998 3 | |
80 | y = 0.1774 + 0.6130exp(-0.0760t) | 0.991 2 | y = 0.1927 + 0.6004exp(-0.0691t) | 0.986 3 | y = 0.1539 + 0.6745exp(-0.0695t) | 0.995 8 | |
25 | 20 | y = 0.0246 + 0.7845exp(-0.2366t) | 0.981 4 | y = 0.0424 + 0.7462exp(-0.2749t) | 0.976 2 | y = 0.0418 + 0.7459exp(-0.2298t) | 0.997 1 |
40 | y = 0.0338 + 0.7880exp(-0.2139t) | 0.993 7 | y = 0.0470 + 0.7328exp(-0.1925t) | 0.993 8 | y = 0.0446 + 0.7779exp(-0.2039t) | 0.982 9 | |
60 | y = 0.0601 + 0.7739exp(-0.1612t) | 0.987 5 | y = 0.0752 + 0.7267exp(-0.1389t) | 0.996 9 | y = 0.0703 + 0.7309exp(-0.1257t) | 0.994 8 | |
80 | y = 0.1274 + 0.6767exp(-0.1064t) | 0.997 1 | y = 0.1325 + 0.6731exp(-0.1085t) | 0.996 2 | y = 0.1248 + 0.6735exp(-0.0977t) | 0.997 0 |
附表1 不同气温、不同空气相对湿度条件下可燃物含水率动态方程
Appendix table 1 Equations of moisture content dynamics of fuels under different air temperature and relative humidity
气温 Air tempe- rature (℃) | 相对湿度 Relative humi- dity (%) | 落叶松叶片 Larix gmelinii leaves | 决定 系数 Coefficient of determination (R2) | 白桦叶片 Betula platyphylla leaves | 决定 系数 Coefficient of determi- nation (R2) | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 决定 系数 Coefficient of determination (R2) |
---|---|---|---|---|---|---|---|
5 | 20 | y = 0.0763 + 0.7502exp(-0.0959t) | 0.994 1 | y = 0.1090 + 0.6817exp(-0.0793t) | 0.994 3 | y = 0.0954 + 0.7567exp(-0.0872t) | 0.997 2 |
40 | y = 0.1346 + 0.7134exp(-0.0811t) | 0.994 9 | y = 0.1612 + 0.6449exp(-0.0653t) | 0.990 6 | y = 0.1453 + 0.6858exp(-0.0678t) | 0.988 7 | |
60 | y = 0.2127 + 0.6171exp(-0.0656t) | 0.996 7 | y = 0.2537 + 0.5559exp(-0.0474t) | 0.989 9 | y = 0.2388 + 0.5515exp(-0.0524t) | 0.984 7 | |
80 | y = 0.3056 + 0.5030exp(-0.0454t) | 0.983 6 | y = 0.3493 + 0.4769exp(-0.0357t) | 0.991 8 | y = 0.3304 + 0.5058exp(-0.0416t) | 0.995 3 | |
10 | 20 | y = 0.0723 + 0.7777exp(-0.1144t) | 0.996 3 | y = 0.0843 + 0.7230exp(-0.0974t) | 0.997 2 | y = 0.0796 + 0.7726exp(-0.1043t) | 0.995 5 |
40 | y = 0.0916 + 0.7293exp(-0.0859t) | 0.990 4 | y = 0.1210 + 0.6995exp(-0.0821t) | 0.998 3 | y = 0.1209 + 0.7302exp(-0.0942t) | 0.997 3 | |
60 | y = 0.1854 + 0.6218exp(-0.0673t) | 0.985 9 | y = 0.2403 + 0.5778exp(-0.0631t) | 0.987 4 | y = 0.1916 + 0.6068exp(-0.0645t) | 0.976 2 | |
80 | y = 0.2766 + 0.5367exp(-0.0539t) | 0.992 9 | y = 0.3163 + 0.4952exp(-0.0438t) | 0.977 1 | y = 0.2693 + 0.5429exp(-0.0498t) | 0.993 4 | |
15 | 20 | y = 0.0495 + 0.7928exp(-0.1567t) | 0.992 2 | y = 0.0731 + 0.7392exp(-0.1262t) | 0.996 9 | y = 0.0625 + 0.7660exp(-0.1227t) | 0.994 2 |
40 | y = 0.0667 + 0.7667exp(-0.1246t) | 0.997 1 | y = 0.0815 + 0.7332exp(-0.1139t) | 0.998 1 | y = 0.0766 + 0.7684exp(-0.1098t) | 0.994 6 | |
60 | y = 0.1501 + 0.6801exp(-0.1036t) | 0.995 9 | y = 0.1366 + 0.6214exp(-0.0846t) | 0.994 6 | y = 0.1086 + 0.6858exp(-0.0851t) | 0.994 7 | |
80 | y = 0.2284 + 0.6192exp(-0.0648t) | 0.996 8 | y = 0.2731 + 0.4999exp(-0.0510t) | 0.990 1 | y = 0.2092 + 0.6259exp(-0.0547t) | 0.994 3 | |
20 | 20 | y = 0.0435 + 0.7602exp(-0.2031t) | 0.985 5 | y = 0.0515 + 0.7774exp(-0.1917t) | 0.978 3 | y = 0.0470 + 0.7741exp(-0.1928t) | 0.979 3 |
40 | y = 0.0621 + 0.7208exp(-0.1818t) | 0.992 9 | y = 0.0682 + 0.7349exp(-0.1711t) | 0.992 2 | y = 0.0655 + 0.7504exp(-0.1567t) | 0.989 5 | |
