植物生态学报 ›› 2015, Vol. 39 ›› Issue (10): 962-970.DOI: 10.17521/cjpe.2015.0093
所属专题: 生态化学计量
石贤萌1,2,*, 杞金华3,*, 宋亮1,**(), 刘文耀1, 黄俊彪1,2, 李苏1, 卢华正1,2, 陈曦1,2
出版日期:
2015-10-01
发布日期:
2015-10-24
通讯作者:
石贤萌,杞金华,宋亮
作者简介:
# 共同第一作者
基金资助:
SHI Xian-Meng1,2,*, QI Jin-Hua3,*, SONG Liang1,**(), LIU Wen-Yao1, HUANG Jun-Biao1,2, LI Su1, LU Hua-Zheng1,2, CHEN Xi1,2
Online:
2015-10-01
Published:
2015-10-24
Contact:
Xian-Meng SHI,Jin-Hua QI,Liang SONG
About author:
# Co-first authors
摘要:
N沉降对不同森林生态系统的影响是当今全球变化生态学研究的一个热点问题。山地湿性常绿阔叶林是我国西部高海拔地区重要的森林植被类型之一。该文以云南哀牢山中山湿性常绿阔叶林为对象, 研究了其林下优势树种多花山矾(Symplocos ramosissima)和黄心树(Machilus gamblei)幼苗不同器官中C、N、P含量和生态化学计量特征及其对N沉降增加的响应。结果表明: 两种幼苗C、N、P含量的差异均达到了显著性水平(p < 0.05), 多花山矾的C含量较低, N和P含量较高。N处理对植物幼苗元素含量及其比值影响极显著(p < 0.01), 且与物种和器官之间存在显著的交互作用。N处理提高了幼苗体内N含量, 导致不同器官N:P值有不同程度的增加。随N处理水平的升高, 多花山矾幼苗P含量下降, 黄心树幼苗P含量整体升高, 幼苗间P含量差异减小。在一定范围内, 植物幼苗N含量与土壤无机N含量之间存在极显著的相关性(p < 0.01)。不同器官之间相比, 植物幼苗根和茎的N内稳性比叶片更高, 即植物叶片对N沉降的响应更为敏感。
石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦. 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应. 植物生态学报, 2015, 39(10): 962-970. DOI: 10.17521/cjpe.2015.0093
SHI Xian-Meng,QI Jin-Hua,SONG Liang,LIU Wen-Yao,HUANG Jun-Biao,LI Su,LU Hua-Zheng,CHEN Xi. C, N and P stoichiometry of two dominant seedlings and their responses to nitrogen additions in the montane moist evergreen broad-leaved forest in Ailao Mountains, Yunnan. Chinese Journal of Plant Ecology, 2015, 39(10): 962-970. DOI: 10.17521/cjpe.2015.0093
物种 Species | 器官 Organ | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | N:P | C:P |
---|---|---|---|---|---|---|---|
黄心树 | 根 Root | 469.00 ± 1.78Aa | 6.86 ± 0.30Aa | 0.55 ± 0.02Aa | 12.59 ± 0.36Aa | 68.81 ± 3.01Aa | 864.61 ± 32.76Aa |
Machilus gamblei | 茎 Stem | 469.50 ± 0.29Aa | 7.26 ± 0.24Aa | 0.58 ± 0.02Aa | 12.57 ± 0.22Aa | 64.90 ± 2.14Ab | 815.18 ± 24.79Aa |
叶 Leaf | 494.50 ± 0.96Ba | 14.70 ± 0.13Ba | 0.90 ± 0.01Ba | 16.30 ± 0.11Ba | 33.64 ± 0.33Bb | 548.29 ± 8.47Ba | |
多花山矾 | 根 Root | 418.00 ± 0.91Ab | 6.53 ± 0.48Aa | 0.91 ± 0.11Ab | 7.72 ± 1.60Ab | 65.03 ± 4.46Aa | 483.21 ± 63.89Ab |
Symplocos ramosissima | 茎 Stem | 411.75 ± 4.01Ab | 8.45 ± 0.41Bb | 0.95 ± 0.09Ab | 9.30 ± 1.40Aa | 49.06 ± 2.33Bb | 450.87 ± 56.89Ab |
叶 Leaf | 402.50 ± 1.26Bb | 18.93 ± 0.18Cb | 1.14 ± 0.03Ab | 16.61 ± 0.53Ba | 21.27 ± 0.16Cb | 353.23 ± 10.46Ab |
表1 物种和器官之间元素计量特征差异性分析(平均值±标准误差)
Table 1 ANOVA of C, N, P and their stoichiometry of different species and organs (mean ± SE)
物种 Species | 器官 Organ | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | N:P | C:P |
---|---|---|---|---|---|---|---|
