植物生态学报 ›› 2013, Vol. 37 ›› Issue (6): 558-565.DOI: 10.3724/SP.J.1258.2013.00057
收稿日期:
2013-01-05
接受日期:
2013-04-07
出版日期:
2013-06-01
发布日期:
2013-06-05
通讯作者:
张德强
基金资助:
LIU Ju-Xiu,LI Yue-Lin,LIU Shi-Zhong,LI Yi-Yong,CHU Guo-Wei,MENG Ze,ZHANG De-Qiang()
Received:
2013-01-05
Accepted:
2013-04-07
Online:
2013-06-01
Published:
2013-06-05
Contact:
ZHANG De-Qiang
摘要:
气温上升对森林生态系统结构和功能有重要的影响。该文简要介绍了鼎湖山森林生态系统定位研究站开展的大型实验——气温上升对模拟森林生态系统的影响。介绍了实验设计及其创新性, 实验研究内容等, 为相关实验的设计提供指导与依据。
刘菊秀, 李跃林, 刘世忠, 李义勇, 褚国伟, 孟泽, 张德强. 气温上升对模拟森林生态系统影响实验的介绍. 植物生态学报, 2013, 37(6): 558-565. DOI: 10.3724/SP.J.1258.2013.00057
LIU Ju-Xiu, LI Yue-Lin, LIU Shi-Zhong, LI Yi-Yong, CHU Guo-Wei, MENG Ze, ZHANG De-Qiang. An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems. Chinese Journal of Plant Ecology, 2013, 37(6): 558-565. DOI: 10.3724/SP.J.1258.2013.00057
图1 气温上升对模拟森林生态系统影响的实验平台修建过程。
Fig. 1 Establishment processes of experiment platform for studying effects of air temperature rise on model forest ecosystems.
海拔 Altitude (m) | 开顶箱数 No. of open- top chambers | 模拟林型 Simulated forest type | 土壤类型 Soil type | 种植树种 Planted tree species | 增温方式 Temperature increasing way |
---|---|---|---|---|---|
600 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 对照 Control |
300 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease |
3 | 针阔叶混交林 Needle and broad- leaved mixed forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、马尾松 Pinus massoniana、红锥 Castanopsis hystrix、山血丹 Ardisia lindleyana | 对照 Control | |
30 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease |
3 | 针阔叶混交林 Needle and broad- leaved mixed forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、马尾松 Pinus massoniana、红锥 Castanopsis hystrix、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease | |
3 | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、红锥 Castanopsis hystrix、海南红豆 Ormosia pinnata、九节 Psychotria asiatica | 对照 Control | |
3 | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、红锥 Castanopsis hystrix、海南红豆 Ormosia pinnata、九节 Psychotria asiatica | 红外线增温 Temperature rise by infrared radiators |
表1 实验样地介绍
Table 1 An introduction of experimental sites
海拔 Altitude (m) | 开顶箱数 No. of open- top chambers | 模拟林型 Simulated forest type | 土壤类型 Soil type | 种植树种 Planted tree species | 增温方式 Temperature increasing way |
---|---|---|---|---|---|
600 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 对照 Control |
300 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease |
3 | 针阔叶混交林 Needle and broad- leaved mixed forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、马尾松 Pinus massoniana、红锥 Castanopsis hystrix、山血丹 Ardisia lindleyana | 对照 Control | |
30 | 3 | 山地常绿阔叶林 Montane evergreen broad-leaved forest | 黄壤 Yellow soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、鼠刺 Itea chinensis、密花树Myrsine seguinii、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease |
3 | 针阔叶混交林 Needle and broad- leaved mixed forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、马尾松 Pinus massoniana、红锥 Castanopsis hystrix、山血丹 Ardisia lindleyana | 海拔降低 Altitude decrease | |
3 | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、红锥 Castanopsis hystrix、海南红豆 Ormosia pinnata、九节 Psychotria asiatica | 对照 Control | |
3 | 季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 赤红壤 Lateritic soil | 木荷 Schima superba、红枝蒲桃 Syzygium rehderianum、短序润楠 Machilus breviflora、红锥 Castanopsis hystrix、海南红豆 Ormosia pinnata、九节 Psychotria asiatica | 红外线增温 Temperature rise by infrared radiators |
图3 气温上升对模拟森林生态系统影响大型实验土壤水分收集装置。
Fig. 3 Collection equipments of soil water in a large experiment for studying effects of air temperature rise on model forest ecosystems.
[1] | Beedlow PA, Tingey DT, Phillips DL, Hogsett WE, Olszyk DM (2004). Rising atmospheric CO2 and carbon sequestration in forests. Frontiers in Ecology and the Environment, 2, 315-322. |
[2] |
Beier C, Emmett B, Gundersen P, Tietema A, Peñuelas J, Estiarte M, Gordon C, Gorissen A, Llorens L, Roda F, Williams D (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems, 7, 583-597.
DOI URL |
[3] |
Bergh J, Linder S (1999). Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Global Change Biology, 5, 245-253.
DOI URL |
[4] |
Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11, 1316-1327.