60 | y = 0.0806 + 0.7157exp(-0.1236t) | 0.994 1 | y = 0.0863 + 0.6989exp(-0.0991t) | 0.996 2 | y = 0.0810 + 0.7189exp(-0.1174t) | 0.998 3 | |
80 | y = 0.1774 + 0.6130exp(-0.0760t) | 0.991 2 | y = 0.1927 + 0.6004exp(-0.0691t) | 0.986 3 | y = 0.1539 + 0.6745exp(-0.0695t) | 0.995 8 | |
25 | 20 | y = 0.0246 + 0.7845exp(-0.2366t) | 0.981 4 | y = 0.0424 + 0.7462exp(-0.2749t) | 0.976 2 | y = 0.0418 + 0.7459exp(-0.2298t) | 0.997 1 |
40 | y = 0.0338 + 0.7880exp(-0.2139t) | 0.993 7 | y = 0.0470 + 0.7328exp(-0.1925t) | 0.993 8 | y = 0.0446 + 0.7779exp(-0.2039t) | 0.982 9 | |
60 | y = 0.0601 + 0.7739exp(-0.1612t) | 0.987 5 | y = 0.0752 + 0.7267exp(-0.1389t) | 0.996 9 | y = 0.0703 + 0.7309exp(-0.1257t) | 0.994 8 | |
80 | y = 0.1274 + 0.6767exp(-0.1064t) | 0.997 1 | y = 0.1325 + 0.6731exp(-0.1085t) | 0.996 2 | y = 0.1248 + 0.6735exp(-0.0977t) | 0.997 0 |
图1 不同类型可燃物含水率在不同气温、不同空气相对湿度条件下的变化曲线。A, 落叶松叶片。B, 白桦叶片。C, 落叶松-白桦叶片混合物。a、b、c、d表示空气相对湿度分别为20%、40%、60%、80%。
Fig. 1 Curves of dynamics of moisture content in different fuels under different air temperature and relative humidity. A, Larix gmelinii leaves. B, Betula platyphylla leaves. C, Mixture of L. gmelinii and B. platyphylla leaves. a, b, c, and d show relative humidity of 20%, 40%, 60%, 80%, respectively.
气温 Air temperature | 落叶松叶片 Larix gmelinii leaves | 白桦叶片 Betula platyphylla leaves | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | 5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | 5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | |
5 ℃ | 1.00 | 0.719 | 0.399 | 0.166 | 0.070 | 1.00 | 0.724 | 0.314 | 0.103 | 0.044* | 1.00 | 0.597 | 0.202 | 0.089 | 0.055 |
10 ℃ | - | 1.00 | 0.619 | 0.284 | 0.120 | - | 1.00 | 0.511 | 0.089 | 0.120 | - | 1.00 | 0.374 | 0.152 | 0.084 |
15 ℃ | - | - | 1.00 | 0.543 | 0.237 | - | - | 1.00 | 0.488 | 0.235 | - | - | 1.00 | 0.525 | 0.296 |
20 ℃ | - | - | - | 1.00 | 0.466 | - | - | - | 1.00 | 0.528 | - | - | - | 1.00 | 0.606 |
25 ℃ | - | - | - | - | 1.00 | - | - | - | - | 1.00 | - | - | - | - | 1.00 |
附表2 不同气温条件下, 平衡含水率差异性分析
Appendix table 2 Significance level of equilibrium moisture content (EMC) under different air temperature
气温 Air temperature | 落叶松叶片 Larix gmelinii leaves | 白桦叶片 Betula platyphylla leaves | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | 5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | 5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | |
5 ℃ | 1.00 | 0.719 | 0.399 | 0.166 | 0.070 | 1.00 | 0.724 | 0.314 | 0.103 | 0.044* | 1.00 | 0.597 | 0.202 | 0.089 | 0.055 |
10 ℃ | - | 1.00 | 0.619 | 0.284 | 0.120 | - | 1.00 | 0.511 | 0.089 | 0.120 | - | 1.00 | 0.374 | 0.152 | 0.084 |
15 ℃ | - | - | 1.00 | 0.543 | 0.237 | - | - | 1.00 | 0.488 | 0.235 | - | - | 1.00 | 0.525 | 0.296 |
20 ℃ | - | - | - | 1.00 | 0.466 | - | - | - | 1.00 | 0.528 | - | - | - | 1.00 | 0.606 |
25 ℃ | - | - | - | - | 1.00 | - | - | - | - | 1.00 | - | - | - | - | 1.00 |
图2 平衡含水率-气温模型预测的平衡含水率值和由含水率数据估测的平衡含水率值对比。A, 落叶松叶片。B, 白桦叶片。C, 落叶松-白桦叶片混合物。
Fig. 2 Comparison between equilibrium moisture content (EMC) predicted by EMC-air temperature model and that of measurements. A, Larix gmelinii leaves. B, Betula platyphylla leaves. C, Mixture of L. gmelinii and B. platyphylla leaves.
