植物生态学报 ›› 2011, Vol. 35 ›› Issue (2): 147-158.DOI: 10.3724/SP.J.1258.2011.00147
所属专题: 全球变化与生态系统
收稿日期:
2009-01-12
接受日期:
2009-06-03
出版日期:
2011-01-12
发布日期:
2011-01-21
通讯作者:
桑卫国
作者简介:
*E-mail: jshe@pku.edu.cn
LI Liang1,2, SU Hong-Xin1, SANG Wei-Guo1,*()
Received:
2009-01-12
Accepted:
2009-06-03
Online:
2011-01-12
Published:
2011-01-21
Contact:
SANG Wei-Guo
摘要:
应用LPJ-GUESS植被动态模型, 在耦合不同物种的干旱响应策略的基础上, 研究了夏季干旱化对东灵山地区森林植被的物种组成及其功能的影响。结果表明, 在气候变暖、降水减少、CO2浓度升高的情况下, 无论树种采取何种策略, 东灵山暖温带森林的总净初级生产力和生物量都有增加的趋势, 降水在未来近一个世纪内尚未成为本地区植被生长的限制因子。但森林植被的树种组成与树种的干旱响应策略密切相关, 不耐旱的物种核桃楸(Juglans mandshurica)的生物量水平在长期干旱条件下并没有降低, 而耐旱的物种辽东栎(Quercus liaotungensis)在受到干旱化长期影响时, 其生物量有下降的趋势。这种响应策略也会导致植被蒸散等生态系统水分循环过程的差异。因此, 降水变化对森林生态系统影响的长期模拟研究应该考虑物种对干旱的不同响应策略。
李亮, 苏宏新, 桑卫国. 模拟夏季干旱对东灵山森林植被动态的影响. 植物生态学报, 2011, 35(2): 147-158. DOI: 10.3724/SP.J.1258.2011.00147
LI Liang, SU Hong-Xin, SANG Wei-Guo. Simulating impacts of summer drought on forest dynamics in Dongling Mountain. Chinese Journal of Plant Ecology, 2011, 35(2): 147-158. DOI: 10.3724/SP.J.1258.2011.00147
参数 Parameter | 参数值 Parameter value | ||||
---|---|---|---|---|---|
辽东栎 Quercus liaotungensis | 油松 Pinus tabulaeformis | 棘皮桦 Betula dahurica | 核桃楸 Juglans mandshurica | ||
root_distribution | 对照 Control 策略1 Strategy 1 策略2 Strategy 2 | 7/3 7/3 6/4 | 7/3 7/3 6/4 | 7/3 7/3 7/3 | 7/3 7/3 8/2 |
drought_tolerance | 对照 Control 策略1 Strategy 1 策略2 Strategy 2 | 0.3 0.2 0.3 | 0.3 0.2 0.3 | 0.3 0.3 0.3 | 0.3 0.4 0.3 |
gdd5min_est (℃) fire_resistance shade_tolerance longevity (year) k_allom1 k_allom2 k_allom3 | 700 0.2 tolerant 220 200 16.29 0.36 | 600 0.1 tolerant 380 150 44.81 0.78 | 700 0.2 intolerant 150 200 14.9 0.23 | 1 100 0.3 intermediate 360 200 40 0.85 |
表1 生态系统模型LPJ-GUESS所模拟树种的主要参数
Table 1 Major species parameters for simulations with the ecosystem model LPJ-GUESS
参数 Parameter | 参数值 Parameter value | ||||
---|---|---|---|---|---|
辽东栎 Quercus liaotungensis | 油松 Pinus tabulaeformis | 棘皮桦 Betula dahurica | 核桃楸 Juglans mandshurica | ||
root_distribution | 对照 Control 策略1 Strategy 1 策略2 Strategy 2 | 7/3 7/3 6/4 | 7/3 7/3 6/4 | 7/3 7/3 7/3 | 7/3 7/3 8/2 |
drought_tolerance | 对照 Control 策略1 Strategy 1 策略2 Strategy 2 | 0.3 0.2 0.3 | 0.3 0.2 0.3 | 0.3 0.3 0.3 | 0.3 0.4 0.3 |
gdd5min_est (℃) fire_resistance shade_tolerance longevity (year) k_allom1 k_allom2 k_allom3 | 700 0.2 tolerant 220 200 16.29 0.36 | 600 0.1 tolerant 380 150 44.81 0.78 | 700 0.2 intolerant 150 200 14.9 0.23 | 1 100 0.3 intermediate 360 200 40 0.85 |
图3 东灵山不同物种干旱响应策略下1955-2100年植被和组成树种的净初级生产力(NPP)和碳生物量(Cmass)的变化。BEDA, 棘皮桦; JUMA, 核桃楸; PITA, 油松; QULI, 辽东栎。
Fig. 3 Variation of net primary production (NPP) and carbon biomass (Cmass) of vegetation and tree species with different strategies to drought in Dongling Mountain. BEDA, Betula dahurica; JUMA, Juglans mandshurica; PITA, Pinus tabulaeformis; QULI, Quercus liaotungensis.
