植物生态学报 ›› 2011, Vol. 35 ›› Issue (2): 159-166.DOI: 10.3724/SP.J.1258.2011.00159
收稿日期:
2010-01-28
接受日期:
2010-05-07
出版日期:
2011-01-28
发布日期:
2011-01-21
通讯作者:
刘琪璟
作者简介:
*E-mail: liuqijing@gmail.com
XU Qian-Qian, LIU Qi-Jing*(), ZHANG Guo-Chun
Received:
2010-01-28
Accepted:
2010-05-07
Online:
2011-01-28
Published:
2011-01-21
Contact:
LIU Qi-Jing
摘要:
在高山苔原冬季积雪覆盖的群落生长季短, 但明显比周围群落生长茂盛。为了说明雪斑地段群落生长机理, 对长白山苔原雪斑土壤氮素动态以及大白花地榆(Sanguisorba sitchensis)群落生产力进行了连续测定。雪斑群落土壤冬季相对温暖, 最低日平均温度-1.4 ℃, 裸露地段-16.9 ℃, 全年水分条件充足; 积雪期凋落物分解和氮矿化均在进行, 土壤具有很高的氮素含量及矿化速率。大白花地榆地上部分净初级生产力为4 046 kg·hm-2·a-1。正是独特的水热条件和养分条件, 以及具有很大的叶面积同化器官, 高山苔原雪斑地段的大白花地榆群落才得以维持生存并表现出很高的生产力水平。
徐倩倩, 刘琪璟, 张国春. 长白山高山苔原雪斑大白花地榆群落土壤氮素动态与生产力的关系. 植物生态学报, 2011, 35(2): 159-166. DOI: 10.3724/SP.J.1258.2011.00159
XU Qian-Qian, LIU Qi-Jing, ZHANG Guo-Chun. Soil nitrogen dynamics and productivity of snowpack Sanguisorba sitchensis community in alpine tundra of Changbai Mountain, China. Chinese Journal of Plant Ecology, 2011, 35(2): 159-166. DOI: 10.3724/SP.J.1258.2011.00159
图1 长白山高山苔原月平均气温的变化(海拔2 036 m, 2008-07-03-2009-07-03)。
Fig. 1 Variation of monthly average air temperature in alpine tundra of Changbai Mountain (altitude 2 036 m, 2008-07- 03-2009-07-03).
项目 Item | 样点06 Sampling point 06 | 样点070601 Sampling point 070601 | 样点070603 Sampling point 070603 |
---|---|---|---|
年平均温度 Yearly average temperature (℃) | 2.5 | 3.9 | -0.1 |
最冷月平均温度 Mean temperature of coldest month (℃) | -1.4 | -1.0 | -14.7 |
最热月平均温度 Mean temperature of warmest month (℃) | 12.3 | 13.6 | 13.0 |
最低日平均温度 Minimum daily mean temperature (℃) | -1.5 | -1.3 | -16.9 |
最高日平均温度Maximum daily mean temperature (℃) | 15.1 | 16.9 | 16.3 |
日极端最高温度 Extreme high mean temperature (℃) | 20.5 | 19.3 | 21.8 |
日极端最低温度 Extreme low daily temperature (℃) | -1.5 | -1.3 | -17.8 |
温暖指数 Warmth index (℃) | 15.6 | 25.4 | 21.2 |
寒冷指数 Coldness index (℃) | 0.0 | 0.0 | -22.9 |
平均温度>0 ℃日数 Number of days with daily temperature > 0 ℃ | 187 | 279 | 179 |
平均温度≥1 ℃日数 Number of days with daily temperature ≥1 ℃ | 109 | 142 | 151 |
平均温度[-0.99, 0.99 ℃]日数Number of days with daily temperature at [-0.99, 0.99 ℃] | 178 | 193 | 74 |
平均温度≤-1 ℃日数 Number of days with daily temperature ≤-1 ℃ | 79 | 31 | 141 |
平均温度≤0 ℃日数 Number of days with daily temperature ≤0 ℃ | 179 | 87 | 187 |
极端最低温度≤0 ℃日数 Number of days with extreme low temperature ≤ 0 ℃ | 179 | 91 | 211 |
表1 长白山高山苔原土壤温度特征
Table 1 Soil temperature characteristics in alpine tundra of Changbai Mountain
项目 Item | 样点06 Sampling point 06 | 样点070601 Sampling point 070601 | 样点070603 Sampling point 070603 |