相对湿度 Relative humidity | 落叶松叶片 Larix gmelinii leaves | 白桦叶片 Betula platyphylla leaves | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | |
20% | 1.00 | 0.269 | 0.026* | 0.001** | 1.00 | 0.343 | 0.060 | 0.002** | 1.00 | 0.263 | 0.068 | 0.004** |
40% | - | 1.00 | 0.105 | 0.004** | - | 1.00 | 0.182 | 0.008** | - | 1.00 | 0.245 | 0.016* |
60% | - | - | 1.00 | 0.087 | - | - | 1.00 | 0.124 | - | - | 1.00 | 0.150 |
80% | - | - | 1.00 | - | - | 1.00 | - | - | 1.00 |
附表3 不同空气相对湿度条件下, 平衡含水率差异性分析
Appendix table 3 Significance level of equilibrium moisture content (EMC) under different relative humidity
相对湿度 Relative humidity | 落叶松叶片 Larix gmelinii leaves | 白桦叶片 Betula platyphylla leaves | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | |
20% | 1.00 | 0.269 | 0.026* | 0.001** | 1.00 | 0.343 | 0.060 | 0.002** | 1.00 | 0.263 | 0.068 | 0.004** |
40% | - | 1.00 | 0.105 | 0.004** | - | 1.00 | 0.182 | 0.008** | - | 1.00 | 0.245 | 0.016* |
60% | - | - | 1.00 | 0.087 | - | - | 1.00 | 0.124 | - | - | 1.00 | 0.150 |
80% | - | - | 1.00 | - | - | 1.00 | - | - | 1.00 |
气温 Air temperature (℃) | 落叶松叶片 Larix gmelinii leaves | 决定系数 Coefficient of determination (R2) | 白桦叶片 Betula platyphylla leaves | 决定系数 Coefficient of determination (R2) | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 决定系数 Coefficient of determination (R2) |
---|---|---|---|---|---|---|
5 | y = 0.3670x1.5427 + 0.0456 | 0.999 9 | y = 0.3918x1.6392 + 0.0791 | 0.998 3 | y = 0.3843x1.6237 + 0.0649 | 0.997 2 |
10 | y = 0.3652x2.2000 + 0.0561 | 0.987 7 | y = 0.3914x1.5672 + 0.0464 | 0.978 2 | y = 0.3092x1.6848 + 0.0579 | 0.999 0 |
15 | y = 0.3182x2.1564 + 0.3458 | 0.986 6 | y = 0.4901x3.9617 + 0.0708 | 0.999 7 | y = 0.3526x3.9870 + 0.0641 | 0.998 6 |
20 | y = 0.3536x4.5456 + 0.0487 | 0.990 6 | y = 0.4191x5.0574 + 0.0568 | 0.992 8 | y = 0.2442x3.9114 + 0.5126 | 0.986 4 |
25 | y = 0.2315x3.6433 + 0.0245 | 0.999 7 | y = 0.2010x3.5001 + 0.0406 | 0.999 0 | y = 0.1941x3.7051 + 0.0401 | 0.998 6 |
表2 不同气温下, 平衡含水率-湿度变化方程及决定系数
Table 2 Equations of equilibrium moisture content (EMC) versus relative humidity and coefficient of determination under different air temperature
气温 Air temperature (℃) | 落叶松叶片 Larix gmelinii leaves | 决定系数 Coefficient of determination (R2) | 白桦叶片 Betula platyphylla leaves | 决定系数 Coefficient of determination (R2) | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 决定系数 Coefficient of determination (R2) |
---|---|---|---|---|---|---|
5 | y = 0.3670x1.5427 + 0.0456 | 0.999 9 | y = 0.3918x1.6392 + 0.0791 | 0.998 3 | y = 0.3843x1.6237 + 0.0649 | 0.997 2 |
10 | y = 0.3652x2.2000 + 0.0561 | 0.987 7 | y = 0.3914x1.5672 + 0.0464 | 0.978 2 | y = 0.3092x1.6848 + 0.0579 | 0.999 0 |
15 | y = 0.3182x2.1564 + 0.3458 | 0.986 6 | y = 0.4901x3.9617 + 0.0708 | 0.999 7 | y = 0.3526x3.9870 + 0.0641 | 0.998 6 |
20 | y = 0.3536x4.5456 + 0.0487 | 0.990 6 | y = 0.4191x5.0574 + 0.0568 | 0.992 8 | y = 0.2442x3.9114 + 0.5126 | 0.986 4 |
25 | y = 0.2315x3.6433 + 0.0245 | 0.999 7 | y = 0.2010x3.5001 + 0.0406 | 0.999 0 | y = 0.1941x3.7051 + 0.0401 | 0.998 6 |
图3 平衡含水率-湿度模型预测的平衡含水率值和由含水率数据估测的平衡含水率值对比。A, 落叶松叶片。B, 白桦叶片。C, 落叶松-白桦叶片混合物。
Fig. 3 Comparison between equilibrium moisture content (EMC) predicted by EMC-relative humidity model and that of measurements. A, Larix gmelinii leaves. B, Betula platyphylla leaves. C, Mixture of L. gmelinii and B. platyphylla leaves.