黄心树 | 根 Root | 469.00 ± 1.78Aa | 6.86 ± 0.30Aa | 0.55 ± 0.02Aa | 12.59 ± 0.36Aa | 68.81 ± 3.01Aa | 864.61 ± 32.76Aa |
Machilus gamblei | 茎 Stem | 469.50 ± 0.29Aa | 7.26 ± 0.24Aa | 0.58 ± 0.02Aa | 12.57 ± 0.22Aa | 64.90 ± 2.14Ab | 815.18 ± 24.79Aa |
叶 Leaf | 494.50 ± 0.96Ba | 14.70 ± 0.13Ba | 0.90 ± 0.01Ba | 16.30 ± 0.11Ba | 33.64 ± 0.33Bb | 548.29 ± 8.47Ba | |
多花山矾 | 根 Root | 418.00 ± 0.91Ab | 6.53 ± 0.48Aa | 0.91 ± 0.11Ab | 7.72 ± 1.60Ab | 65.03 ± 4.46Aa | 483.21 ± 63.89Ab |
Symplocos ramosissima | 茎 Stem | 411.75 ± 4.01Ab | 8.45 ± 0.41Bb | 0.95 ± 0.09Ab | 9.30 ± 1.40Aa | 49.06 ± 2.33Bb | 450.87 ± 56.89Ab |
叶 Leaf | 402.50 ± 1.26Bb | 18.93 ± 0.18Cb | 1.14 ± 0.03Ab | 16.61 ± 0.53Ba | 21.27 ± 0.16Cb | 353.23 ± 10.46Ab |
变量 Variables | N处理 N treatments (T) | 物种 Species (S) | 器官 Organs (O) | T × S | T × O | S × O | T × S × O |
---|---|---|---|---|---|---|---|
C | 14.780*** | 3 557.641*** | 13.556*** | 17.935*** | 1.358 | 168.786*** | 1.602 |
N | 26.605*** | 99.505*** | 2 263.338*** | 1.382 | 3.723** | 115.645*** | 4.176** |
P | 27.124*** | 12.711** | 286.908*** | 41.785*** | 2.683* | 2.667 | 3.192** |
C:N | 7.628*** | 52.952*** | 549.602*** | 5.664** | 0.945 | 13.603*** | 1.396 |
N:P | 46.896*** | 17.641*** | 160.241*** | 21.991*** | 1.719 | 12.343*** | 0.879 |
C:P | 19.440*** | 30.180*** | 230.617*** | 38.165*** | 4.137** | 3.636* | 5.831*** |
表2 N处理、物种和器官等因素对幼苗元素计量特征的影响(F值)
Table 2 Effects of N addition, species and plant organs on C, N, P and their stoichiometry of seedlings (F value)
变量 Variables | N处理 N treatments (T) | 物种 Species (S) | 器官 Organs (O) | T × S | T × O | S × O | T × S × O |
---|---|---|---|---|---|---|---|
C | 14.780*** | 3 557.641*** | 13.556*** | 17.935*** | 1.358 | 168.786*** | 1.602 |
N | 26.605*** | 99.505*** | 2 263.338*** | 1.382 | 3.723** | 115.645*** | 4.176** |
P | 27.124*** | 12.711** | 286.908*** | 41.785*** | 2.683* | 2.667 | 3.192** |
C:N | 7.628*** | 52.952*** | 549.602*** | 5.664** | 0.945 | 13.603*** | 1.396 |
N:P | 46.896*** | 17.641*** | 160.241*** | 21.991*** | 1.719 | 12.343*** | 0.879 |
C:P | 19.440*** | 30.180*** | 230.617*** | 38.165*** | 4.137** | 3.636* | 5.831*** |
图1 不同水平N处理对幼苗器官C、N、P元素含量的影响(平均值±标准误差)。不同字母代表同一器官不同处理组间差异显著(p < 0.05)。T0、T1、T2、T3, N添加分别为0、3、6、12 kg·hm-2·a-1。
Fig. 1 Effects of nitrogen solutions addition on the C, N and P concentrations in different organs of the two seedlings (mean ± SE). Different letters above columns indicate significant differences among different N addition levels (p < 0.05). T0, T1, T2, T3, N addition levels are 0, 3, 6, 12 kg·hm-2·a-1.