---|---|---|---|
年平均温度 Yearly average temperature (℃) | 2.5 | 3.9 | -0.1 |
最冷月平均温度 Mean temperature of coldest month (℃) | -1.4 | -1.0 | -14.7 |
最热月平均温度 Mean temperature of warmest month (℃) | 12.3 | 13.6 | 13.0 |
最低日平均温度 Minimum daily mean temperature (℃) | -1.5 | -1.3 | -16.9 |
最高日平均温度Maximum daily mean temperature (℃) | 15.1 | 16.9 | 16.3 |
日极端最高温度 Extreme high mean temperature (℃) | 20.5 | 19.3 | 21.8 |
日极端最低温度 Extreme low daily temperature (℃) | -1.5 | -1.3 | -17.8 |
温暖指数 Warmth index (℃) | 15.6 | 25.4 | 21.2 |
寒冷指数 Coldness index (℃) | 0.0 | 0.0 | -22.9 |
平均温度>0 ℃日数 Number of days with daily temperature > 0 ℃ | 187 | 279 | 179 |
平均温度≥1 ℃日数 Number of days with daily temperature ≥1 ℃ | 109 | 142 | 151 |
平均温度[-0.99, 0.99 ℃]日数Number of days with daily temperature at [-0.99, 0.99 ℃] | 178 | 193 | 74 |
平均温度≤-1 ℃日数 Number of days with daily temperature ≤-1 ℃ | 79 | 31 | 141 |
平均温度≤0 ℃日数 Number of days with daily temperature ≤0 ℃ | 179 | 87 | 187 |
极端最低温度≤0 ℃日数 Number of days with extreme low temperature ≤ 0 ℃ | 179 | 91 | 211 |
图2 长白山高山苔原土壤日平均温度变化及其与地表状态的关系(2008)。
Fig. 2 Variation of daily soil temperature in relation with surface status in alpine tundra of Changbai Mountain (2008).
样点 Sampling point | 状态 Status | 培养时间 Incubation period | 水解N含量 Hydrolyzable N content (kg·hm-2) |
---|---|---|---|
06 | 原位 On site | 2006-06-28- 2008-08-23 | 441 |
06 | 移位 Off site | 2006-06-28- 2008-08-23 | 392 |
070601 | 原位 On site | 2007-08-30- 2008-08-21 | 257 |
070601 | 移位 Off site | 2007-08-30- 2008-08-21 | 237 |
表3 原位和移位培养土壤水解氮比较
Table 3 Soil hydrolyzable nitrogen contents of soil of on-site and off-site incubation
样点 Sampling point | 状态 Status | 培养时间 Incubation period | 水解N含量 Hydrolyzable N content (kg·hm-2) |
---|---|---|---|
06 | 原位 On site | 2006-06-28- 2008-08-23 | 441 |
06 | 移位 Off site | 2006-06-28- 2008-08-23 | 392 |
070601 | 原位 On site | 2007-08-30- 2008-08-21 | 257 |
070601 | 移位 Off site | 2007-08-30- 2008-08-21 | 237 |
时期 Period | 分解率 Decomposition ratio (%) |
---|---|
2008-08-24-2008-10-16 | 0.086 |
2008-08-24-2009-07-03 | 0.184 |
2008-08-24-2009-10-14 | 0.373 |
表4 大白花地榆群落凋落物的分解率
Table 4 Litter decomposition rate of Sanguisorba sitchensis community
时期 Period | 分解率 Decomposition ratio (%) |
---|---|
2008-08-24-2008-10-16 | 0.086 |
2008-08-24-2009-07-03 | 0.184 |
2008-08-24-2009-10-14 | 0.373 |
样点070601 Sampling point 070601 | 2009-07-05 | 2009-08-01 | 2008-08-24 |
---|---|---|---|
密度 Density (stem·m-2) | 392 | 920 | 615 |
高度 Height (cm) | 9 | 50 | 40 |
盖度 Coverage (%) | 76.7 | 100.0 | 98.0 |