可燃物类型 Fuel type | 相对湿度 Relative humidity (%) | 平衡含水率随气温、相对湿度变化的方程 Equations of EMC versus air temperature and relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|---|
落叶松叶片 Larix gmelinii leaves | 10 < H < 50 | E = 1.075569 + 0.1226H - 0.003633T | 0.895 3 |
H ≥ 50 | E = 0.76452 - 1.37034H + 1.838824H2 - 0.01221HT | 0.982 1 | |
白桦叶片 Betula platyphylla leaves | 10 < H < 50 | E = 1.336947 + 0.1186H - 0.004472T | 0.913 6 |
H ≥ 50 | E = 0.940213 - 1.70177H + 2.218485H2 - 0.015047HT | 0.956 1 | |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 10 < H < 50 | E = 1.182743 + 0.1266H - 0.003966T | 0.906 1 |
H ≥ 5 | E = 0.871213 - 1.53921H + 2.024026H2 - 0.013797HT | 0.965 3 |
表3 Simard平衡含水率模型
Table 3 Simard equilibrium moisture content (EMC) model
可燃物类型 Fuel type | 相对湿度 Relative humidity (%) | 平衡含水率随气温、相对湿度变化的方程 Equations of EMC versus air temperature and relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|---|
落叶松叶片 Larix gmelinii leaves | 10 < H < 50 | E = 1.075569 + 0.1226H - 0.003633T | 0.895 3 |
H ≥ 50 | E = 0.76452 - 1.37034H + 1.838824H2 - 0.01221HT | 0.982 1 | |
白桦叶片 Betula platyphylla leaves | 10 < H < 50 | E = 1.336947 + 0.1186H - 0.004472T | 0.913 6 |
H ≥ 50 | E = 0.940213 - 1.70177H + 2.218485H2 - 0.015047HT | 0.956 1 | |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 10 < H < 50 | E = 1.182743 + 0.1266H - 0.003966T | 0.906 1 |
H ≥ 5 | E = 0.871213 - 1.53921H + 2.024026H2 - 0.013797HT | 0.965 3 |
可燃物类型 Fuel type | 平衡含水率随气温、相对湿度变化方程 Equations of EMC versus air temperature and relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|
落叶松叶片 Larix gmelinii leaves | Ed = -44.9323H0.001095 + 44.86805e0.073957H + 0.147607(33.97835 - T)(1 - e-0.08471H) | 0.988 8 |
白桦叶片 Betula platyphylla leaves | Ed = -26.3152H-0.00478 + 26.71372e0.137453H + 0.062646(12.75931 + T)(1 - e-0.258312H) | 0.975 1 |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | Ed = -18.9629H-0.00775 + 19.39976e0.171261H + 0.065635(5.407862 + T)(1 - e-0.223153H) | 0.978 8 |
表4 Van Wanger平衡含水率模型
>Table 4 Van Wanger equilibrium moisture content (EMC) model
可燃物类型 Fuel type | 平衡含水率随气温、相对湿度变化方程 Equations of EMC versus air temperature and relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|
落叶松叶片 Larix gmelinii leaves | Ed = -44.9323H0.001095 + 44.86805e0.073957H + 0.147607(33.97835 - T)(1 - e-0.08471H) | 0.988 8 |
白桦叶片 Betula platyphylla leaves | Ed = -26.3152H-0.00478 + 26.71372e0.137453H + 0.062646(12.75931 + T)(1 - e-0.258312H) | 0.975 1 |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | Ed = -18.9629H-0.00775 + 19.39976e0.171261H + 0.065635(5.407862 + T)(1 - e-0.223153H) | 0.978 8 |
可燃物类型 Fuel type | 平衡含水率随气温、相对湿度变化方程 Equations of EMC versus air temperature and relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|
落叶松叶片 Larix gmelinii leaves | Ed = 1.31779H-0.051049 + 0.329983e0.866517H + 0.006145(0.117326 - T) | 0.938 7 |
白桦叶片 Betula platyphylla leaves | Ed = 0.757326H1.462077 + 2.306681e-0.23901H - 0.007577(2.06381 + T) | 0.917 8 |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | Ed = 1.971964H-0.00503 + 0.33744e2.343505H - 0.006854(0.244327 + T) | 0.906 8 |
表5 Anderson平衡含水率模型
Table 5 Anderson equilibrium moisture content (EMC) model
可燃物类型 Fuel type | 平衡含水率随气温、相对湿度变化方程 Equations of EMC versus air temperature and relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|
落叶松叶片 Larix gmelinii leaves | Ed = 1.31779H-0.051049 + 0.329983e0.866517H + 0.006145(0.117326 - T) | 0.938 7 |
白桦叶片 Betula platyphylla leaves | Ed = 0.757326H1.462077 + 2.306681e-0.23901H - 0.007577(2.06381 + T) | 0.917 8 |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | Ed = 1.971964H-0.00503 + 0.33744e2.343505H - 0.006854(0.244327 + T) | 0.906 8 |
可燃物类型 Fuel type | 平衡含水率随气温、相对湿度变化方程 Equations of EMC versus air temperature and relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|
落叶松叶片 Larix gmelinii leaves | E = 0.217687 - 0.000873(-8.314T/18LogH) | 0.557 9 |
白桦叶片 Betula platyphylla leaves | E = 0.245242 - 0.000926(-8.314T/18LogH) | 0.488 7 |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | E = 0.197390 - 0.012316(-8.314T/18LogH) | 0.553 5 |
表6 Nelson平衡含水率模型
Table 6 Nelson equilibrium moisture content (EMC) model
可燃物类型 Fuel type | 平衡含水率随气温、相对湿度变化方程 Equations of EMC versus air temperature and relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|
落叶松叶片 Larix gmelinii leaves | E = 0.217687 - 0.000873(-8.314T/18LogH) | 0.557 9 |
白桦叶片 Betula platyphylla leaves | E = 0.245242 - 0.000926(-8.314T/18LogH) | 0.488 7 |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | E = 0.197390 - 0.012316(-8.314T/18LogH) | 0.553 5 |
4种模型拟合3种细小可燃物平衡含水率的3种误差的分布。A, 落叶松叶片; B, 白桦叶片; C, 落叶松-白桦叶片混合物。
Fig. 4 Distributions of errors in modeled equilibrium moisture content (EMC) of fine fuels. A, Larix gmelinii leaves. B, Betula platyphylla leaves. C, Mixture of L. gmelinii and B. platyphylla leaves. MAE, mean absolute error; MRE, mean relative error; RMSE, root mean square error.