策略 Strategy | 情景 Scenario | 净初级生产力 NPP (kg C·m-2) | 碳生物量 Cmass (kg C·m-2) | 蒸散 ET (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
90 | 120 | 150 | 90 | 120 | 150 | 90 | 120 | 150 | ||||
对照 Control 策略1 Strategy 1 策略2 Strategy 2 | CK DP CK DP CK DP | 0.91 0.88 0.92 0.88 0.88 0.87 | 0.95 0.93 0.95 0.93 0.95 0.93 | 0.97 0.95 0.95 0.95 0.98 0.95 | 9.22 9.88 8.48 7.52 8.04 7.93 | 9.92 8.92 8.32 8.87 8.96 8.61 | 9.66 9.46 9.33 9.36 8.16 8.31 | 403.17 403.43 391.04 392.07 373.50 373.04 | 396.55 397.86 385.47 387.34 383.45 384.80 | 389.60 400.35 373.03 384.19 373.82 371.50 |
表2 两种降水情景下东灵山森林植被不同林龄(90、120、150年)的碳、水循环
Table 2 Carbon and water cycles of forest vegetation at different age (90, 120, 150 years) under two scenarios of precipitation in Dongling Mountain
策略 Strategy | 情景 Scenario | 净初级生产力 NPP (kg C·m-2) | 碳生物量 Cmass (kg C·m-2) | 蒸散 ET (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
90 | 120 | 150 | 90 | 120 | 150 | 90 | 120 | 150 | ||||
对照 Control 策略1 Strategy 1 策略2 Strategy 2 | CK DP CK DP CK DP | 0.91 0.88 0.92 0.88 0.88 0.87 | 0.95 0.93 0.95 0.93 0.95 0.93 | 0.97 0.95 0.95 0.95 0.98 0.95 | 9.22 9.88 8.48 7.52 8.04 7.93 | 9.92 8.92 8.32 8.87 8.96 8.61 | 9.66 9.46 9.33 9.36 8.16 8.31 | 403.17 403.43 391.04 392.07 373.50 373.04 | 396.55 397.86 385.47 387.34 383.45 384.80 | 389.60 400.35 373.03 384.19 373.82 371.50 |
图4 研究区域不同干旱响应策略下的物种组成与实际调查结果的比较。BEDA, 棘皮桦; JUMA, 核桃楸; PITA, 油松; QULI, 辽东栎。
Fig. 4 Comparison of observed and simulated species composition of studied area at different drought response. BEDA, Betula dahurica; JUMA, Juglans mandshurica; PITA, Pinus tabulaeformis; QULI, Quercus liaotungensis.
[1] | Ainsworth EA, Long SP (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta- analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351-371. |
[2] | Archaux F, Wolters V (2006). Impact of summer drought on forest biodiversity: What do we know? Annals of Forest Science, 63, 645-652. |
[3] | Brown TJ, Hall BL, Westerling AL (2004). The impact of twenty-first century climate change on wildland fire danger in the western United States: an applications perspective. Climatic Change, 62, 365-388. |
[4] | Chen LZ (陈灵芝), Huang JH (黄建辉) (1997). Study on the Structure and Function of Forest Ecosystems in Warm Temperate Zone (暖温带森林生态系统结构与功能的研究). Science Press, Beijing. (in Chinese) |
[5] | Chen WJ, Black TA, Yang PC, Barr AG, Neumann HH, Nesic Z, Blanken PD, Novak MD, Eley J, Ketler RJ, Cuenca R (1999). Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology, 5, 41-53. |
[6] |
Ciais Ph, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer Chr, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.
DOI URL PMID |
[7] |
Collins SL (2009). Biodiversity under global change. Science, 326, 1353-1354.
URL PMID |
[8] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[9] |
Davies WJ, Tardieu F, Trejo CL (1994). How do chemical signals work in plants that grow in drying soil? Plant Physiology, 104, 309-314.