单株干重 Individual dry weight (g·stem-1) | 0.072 | 0.353 | 0.637 |
年生长量 Annual growth (kg·hm-2·a-1) | 280 | 3 250 | 3 920 |
表5 大白花地榆群落结构
Table 5 Structure of Sanguisorba sitchensis community
样点070601 Sampling point 070601 | 2009-07-05 | 2009-08-01 | 2008-08-24 |
---|---|---|---|
密度 Density (stem·m-2) | 392 | 920 | 615 |
高度 Height (cm) | 9 | 50 | 40 |
盖度 Coverage (%) | 76.7 | 100.0 | 98.0 |
单株干重 Individual dry weight (g·stem-1) | 0.072 | 0.353 | 0.637 |
年生长量 Annual growth (kg·hm-2·a-1) | 280 | 3 250 | 3 920 |
采样日期 Sampling date | 地上生物量 Aboveground biomass (kg·hm-2·a-1) | 植物有机C Organic C content in plant (kg·hm-2·a-1) | 植物有机N Organic N content in plant (kg·hm-2·a-1) |
---|---|---|---|
2009-07-05 | 284 | 142 | 11 |
2009-08-01 | 3 247 | 1 624 | 129 |
2008-08-24 | 3 979 | 1 990 | 158 |
2007-08-29 | 4 046 | 2 023 | 161 |
表6 大白花地榆群落地上生物量和植物有机碳和氮储量
Table 6 Biomass, organic C and N content of Sanguisorba sitchensis community
采样日期 Sampling date | 地上生物量 Aboveground biomass (kg·hm-2·a-1) | 植物有机C Organic C content in plant (kg·hm-2·a-1) | 植物有机N Organic N content in plant (kg·hm-2·a-1) |
---|---|---|---|
2009-07-05 | 284 | 142 | 11 |
2009-08-01 | 3 247 | 1 624 | 129 |
2008-08-24 | 3 979 | 1 990 | 158 |
2007-08-29 | 4 046 | 2 023 | 161 |
样地 Site | 采样日期 Sampling date | 全氮 Total N (g·kg-1) | 有机质 Organic matter (g·kg-1) | 有机碳 Organic C (g·kg-1) | 碳氮比 C/N |
---|---|---|---|---|---|
雪斑 Snowpack | 2007-06-26 | 4.66 | 103 | 59 | 12.77 |
雪斑 Snowpack | 2008-08-22 | 3.74 | 85 | 49 | 13.14 |
雪斑 Snowpack | 2007-10-16 | 2.91 | 60 | 35 | 11.93 |
平均 Mean | 3.77 | 82 | 48 | 12.61 | |
非雪斑 Snow-free | 2007-06-26 | 2.98 | 135 | 78 | 26.32 |
非雪斑 Snow-free | 2008-08-22 | 3.42 | 133 | 77 | 22.59 |
非雪斑 Snow-free | 2007-10-16 | 3.99 | 156 | 90 | 22.66 |
平均 Mean | 3.46 | 141 | 82 | 23.86 |
表2 土壤养分与有机质含量
Table 2 Soil nutrients and organic matter content
样地 Site | 采样日期 Sampling date | 全氮 Total N (g·kg-1) | 有机质 Organic matter (g·kg-1) | 有机碳 Organic C (g·kg-1) | 碳氮比 C/N |
---|---|---|---|---|---|
雪斑 Snowpack | 2007-06-26 | 4.66 | 103 | 59 | 12.77 |
雪斑 Snowpack | 2008-08-22 | 3.74 | 85 | 49 | 13.14 |
雪斑 Snowpack | 2007-10-16 | 2.91 | 60 | 35 | 11.93 |
平均 Mean | 3.77 | 82 | 48 | 12.61 | |
非雪斑 Snow-free | 2007-06-26 | 2.98 | 135 | 78 | 26.32 |
非雪斑 Snow-free | 2008-08-22 | 3.42 | 133 | 77 | 22.59 |
非雪斑 Snow-free | 2007-10-16 | 3.99 | 156 | 90 | 22.66 |
平均 Mean | 3.46 | 141 | 82 | 23.86 |
图4 样点070601大白花地榆群落土壤水解氮含量的季节动态(平均值±标准偏差)。
Fig. 4 Seasonal dynamics of soil hydrolyzable nitrogen content in Sanguisorba sitchensis community at sampling point 070601 (mean ± SE).