气温 Air temperature | 落叶松叶片 Larix gmelinii leaves | 白桦叶片 Betula platyphylla leaves | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | 5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | 5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | |
5 ℃ | 1.00 | 0.653 | 0.161 | 0.066 | 0.019* | 1.00 | 0.401 | 0.146 | 0.042* | 0.012* | 1.00 | 0.439 | 0.172 | 0.043* | 0.014* |
10 ℃ | - | 1.00 | 0.262 | 0.098 | 0.023* | - | 1.00 | 0.429 | 0.119 | 0.025* | - | 1.00 | 0.498 | 0.131 | 0.041* |
15 ℃ | - | - | 1.00 | 0.500 | 0.153 | - | - | 1.00 | 0.396 | 0.098 | - | - | 1.00 | 0.336 | 0.112 |
20 ℃ | - | - | - | 1.00 | 0.449 | - | - | - | 1.00 | 0.334 | - | - | - | 1.00 | 0.502 |
25 ℃ | - | - | - | - | 1.00 | - | - | - | - | 1.00 | - | - | - | - | 1.00 |
不同气温条件下, 时滞差异性分析
Appendix table 4 Significance level of time-lag under different air temperature
气温 Air temperature | 落叶松叶片 Larix gmelinii leaves | 白桦叶片 Betula platyphylla leaves | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | 5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | 5 ℃ | 10 ℃ | 15 ℃ | 20 ℃ | 25 ℃ | |
5 ℃ | 1.00 | 0.653 | 0.161 | 0.066 | 0.019* | 1.00 | 0.401 | 0.146 | 0.042* | 0.012* | 1.00 | 0.439 | 0.172 | 0.043* | 0.014* |
10 ℃ | - | 1.00 | 0.262 | 0.098 | 0.023* | - | 1.00 | 0.429 | 0.119 | 0.025* | - | 1.00 | 0.498 | 0.131 | 0.041* |
15 ℃ | - | - | 1.00 | 0.500 | 0.153 | - | - | 1.00 | 0.396 | 0.098 | - | - | 1.00 | 0.336 | 0.112 |
20 ℃ | - | - | - | 1.00 | 0.449 | - | - | - | 1.00 | 0.334 | - | - | - | 1.00 | 0.502 |
25 ℃ | - | - | - | - | 1.00 | - | - | - | - | 1.00 | - | - | - | - | 1.00 |
可燃物类型 Fuel type | 相对湿度 Relative humidity (%) | 气温 Air temperature (℃) | ||||
---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | ||
落叶松叶片 Larix gmelinii leaves | 20 | 10.43 | 8.74 | 6.38 | 4.92 | 4.23 |
40 | 12.33 | 11.64 | 8.03 | 5.50 | 4.68 | |
60 | 15.24 | 14.86 | 9.65 | 8.09 | 6.20 | |
80 | 22.03 | 18.55 | 15.43 | 13.16 | 9.40 | |
白桦叶片 Betula platyphylla leaves | 20 | 12.61 | 10.27 | 7.92 | 5.22 | 3.64 |
40 | 15.31 | 12.18 | 8.78 | 5.84 | 5.19 | |
60 | 21.10 | 15.85 | 11.82 | 10.09 | 7.20 | |
80 | 28.01 | 22.83 | 19.59 | 14.47 | 9.22 | |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 20 | 11.47 | 9.59 | 8.15 | 5.19 | 4.35 |
40 | 14.75 | 10.62 | 9.11 | 6.38 | 4.90 | |
60 | 19.08 | 15.50 | 11.75 | 8.52 | 7.96 | |
80 | 24.04 | 20.08 | 18.28 | 14.39 | 10.24 |
表7 不同气温、不同空气相对湿度条件下可燃物时滞(h)
Table 7 Time-lag of fuels under different air temperature and relative humidity (h)
可燃物类型 Fuel type | 相对湿度 Relative humidity (%) | 气温 Air temperature (℃) | ||||
---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | ||
落叶松叶片 Larix gmelinii leaves | 20 | 10.43 | 8.74 | 6.38 | 4.92 | 4.23 |
40 | 12.33 | 11.64 | 8.03 | 5.50 | 4.68 | |
60 | 15.24 | 14.86 | 9.65 | 8.09 | 6.20 | |
80 | 22.03 | 18.55 | 15.43 | 13.16 | 9.40 | |
白桦叶片 Betula platyphylla leaves | 20 | 12.61 | 10.27 | 7.92 | 5.22 | 3.64 |
40 | 15.31 | 12.18 | 8.78 | 5.84 | 5.19 | |
60 | 21.10 | 15.85 | 11.82 | 10.09 | 7.20 | |
80 | 28.01 | 22.83 | 19.59 | 14.47 | 9.22 | |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 20 | 11.47 | 9.59 | 8.15 | 5.19 | 4.35 |
40 | 14.75 | 10.62 | 9.11 | 6.38 | 4.90 | |
60 | 19.08 | 15.50 | 11.75 | 8.52 | 7.96 | |
80 | 24.04 | 20.08 | 18.28 | 14.39 | 10.24 |
相对湿度 Relative humidity | 落叶松叶片 Larix gmelinii leaves | 白桦叶片 Betula platyphylla leaves | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | |
20% | 1.00 | 0.463 | 0.111 | 0.007** | 1.00 | 0.560 | 0.108 | 0.017* | 1.00 | 0.538 | 0.086 | 0.007** |