图2 不同水平N处理对幼苗器官C、N、P元素计量比的影响(平均值±标准误差)。不同字母代表同一器官不同处理组间差异显著(p < 0.05)。T0、T1、T2、T3, 同图1。
Fig. 2 Effects of nitrogen addition on the C, N and P stoichiometry in different organs of the two seedlings (mean ± SE). Different letters above columns indicate significant differences among different N addition levels (p < 0.05). T0, T1, T2, T3, see Fig. 1.
土壤无机N Soil inorganic N | 对照组 Control (T0) | 低N处理组 Low N treatment (T1) | 中N处理组 Medium N treatment (T2) | 高N处理组 High N treatment (T3) |
---|---|---|---|---|
NH4+-N (mg·kg-1) | 43.22 ± 6.77 | 60.62 ± 3.97 | 64.90 ± 4.82 | 67.91 ± 2.19 |
NO3–-N (mg·kg-1) | 4.11 ± 1.19 | 4.54 ± 2.04 | 2.96 ± 1.14 | 4.71 ± 1.28 |
表3 不同处理下土壤无机N含量(平均值±标准误差)
Table 3 Soil nutrient content under different N addition levels (mean ± SE)
土壤无机N Soil inorganic N | 对照组 Control (T0) | 低N处理组 Low N treatment (T1) | 中N处理组 Medium N treatment (T2) | 高N处理组 High N treatment (T3) |
---|---|---|---|---|
NH4+-N (mg·kg-1) | 43.22 ± 6.77 | 60.62 ± 3.97 | 64.90 ± 4.82 | 67.91 ± 2.19 |
NO3–-N (mg·kg-1) | 4.11 ± 1.19 | 4.54 ± 2.04 | 2.96 ± 1.14 | 4.71 ± 1.28 |
器官 Organ | 土壤N含量 Soil N concentration | |
---|---|---|
黄心树 Machilus gamblei | 多花山矾 Symplocos ramosissima | |
根 Root | 0.817*** | 0.753** |
茎 Stem | 0.699** | 0.469 |
叶 Leaf | 0.851*** | 0.698** |
表4 两种幼苗N与土壤N含量之间的相关性分析
Table 4 Correlation analysis of N concentration between plant organs and soil
器官 Organ | 土壤N含量 Soil N concentration | |
---|---|---|
黄心树 Machilus gamblei | 多花山矾 Symplocos ramosissima | |
根 Root | 0.817*** | 0.753** |
茎 Stem | 0.699** | 0.469 |
叶 Leaf | 0.851*** | 0.698** |
[1] | Du EZ, Jiang Y, Fang JY, de Vries W (2014). Inorganic nitrogen deposition in China’s forests: Status and characteristics.Atmospheric Environment, 98, 474-482. |
[2] | Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota.Ecology Letters, 6, 936-943. |
[3] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550. |
[4] | Fan HB, Liao YC, Liu WF, Yuan YH, Li YY, Huang RZ (2011). Effects of simulated nitrogen deposition on nutrient balance of Chinese fir (Cunninghamia lanceolata) seedlings.Acta Ecologica Sinica, 31, 3277-3284. (in Chinese with English abstract) |
[樊后保, 廖迎春, 刘文飞, 袁颖红, 李燕燕, 黄荣珍 (2011). 模拟氮沉降对杉木幼苗养分平衡的影响. 生态学报, 31, 3277-3284.] | |
[5] | Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions.Science, 320, 889-892. |
[6] | Gong HD, Yang GP, Lu ZY, Liu YH, Cao M (2011). Composition and spatio-temporal distribution of tree seedlings in an evergreen broad-leaved forest in the Ailao Mountains, Yunnan.Biodiversity Science, 19, 151-157. (in Chinese with English abstract) |
[巩合德, 杨国平, 鲁志云, 刘玉洪, 曹敏 (2011). 哀牢山常绿阔叶林乔木树种的幼苗组成及时空分布特征. 生物多样性, 19, 151-157.] | |
[7] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
[8] | Johnson D, Leake JR, Lee JA (1999). The effects of quantity and duration of simulated pollutant nitrogen deposition on root-surface phosphatase activities in calcareous and acid grasslands: A bioassay approach.New Phytologist, 141, 433-442. |
[9] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
[10] | Li DJ, Mo JM, Fang YT, Cai XA, Xue JH, Xu GL (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings.Acta Ecologica Sinica, 24, 876-882. (in Chinese with English abstract) |
[李德军, 莫江明, 方运霆, 蔡锡安, 薛璟花, 徐国良 (2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24, 876-882.] | |
[11] | Li DJ, Mo JM, Peng SL, Fang YT (2005). Effects of simulated nitrogen deposition on elemental concentrations of Schima superba and Cryptocarya concinna seedlings in subtropical China.Acta Ecologica Sinica, 25, 2165-2172. (in Chinese with English abstract) |
[李德军, 莫江明, 彭少麟, 方运霆 (2005). 南亚热带森林两种优势树种幼苗的元素含量对模拟氮沉降增加的响应. 生态学报, 25, 2165-2172.] | |