URL PMID |
[10] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
DOI URL PMID |
[11] | Fang JY (方精云), Liu GH (刘国华), Zhu B (朱彪), Wang XK (王效科), Liu SH (刘绍辉) (2006). Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China. Science in China (Series D: Earth Sciences) (中国科学D辑: 地球科学), 36, 533-543. (in Chinese) |
[12] | Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004). Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286, 249-270. |
[13] | Graham RL, Monica GT, Virginia H (1990). How increasing CO2 and climate change affect forests. BioScience, 40, 575-587. |
[14] | Guo RP (郭瑞萍), Mo XG (莫兴国) (2007). Differences of evapotranspiration on forest, grassland and farmland. Chinese Journal of Applied Ecology (应用生态学报), 18, 1751-1757. (in Chinese with English abstract) |
[15] | Guo MC (郭明春), Wang YH (王彦辉), Yu PT (于澎涛) (2005). A review of forest hydrology studies. World Forestry Research (世界林业研究), 18(3), 6-11. (in Chinese with English abstract) |
[16] | Han H, Gong DY (2003). Extreme climate events over northern China during the last 50 years. Journal of Geographical Sciences, 13, 469-479. |
[17] |
Hanson PJ, Todd DE Jr, Amthor JS (2001). A six-year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall. Tree Physiology, 21, 345-358.
URL PMID |
[18] | Hanson PJ, Weltzin JF (2000). Drought disturbance from climate change: response of United States forests. The Science of Total Environment, 262, 205-220. |
[19] | Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA (2005). Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology, 11, 1402-1423. |
[20] | Heisler JL, Weltzin JF (2006). Variability matters towards a perspective on the influence of precipitation on terrestrial ecosystems. New Phytologist, 172, 189-192 |
[21] | Hickler T, Smith B, Sykes MT, Davis MB, Sugita S, Walker K (2004). Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology, 85, 519-530. |
[22] |
Holt RD (1990). The microevolutionary consequences of climate change. Trends in Ecology & Evolution, 5, 311-315.
DOI URL PMID |
[23] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin DH, Manning M, Marquis M, Chen ZL, Averyt K, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[24] |
Jarvis P, Linder S (2000). Botany-constraints to growth of boreal forests. Nature, 405, 904-905.
DOI URL PMID |
[25] | Jiang GM (蒋高明), Chang J (常杰), Gao YB (高玉葆), Li YG (李永庚) (2004). Plant Ecophysiology (植物生理生态学). Higher Education Press, Beijing. (in Chinese) |
[26] | Jiang H (江洪) (1997). Study on biomass of the typical deciduous broadleaved forests in Dongling Mountain. In: Chen LZ, Huang JH eds. Study on the Structure and Function of Forest Ecosystems in Warm Temperate Zone (暖温带森林生态系统结构与功能的研究). Science Press, Beijing. 104-115. (in Chinese) |
[27] | Jiang YL (蒋延玲), Zhou GS (周广胜) (2001). Carbon equilibrium in Larix gmelinii forest and impact of global change on it. Chinese Journal of Applied Ecology (应用生态学报), 12, 481-484. (in Chinese with English abstract) |
[28] | Kardol P, Todd DE, Hanson PJ, Mulholland PJ (2010). Long-term successional forest dynamics: species and community responses to climatic variability. Journal of Vegetation Science, 21, 627-642. |
[29] |
Kimball JS, McDonald KC, Running SW, Frolking SE (2004). Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sensing of Environment, 90, 243-258.
DOI URL |
[30] | King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006). Plant respiration in a warmer world. Science, 312, 356-357. |
[31] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI URL PMID |
[32] | Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811-821. |
[33] | Koca D, Smith B, Sykes MT (2006). Modelling regional climate change effects on potential natural ecosystems in Sweden. Climatic Change, 78, 381-406. |
[34] |
Laporte MF, Duchesne LC, Wetzel S (2002). Effect of rainfall patterns on soil surface CO2 efflux, soil moisture, soil temperature and plant growth in a grassland ecosystem of northern Ontario, Canada: implications for climate change. BMC Ecology, 2, 10.
DOI URL PMID |
[35] |
Leuzinger S, Zotz G, Asshoff R, Körner C (2005). Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology, 25, 641-650.