40% | - | 1.00 | 0.350 | 0.121 | - | 1.00 | 0.259 | 0.204 | - | 1.00 | 0.228 | 0.195 |
60% | - | - | 1.00 | 0.026* | - | - | 1.00 | 0.038* | - | - | 1.00 | 0.023* |
80% | - | - | - | 1.00 | - | - | - | 1.00 | - | - | - | 1.00 |
不同空气相对湿度条件下, 时滞差异性分析
Appendix table 5 Significance level of time-lag under different relative humidity
相对湿度 Relative humidity | 落叶松叶片 Larix gmelinii leaves | 白桦叶片 Betula platyphylla leaves | 落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | |
20% | 1.00 | 0.463 | 0.111 | 0.007** | 1.00 | 0.560 | 0.108 | 0.017* | 1.00 | 0.538 | 0.086 | 0.007** |
40% | - | 1.00 | 0.350 | 0.121 | - | 1.00 | 0.259 | 0.204 | - | 1.00 | 0.228 | 0.195 |
60% | - | - | 1.00 | 0.026* | - | - | 1.00 | 0.038* | - | - | 1.00 | 0.023* |
80% | - | - | - | 1.00 | - | - | - | 1.00 | - | - | - | 1.00 |
可燃物类型 Fuel type | 空气相对湿度 Relative humidity (%) | 时滞随气温变化方程 Equations of time-lag versus air temperature | 决定系数 Coefficient of determination (R2) |
---|---|---|---|
落叶松叶片 Larix gmelinii leaves | 20 | y = (0.9600e - 3)x3 - 0.0349x2 - 0.0066x + 11.2399 | 0.998 5 |
40 | y = 0.0031x3 - 0.1365x2 + 1.3218x + 8.7975 | 0.996 6 | |
60 | y = 0.0029x3 - 0.1332x2 + 1.2189x + 12.2780 | 0.966 4 | |
80 | y = -0.0012x3 + 0.0561x2 - 1.3631x + 27.6359 | 0.995 6 | |
白桦叶片 Betula platyphylla leaves | 20 | y = (0.7533e - 3)x3 - 0.0306x2 - 0.1156x + 13.8320 | 0.999 1 |
40 | y = 0.0017x3 - 0.0613x2 + 0.0108x + 16.5599 | 0.999 8 | |
60 | y = -0.0016x3 + 0.0915x2 - 2.2090x + 30.1219 | 0.997 5 | |
80 | y = -0.0014x3 + 0.5634x2 - 1.5598x + 34.4934 | 0.997 9 | |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 20 | y = 0.0011x3 - 0.0488x2 + 0.2400x + 11.2699 | 0.987 4 |
40 | y = -(0.9133e + 3)x3 + 0.0528x2 - 1.3674x + 20.2920 | 0.990 4 | |
60 | y = 0.0036x3 - 0.1468x2 + 1.0602x + 17.0516 | 0.998 0 | |
80 | y = -0.0016x3 + 0.0656x2 - 1.4069x + 329.5488 | 0.995 3 |
Table 8 Equations of time-lag versus temperature and coefficient of determination under different relative humidity
可燃物类型 Fuel type | 空气相对湿度 Relative humidity (%) | 时滞随气温变化方程 Equations of time-lag versus air temperature | 决定系数 Coefficient of determination (R2) |
---|---|---|---|
落叶松叶片 Larix gmelinii leaves | 20 | y = (0.9600e - 3)x3 - 0.0349x2 - 0.0066x + 11.2399 | 0.998 5 |
40 | y = 0.0031x3 - 0.1365x2 + 1.3218x + 8.7975 | 0.996 6 | |
60 | y = 0.0029x3 - 0.1332x2 + 1.2189x + 12.2780 | 0.966 4 | |
80 | y = -0.0012x3 + 0.0561x2 - 1.3631x + 27.6359 | 0.995 6 | |
白桦叶片 Betula platyphylla leaves | 20 | y = (0.7533e - 3)x3 - 0.0306x2 - 0.1156x + 13.8320 | 0.999 1 |
40 | y = 0.0017x3 - 0.0613x2 + 0.0108x + 16.5599 | 0.999 8 | |
60 | y = -0.0016x3 + 0.0915x2 - 2.2090x + 30.1219 | 0.997 5 | |
80 | y = -0.0014x3 + 0.5634x2 - 1.5598x + 34.4934 | 0.997 9 | |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 20 | y = 0.0011x3 - 0.0488x2 + 0.2400x + 11.2699 | 0.987 4 |
40 | y = -(0.9133e + 3)x3 + 0.0528x2 - 1.3674x + 20.2920 | 0.990 4 | |
60 | y = 0.0036x3 - 0.1468x2 + 1.0602x + 17.0516 | 0.998 0 | |
80 | y = -0.0016x3 + 0.0656x2 - 1.4069x + 329.5488 | 0.995 3 |
可燃物类型 Fuel type | 气温 Air temperature (℃) | 时滞随相对湿度变化方程 Equations of time-lag versus relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|---|
落叶松叶片 Larix gmelinii leaves | 5 | y = 7.5029lnx + 21.1219 | 0.787 6 |
10 | y = 6.8015lnx + 18.9909 | 0.937 7 | |
15 | y = 5.7026lnx + 14.5197 | 0.757 8 | |
20 | y = 5.3324lnx + 12.2630 | 0.728 1 | |
25 | y = 3.3324lnx + 8.84310 | 0.733 7 | |
白桦叶片 Betula platyphylla leaves | 5 | y = 10.5346lnx + 27.423 | 0.860 8 |
10 | y = 8.2426lnx + 21.9998 | 0.800 2 | |