图5 大白花地榆群落土壤室内培养净矿化速率同温度的关系。
Fig. 5 N net mineralization rates of soil from Sanguisorba sitchensis community in relation with temperature under indoor incubation.
[1] |
Aber JD, Magill AM, Boone R, Melillo JM, Steudler P (1993). Plant and soil responses to three years of chronic nitrogen additions at the Harvard forest, Massachusetts. Ecological Applications, 3, 156-166.
DOI URL PMID |
[2] | Binkley D, Hart SC (1989). The components of nitrogen availability assessment in forest soils. Advances in Soil Science, 10, 57-112. |
[3] |
Bremer E, Kuikman P (1997). Influence of competition for nitrogen in soil on net mineralization of nitrogen. Plant and Soil, 190, 119-126.
DOI URL |
[4] | Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005). Winter in northeastern North America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 3, 314-322. |
[5] | Evans BM, Walker DA, Benson CS, Nordstrand EA, Petersen GW (1989). Spatial interrelationships between terrain, snow distribution and vegetation patterns at an arctic foothills site in Alaska. Holarctic Ecology, 12, 270-278. |
[6] | Hao ZQ (郝占庆), Guo SH (郭水良) (2003). Canonical correspondence analysis on relationship of herbs with their environments on northern slope of Changbai Mountain. Acta Ecologica Sinica (生态学报), 23, 2000-2008. (in Chinese with English abstract) |
[7] | Hiltbrunner E, Schwikowski M, Korner C (2005). Inorganic nitrogen storage in alpine snow pack in the Central Alps (Switzerland). Atmospheric Environment, 39, 2249-2259. |
[8] | Ju XT (巨晓棠), Li SX (李生秀) (1998). The effect of temperature and moisture on nitrogen mineralization in soils. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 4, 37-42. (in Chinese with English abstract) |
[9] | Kitayama K (1996). Soil nitrogen dynamics along a gradient of long-term soil development in a Hawaiian wet montane rain forest. Plant and Soil, 183, 253-262. |
[10] | Laternser M, Schneebeli M (2003). Long-term snow climate trends of the Swiss Alps (1931-99). International Journal of Climatology, 23, 733-750. |
[11] |
Leirós MC, Trasar-Cepeda C, Seoane S, Gill-Sotres F (1999). Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry, 31, 327-335.
DOI URL |
[12] | Li JM (李菊梅), Wang CH (王朝辉), Li SX (李生秀) (2003). Significance of soil organic matter, total N and mineralizable in reflecting soil N supplying capacity. Acta Pedologica Sinca (土壤学报), 40, 232-238. (in Chinese with English abstract) |
[13] | Li ZY (李紫燕), Li SQ (李世清), Li SX (李生秀) (2008). Organic N mineralization in typical soils of the Loess Plateau. Acta Ecologica Sinica (生态学报), 28, 4940-4950. (in Chinese with English abstract) |
[14] | Liu QJ (刘琪璟), Xu QQ (徐倩倩), Zhang GC (张国春) (2009). Impact of alpine snowpacks on primary roductivity in Rhododendron aureum community in Changbai Mountain, China. Acta Ecologica Sinica (生态学报), 29, 4035-4044. |
[15] | Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005). Declining mountain snowpack in western North America. American Meteorological Society, 86, 39-49. |
[16] | Odland A, Munkejord HK (2008). Plants as indicators of snow layer duration in southern Norwegian mountains. Ecological Indicators, 8, 57-68. |
[17] | Reich PB, Grigal DF, Aber JD, Gower ST (1997). Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology, 72, 335-347. |
[18] | Sánchez LF, Garciamiragaya J, Chacón N (1997). Nitrogen mineralization in soil under trees in a protected Venezuelan savanna. Acta Oecologica, 18, 27-37. |
[19] | Schimel JP, Bilbrough C, Welker JM (2004). Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry, 36, 217-227. |
[20] | Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005). Winter biological processes could help convert arctic tundra to shrubland. BioScience, 55, 17-26. |
[21] | Vitousek PM, Gose JR, Grier CC, Melillo JM, Reiners WA (1982). A comparative analysis of potential nitrification and nitrate mobility in forest ecosystem. Ecological Monographs, 52, 155-177. |
[22] |
Walker DA, Halfpenny JC, Walker MD, Wessman CA (1993). Long-term studies of snow-vegetation interactions. BioScience, 43, 287-301.