DOI URL PMID |
[36] | Liski J, Lehtonen A, Palosuo T, Peltoniemi M, Eqqers T, Muukkonen P, Mäkipää R (2006). Carbon accumulation in Finland’s forests 1922-2004—an estimate obtained by combination of forest inventory data with modeling of biomass, litter and soil. Annals of Forest Science, 63, 687-697. |
[37] | Li SL (2008). Projecting the summer climate of mainland China in the middle 21st century: Will the droughts in North China persist? Atmospheric and Oceanic Science Letters, 1, 12-17. |
[38] | Liu RG (刘瑞刚), Li N (李娜), Su HX (苏宏新), Sang WG (桑卫国) (2009). Simulation and analysis on future carbon balance of three deciduous forests in Beijing mountain area, warm temperate zone of China. Chinese Journal of Plant Ecology (植物生态学报), 33, 516-534. (in Chinese with English abstract) |
[39] | Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Synthesis. Island Press, Washington DC. |
[40] | Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabaté S, Sánchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J (2005). Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11, 2211-2233. |
[41] | Niinemets Ü, Valladares F (2006). Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs, 76, 521-547. |
[42] | Piao SL, Yin L, Wang XH, Ciais P, Peng SS, Shen ZH, Seneviratne SI (2009). Summer soil moisture regulated by precipitation frequency in China. Environmental Research Letters, 4(4), 1-6. |
[43] | Sang WG (2004). Modelling changes of a deciduous broad-leaved forest in warm temperate zone of China. Acta Ecologica Sinica, 24, 1194-1198. |
[44] | Sang WG (桑卫国), Ma KP (马克平), Chen LZ (陈灵芝) (2002). Primary study on carbon cycling in warm temperate deciduous broad-leaved forest. Acta Phytoecologica Sinica (植物生态学报), 26, 543-548 (in Chinese with English abstract) |
[45] |
Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332-336.
DOI URL PMID |
[46] |
Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333-1337.
DOI URL PMID |
[47] |
Seneviratne SI, Lüthi D, Litschi M, Schär C (2006). Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209.
DOI URL PMID |
[48] | Shan YL (单延龙), Li H (李华), Qi QG (其其格) (2003). Experimental analysis of the burning and physicochemical property of principal species in Daxing'an Mountain, Heilongjiang Province. Fire Safety Science (火灾科学), 12, 74-78 (in Chinese with English abstract) |
[49] | Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161-185. |
[50] | Smith B, Prentice IC, Sykes MT (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeogr- aphy, 10, 621-637. |
[51] | Su HX, Sang WG (2004). Simulations and analysis of net primary productivity in Quercus liaotungensis forest of Donglingshan Mountain range in response to different climate change scenarios. Acta Botanica Sinica, 46, 1281-1291. |
[52] | Surface Climate Data of China Multiplied Monthly (中国地面气候资料月值数据集) (2005). China Meteorological Administration, Beijing. http://cdc.cma.gov.cn. Cited 6 Jan. 2008. |
[53] |
Tagesson T, Smith B, Löfgren A, Rammig A, Eklundh L, Lindroth A (2009). Estimating net primary production of Swedish forest landscapes by combining mechanistic modeling and remote sensing. AMBIO, 38, 316-324.
DOI URL PMID |
[54] | Tian HQ (田汉勤), Xu XF (徐小锋), Song X (宋霞) (2007). Drought impacts on terrestrial ecosystem productivity. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 231-241. (in Chinese with English abstract) |
[55] | The Editorial Board of Forest in China (《中国森林》编辑委员会) (2000). Forest in China (Volume Three: Broad-leaved Forest) (中国森林第3卷: 阔叶林). China Forestry Publishing House, Beijing. (in Chinese) |
[56] | Thonicke K, Venevsky S, Sitch S, Cramer W (2001). The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography, 10, 661-677. |
[57] | Vukićević T, Braswell BH, Schimel DS (2001). A diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus B, 53, 150-170. |
[58] | Watt AS (1947). Pattern and process in the plant community. Journal of Ecology, 35, 1-22. |
[59] | Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952. |
[60] | Weltzin JF, McPherson GR. (2003) Changing Precipitation Regimes and Terrestrial Ecosystems: a North American Perspective. University of Arizona Press, Tucson. |
[61] | Wramneby A, Smith B, Zaehle S, Sykes MT (2008). Parameter uncertainties in the modelling of vegetation dynamics― effects on tree community structure and ecosystem functioning in European forest biomes. Ecological Modelling, 216, 277-290. |
[62] | Xu XF (徐小锋), Tian HQ (田汉勤), Wan SQ (万师强) (2007). Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 175-188. (in Chinese with English abstract) |
[1] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[2] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[3] | 薛志方, 刘彤, 王立生, 宋继虎, 陈宏阳, 徐玲, 袁也. 额尔齐斯河流域主要支流平原河谷林群落结构及特征[J]. 植物生态学报, 2024, 48(3): 390-402. |
[4] | 肖兰, 董标, 张琳婷, 邓传远, 李霞, 姜德刚, 林勇明. 渤海无居民海岛主要植被类型群落特征[J]. 植物生态学报, 2024, 48(1): 127-134. |
[5] | 王雨婷, 刘旭婧, 唐驰飞, 陈玮钰, 王美娟, 向松竹, 刘梅, 杨林森, 傅强, 晏召贵, 孟红杰. 神农架极小种群植物庙台槭群落特征及种群动态[J]. 植物生态学报, 2024, 48(1): 80-91. |
[6] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[7] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[8] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[9] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[10] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[11] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[12] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[13] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[14] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[15] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19