15 | y = 7.3834lnx + 18.0445 | 0.698 1 | |
20 | y = 6.3568lnx + 14.0853 | 0.791 6 | |
25 | y = 3.8974lnx + 9.48770 | 0.934 5 | |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 5 | y = 8.6887lnx + 24.4157 | 0.918 8 |
10 | y = 7.6462lnx + 20.4986 | 0.841 9 | |
15 | y = 6.4491lnx + 12.0780 | 0.720 9 | |
20 | y = 5.8443lnx + 13.3826 | 0.739 4 | |
25 | y = 4.1722lnx + 10.2602 | 0.830 1 |
表9 不同气温下, 时滞-湿度变化方程及决定系数
Table 9 Equations of time-lag versus relative humidity and coefficient of determination under different temperature
可燃物类型 Fuel type | 气温 Air temperature (℃) | 时滞随相对湿度变化方程 Equations of time-lag versus relative humidity | 决定系数 Coefficient of determination (R2) |
---|---|---|---|
落叶松叶片 Larix gmelinii leaves | 5 | y = 7.5029lnx + 21.1219 | 0.787 6 |
10 | y = 6.8015lnx + 18.9909 | 0.937 7 | |
15 | y = 5.7026lnx + 14.5197 | 0.757 8 | |
20 | y = 5.3324lnx + 12.2630 | 0.728 1 | |
25 | y = 3.3324lnx + 8.84310 | 0.733 7 | |
白桦叶片 Betula platyphylla leaves | 5 | y = 10.5346lnx + 27.423 | 0.860 8 |
10 | y = 8.2426lnx + 21.9998 | 0.800 2 | |
15 | y = 7.3834lnx + 18.0445 | 0.698 1 | |
20 | y = 6.3568lnx + 14.0853 | 0.791 6 | |
25 | y = 3.8974lnx + 9.48770 | 0.934 5 | |
落叶松-白桦叶片混合物 Mixture of L. gmelinii and B. platyphylla leaves | 5 | y = 8.6887lnx + 24.4157 | 0.918 8 |
10 | y = 7.6462lnx + 20.4986 | 0.841 9 | |
15 | y = 6.4491lnx + 12.0780 | 0.720 9 | |
20 | y = 5.8443lnx + 13.3826 | 0.739 4 | |
25 | y = 4.1722lnx + 10.2602 | 0.830 1 |
图5 时滞-气温模型预测的时滞值和由含水率数据估测的时滞值对比。A, 落叶松叶片; B, 白桦叶片; C, 落叶松-白桦叶片混合物。
Fig. 5 Comparison between fuel time-lag predicted by time-lag-air-temperature model and that of measurements. A, Larix gmelinii leaves. B, Betula platyphylla leaves. C, Mixture of L. gmelinii and B. platyphylla leaves.
图6 时滞-湿度模型预测的时滞值和由含水率数据估测的时滞值对比。A, 落叶松叶片。B, 白桦叶片。C, 落叶松-白桦叶片混合物。
Fig. 6 Comparison between fuel time-lag predicted by time-lag-relative humidity model and that of measurements. A, Larix gmelinii leaves. B, Betula platyphylla leaves. C, Mixture of L. gmelinii and B. platyphylla leaves.
1. | Anderson HE (1990a). Moisture diffusivity and response time in fine forest fuels.Canadian Journal of Forest Research, 20, 315-325. |
2. | Anderson HE (. |
3. | Anderson HE, Schuette RD, Mutch RW (. |
4. | Byram GM, Jemison GM (1943). Solar radiation and forest fuel moisture.Journal of Agricultural Research, 67, 147-176. |
5. | Byram GM, Nelson RM Jr (. |
6. | Catchpole EA, Catchpole WR, Viney NR, McCaw WL, Marsden-Smedley JB (2001). Estimating fuel response time and predicting fuel moisture content from field data.International Journal of Wildland Fire, 10, 215-222. |
7. | Cordeiro DS, Raghavan GSV, Oliveira WP (2006). Equilibrium moisture content models for Maytenus ilicifolia leaves.Biosystems Engineering, 94, 221-228. |
8. | Jin S, Chen PY (2012). Modelling drying processes of fuelbeds of Scots pine needles with initial moisture content above the fibre saturation point by two-phase models.International Journal of Wildland Fire, 21, 418-427. |
9 | 9.Jin S, Jiang WJ, Sun YY (1999). The theoretical algorithm of predicting fuel moisture with time-lag and equilibrium moisture content.Forest Fire Prevention, (4), 12-14. (in Chinese)[金森, 姜文娟, 孙玉英 (1999). 用时滞和平衡含水率准确预测可燃物含水率的理论算法. 森林防火, (4), 12-14.] |
10 | 10.Jin S, Li L, Zhao YJ (2011). Analysis on robustness and extrapolation errors of modeling fuel moisture content of dead twigs of larch by direct estimation from observed data.Scientia Silvae Sinicae, 47(6), 114-121. (in Chinese with English abstract)[金森, 李亮, 赵玉晶 (2011). 用直接估计法预测落叶松枯枝含水率的稳定性和外推误差分析. 林业科学, 47(6), 114-121.] |