DOI URL |
[23] |
Wipf S, Stoeckli V, Bebi P (2009). Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climate Change, 94, 105-121.
DOI URL |
[24] | Wu JG (吴建国), Han M (韩梅), Chang W (苌伟), Ai L (艾丽), Chang XX (常学向) (2007). The mineralization of soil nitrogen and its influenced factors under alpine meadows in Qilian Mountains. Acta Prataculture Sinica (草业学报), 16(6), 39-46. (in Chinese with English abstract) |
[25] | Zhou CP (周才平), Ouyang H (欧阳华) (2001a). Influence of temperature and moisture on soil nitrogen mineralization under two type of forest in Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 12, 505-508. (in Chinese with English abstract) |
[26] | Zhou CP (周才平), Ouyang H (欧阳华) (2001b). Effect of temperature on nitrogen mineralization at optimum and saturated soil water content in two types of forest in Changbai Mountain. Acta Ecologica Sinica (生态学报), 21, 1470-1474. (in Chinese with English abstract) |
[27] | Zhou CP (周才平), Ouyang H (欧阳华), Song MH (宋明华) (2005). Relationships between net primary production and nitrogen cycling in Chinese forest ecosystems. Chinese Journal of Applied Ecology (应用生态学报), 16, 203-206. (in Chinese with English abstract) |
[28] | Zuo XA (左小安), Zhao XY (赵学勇), Zhao HL (赵哈林), Li YQ (李玉强), Guo YR (郭轶瑞), ZhaoYP (赵玉萍) (2007). Changes of species diversity and productivity in relation to soil properties in Sandy Grassland in Horqin Sand Land. Environmental Science (环境科学), 28, 945-951. (in Chinese with English abstract) |
[1] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[2] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[3] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[4] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[5] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[6] | 尹本丰, 张元明, 娄安如. 灌丛移除对荒漠齿肋赤藓越冬过程中生理生化特性的影响[J]. 植物生态学报, 2016, 40(7): 723-734. |
[7] | 高本强,袁自强,王斌先,高慧,张荣. 施肥和刈割对亚高山草甸物种多样性与生产力及其关系的影响[J]. 植物生态学报, 2014, 38(5): 417-424. |
[8] | 范连连, 马健, 吴林峰, 徐贵青, 李彦, 唐立松. 古尔班通古特沙漠南缘草本层对积雪变化的响应[J]. 植物生态学报, 2012, 36(2): 126-135. |
[9] | 袁自强, 魏盼盼, 高本强, 张荣. 取样尺度对亚高寒草甸物种多样性与生产力关系的影响[J]. 植物生态学报, 2012, 36(12): 1248-1255. |
[10] | 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979-988. |
[11] | 代巍, 张荣, 独占彪, 王璠. 土壤肥力和物种属性决定亚高寒草甸实验群落的生产力[J]. 植物生态学报, 2009, 33(1): 45-52. |
[12] | 王琼, 廖咏梅. 林缘和荒草坡不同草本层盖度小生境中积雪草的等级可塑性[J]. 植物生态学报, 2007, 31(4): 576-587. |
[13] | 李苏梅, 龙春林, 刀志灵. 传统农业生态系统中桤木改良土壤效应研究综述[J]. 植物生态学报, 2006, 30(5): 878-886. |
[14] | 沙丽清, 郑征, 冯志立, 刘玉洪, 刘文杰, 孟盈, 李明锐. 西双版纳热带季节雨林生态系统氮的生物地球化学循环研究[J]. 植物生态学报, 2002, 26(6): 689-694. |
[15] | 杨玉盛, 陈光水, 谢锦升, 何宗明, 陈银秀, 黄荣珍. 杉木观光木混交林群落N、P养分循环的研究[J]. 植物生态学报, 2002, 26(4): 473-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19