DOI URL PMID |
[5] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
URL PMID |
[6] |
Dunne JA, Saleska SR, Fischer NL, Harte J (2004). Integrating experimental and gradient methods in ecological climate change research. Ecology, 85, 904-916.
DOI URL |
[7] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
URL PMID |
[8] |
Flanagan LB, Sharp EJ, Letts MG (2013). Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland. Agricultural and Forest Meteorology, 173, 40-52.
DOI URL |
[9] |
Fukami T, Wardle DA (2005). Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society B: Biological Sciences, 272, 2105-2115.
DOI URL PMID |
[10] | Gao Q, Zhang XS (1997). A simulation study of responses of the Northeast China Transect to elevated CO2 and climate change. Ecological Applications, 7, 470-483. |
[11] | Han XG, Li LH, Huang JH (1999). An Introduction to Biogeochemistry. Higher Education Press, Beijing. (in Chinese) |
[ 韩兴国, 李凌浩, 黄建辉 (1999). 生物地球化学概论. 高等教育出版社, 北京.] | |
[12] |
Hollister RD, Webber PJ (2000). Biotic validation of small open top chambers in a tundra ecosystem. Global Change Biology, 6, 835-842.
DOI URL |
[13] |
Huntington TG (2006). Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 319, 83-95.
DOI URL |
[14] |
Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007). The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173, 463-480.
DOI URL PMID |
[15] | IPCC (Intergovernmental Panel on Climate Change) (2001). The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[16] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[17] |
Karhu K, Fritze H, Hämäläinen K, Vanhala P, Jungner H, Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V, Liski J (2010). Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology, 91, 370-376.
DOI URL PMID |
[18] | Kimball BA (2005). Theory and performance of an infrared heater for ecosystem warming. Global Change Biology, 11, 2041-2056. |
[19] |
Klein JA, Harte J, Zhao XQ (2005). Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 11, 1440-1451.
DOI URL |
[20] |
Li MH, Tien W, Tung CP (2009). Assessing the impact of climate change on the land hydrology in Taiwan. Paddy and Water Environment, 7, 283-292.
DOI URL |
[21] | Liu Y, Han SJ (2009). Factors controlling soil respiration in four types of forest of Changbai Mountains, China. Ecology and Environmental Sciences, 18, 1061-1065. (in Chinese with English abstract) |
[ 刘颖, 韩士杰 (2009). 长白山四种森林土壤呼吸的影响因素, 生态环境学报, 18, 1061-1065.] | |
[22] |
Liu JX, Huang WJ, Zhou GY, Zhang DQ, Liu SZ, Li YY (2013). Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests. Global Change Biology, 19, 208-216.
DOI URL |
[23] |
Liu JX, Zhang DQ, Zhou GY, Duan HL (2012). Changes in leaf nutrient traits and photosynthesis of four tree species: effects of elevated [CO2], N fertilization and canopy positions. Journal of Plant Ecology, 5, 376-390.
DOI URL |
[24] |
Luo YQ (2007). Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics, 38, 683-712.
DOI URL |
[25] |
Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176.
DOI URL PMID |
[26] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. (in Chinese with English abstract) |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[27] |
Noormets A, Chen JQ, Bridgham SD, Weltzin JF, Pastor J, Dewey B, LeMoine J (2004). The effects of infrared loading and water table on soil energy fluxes in northern peatlands. Ecosystems, 7, 573-582.
DOI URL |
[28] | Peters RL, Lovejoy TE (1994). Global Warming and Biological Diversity. Yale University Press, New Haven, USA. |
[29] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
URL PMID |
[30] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014, doi: 10.1029/2004GB002315. |
[31] |
Wang X, Nakatsubo T, Nakane K (2012). Impacts of elevated CO2 and temperature on soil respiration in warm temperate evergreen Quercus glauca stands: an open-top chamber experiment. Ecological Research, 27, 595-602.
DOI URL |
[32] |
Zhao M, Zhou GS (2005). Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management, 207, 295-313.
DOI URL |
[33] |
Zhou G, Wang Y, Wang S (2002). Responses of grassland ecosystems to precipitation and land use along the Northeast China Transect. Journal of Vegetation Science, 13, 361-368.
DOI URL |
[34] | Zhou GS, Wang YH, Xu ZZ, Zhou L, Jiang YL (2003). Advances of study on carbon cycles on the Northeast China transect (NECT). Progress in Natural Science, 13, 917-922. (in Chinese) |
[ 周广胜, 王玉辉, 许振柱, 周莉, 蒋延玲 (2003). 中国东北样带碳循环研究进展. 自然科学进展, 13, 917-922.] | |
[35] | Zhu L, Zhang WC (2005). Responses of water resources to climatic changes in the upper stream of the Hanjiang River Basin based on rainfall-runoff simulations. Resources Science, 27(2), 16-22. (in Chinese with English abstract) |
[ 朱利, 张万昌 (2005). 基于径流模拟的汉江上游区水资源对气候变化响应的研究. 资源科学, 27(2), 16-22.] |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[3] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[4] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[5] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[6] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[7] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[8] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[9] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[10] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[11] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[12] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[13] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[14] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[15] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19