11 | 11.Jin S, Li XY, Li YX (2000). Desorption processes of four fine fuels.Journal of Northeast Forestry University, 28(1), 35-38. (in Chinese with English abstract)[金森, 李绪尧, 李有祥 (2000). 几种细小可燃物失水过程中含水率的变化规律. 东北林业大学学报, 28(1), 35-38.] |
12. | Matthews S, McCaw WL, Neal JE, Smith RH (2007). Testing a process-based fine fuel moisture model in two forest types.Canadian Journal of Forest Research, 37, 23-35. |
13. | Nelson RM Jr (1984). A method for describing equilibrium moisture content of forest fuels.Canadian Journal of Forest Research, 14, 597-600. |
14. | Nelson RM Jr, Hiers JK (2008). The influence of fuelbed properties on moisture drying rates and timelags of longleaf pine litter.Canadian Journal of Forest Research, 38, 2394-2404. |
15. | Pellizzaro G, Cesaraccio C, Duce P, Ventura A, Zara P (2006). Influence of seasonal weather variations and vegetative cycle on live moisture content and ignitability in Mediterranean maquis species.Forest Ecology and Management, 234(Suppl.), S111. |
16 | 16.Shan YL, Liu NA, Hu HQ, Zhang QC (2005). Moisture content of litter of principal fuel types in Liangshui Nature Reserve.Journal of Northeast Forestry University, 33(5), 41-43. (in Chinese with English abstract)[单延龙, 刘乃安, 胡海清, 张启昌 (2005). 凉水自然保护区主要可燃物类型凋落物层的含水率. 东北林业大学学报, 33(5), 41-43.] |
17. | Simard AJ (. |
18 | 18.Tian T, Di XY (2013). Research review on change mechanism and impact factors of forest surface fuel moisture.Forest Engineering, 29(2), 21-25. (in Chinese with English abstract)[田甜, 邸雪颖 (2013). 森林地表可燃物含水率变化机理及影响因子研究概述. 森林工程, 29(2), 21-25.] |
19. | Toomey M, Vierling LA (2005). Multispectral remote sensing of landscape level foliar moisture: Techniques and applications for forest ecosystem monitoring.Canadian Journal of Forest Research, 35, 1087-1097. |
20. | van Wagner CE (. |
21. | Viney NR (1991). A review of fine fuel moisture modelling.International Journal of Wildland Fire, 1, 215-234. |
[22]. | Viney NR, Catchpole EA (1991). Estimating fuel moisture response times from field observations.International Journal of Wildland Fire, 1, 211-214. |
[1] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[2] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[3] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[4] | 蔚亮, 李均力, 包安明, 白洁, 黄粤, 刘铁, 沈占锋. 塔里木河下游湿地面积时序变化及对生态输水的响应[J]. 植物生态学报, 2020, 44(6): 616-627. |
[5] | 张贇, 尹定财, 田昆, 张卫国, 和荣华, 和文清, 孙江梅, 刘振亚. 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应[J]. 植物生态学报, 2018, 42(6): 629-639. |
[6] | 严月, 朱建军, 张彬, 张艳杰, 鲁顺保, 潘庆民. 草原生态系统植物地下生物量分配及对全球变化的响应[J]. 植物生态学报, 2017, 41(5): 585-596. |
[7] | 葛结林, 熊高明, 李家湘, 徐文婷, 赵常明, 卢志军, 李跃林, 谢宗强. 中国南方灌丛凋落物现存量[J]. 植物生态学报, 2017, 41(1): 5-13. |
[8] | 刘菊秀, 李跃林, 刘世忠, 李义勇, 褚国伟, 孟泽, 张德强. 气温上升对模拟森林生态系统影响实验的介绍[J]. 植物生态学报, 2013, 37(6): 558-565. |
[9] | 周婧, 李巧云, 肖亮, 蒋建雄, 易自力. 芒和五节芒在中国的潜在分布[J]. 植物生态学报, 2012, 36(6): 504-510. |
[10] | 吴建国, 周巧富. 中国嵩草属植物地理分布模式和适应的气候特征[J]. 植物生态学报, 2012, 36(3): 199-221. |
[11] | 石兆勇, 王发园, 苗艳芳. 不同菌根类型的森林净初级生产力对气温变化的响应[J]. 植物生态学报, 2012, 36(11): 1165-1171. |
[12] | 龙文兴, 丁易, 臧润国, 杨民, 陈少伟. 海南岛霸王岭热带云雾林雨季的环境特征[J]. 植物生态学报, 2011, 35(2): 137-146. |
[13] | 杜加强, 舒俭民, 张林波, 郭杨. 黄河上游不同干湿气候区植被对气候变化的响应[J]. 植物生态学报, 2011, 35(11): 1192-1201. |
[14] | 龙慧灵, 李晓兵, 黄玲梅, 王宏, 魏丹丹. 内蒙古草原生态系统净初级生产力及其与气候的关系[J]. 植物生态学报, 2010, 34(7): 781-791. |
[15] | 陈鹭真, 王文卿, 张宜辉, 黄丽, 赵春磊, 杨盛昌, 杨志伟, 陈粤超, 徐华林, 钟才荣, 苏博, 方柏州, 陈乃明, 曾传志, 林光辉. 2008年南方低温对我国红树植物的破坏作用[J]. 植物生态学报, 2010, 34(2): 186-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19