[12] | Li MY, Wang J, Wang ZX, Wu XY, Huang RZ, Zhu JM (2013). Photosynthetic characteristics, biomass allocation, C, N and P distribution of Schima superba seedlings in response to simulated nitrogen deposition.Acta Ecologica Sinica, 33, 1569-1577. (in Chinese with English abstract) |
[李明月, 王健, 王振兴, 吴晓燕, 黄儒珠, 朱锦懋 (2013). 模拟氮沉降条件下木荷幼苗光合特性、生物量与C、N、P分配格局. 生态学报, 33, 1569-1577.] | |
[13] | Li ZF, Guo PJ, Liu WS, Zheng Z (2013). C, N and P stoichiometry of young trees in montane moist evergreen broad-leaved forest of Ailao Mountains.Journal of Northeast Forestry University, 41(4), 22-26. (in Chinese with English abstract) |
[栗忠飞, 郭盘江, 刘文胜, 郑征 (2013). 哀牢山常绿阔叶林幼树C、N、P生态化学计量特征. 东北林业大学学报, 41(4), 22-26.] | |
[14] | Liu C, Wang Y, Wang N, Wang GX (2012). Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: A review.Chinese Journal of Plant Ecology, 36, 1205-1216. (in Chinese with English abstract) |
[刘超, 王洋, 王楠, 王根轩 (2012). 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 36, 1205-1216.] | |
[15] | Liu JX, Huang WJ, Zhou GY, Zhang DQ, Liu SZ, Li YY (2013). Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests.Global Change Biology, 19, 208-216. |
[16] | Liu WY, Fox JED, Xu ZF (2002a). Nutrient fluxes in bulk precipitation, throughfall and stemflow in montane subtropical moist forest on Ailao Mountains in Yunnan, south-west China.Journal of Tropical Ecology, 18, 527-548. |
[17] | Liu WY, Fox JED, Xu ZF (2002b). Biomass and nutrient accumulation in montane evergreen broad-leaved forest (Lithocarpus xylocarpus type) in Ailao Mountains, SW China.Forest Ecology and Management, 158, 223-235. |
[18] | Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He C, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: An overview.Environmental Pollution, 159, 2251-2264. |
[19] | Macklon AE, Sim A (1992). Modifying effects of non-toxic levels of aluminium on the uptake and transport of phosphate in ryegrass.Journal of Experimental Botany, 43, 915-923. |
[20] | Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.New Phytologist, 193, 696-704. |
[21] | Peng LQ, Jin ZX, Wang Q (2014). Effects of simulated nitrogen deposition on the eco-physiological characteristics of Sinocalycanthus chinensis seedlings.Chinese Journal of Ecology, 33, 989-995. (in Chinese with English abstract) |
[彭礼琼, 金则新, 王强 (2014). 模拟氮沉降对夏蜡梅幼苗生理生态特性的影响. 生态学杂志, 33, 989-995.] | |
[22] | Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Lee JA, Emmett BA, Johnson D (2005). Effects of increased deposition of atmospheric nitrogen on an upland Calluna moor: N and P transformations.Environmental Pollution, 135, 469-480. |
[23] | Qi JH, Zhang YJ, Zhang YP, Liu YH, Lu ZY, Wu CS, Wen HD (2015). The influence of changes in water availability on seedling mortality of a subtropical evergreen broadleaf forest on Ailao Mountain.Acta Ecologica Sinica, 35, 2521-2528. (in Chinese with English abstract) |
[杞金华, 章永江, 张一平, 刘玉洪, 鲁志云, 武传胜, 温韩东 (2015). 水分条件变化对哀牢山亚热带常绿阔叶林林下幼苗死亡率的影响. 生态学报, 35, 2521-2528.] | |
[24] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[25] | Song L, Liu WY, Ma WZ, Qi JH (2012). Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.Oecologia, 170, 847-856. |
[26] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[27] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications, 7, 737-750. |
[28] | Yang GP, Gong HD, Zheng Z, Zhang YP, Liu YH, Lu ZY (2010). Caloric values and ash content of six dominant tree species in an evergreen broadleaf forest of Ailaoshan, Yunnan Province.Journal of Zhejiang Forestry College, 27, 251-258. (in Chinese with English abstract) |
[杨国平, 巩合德, 郑征, 张一平, 刘玉洪, 鲁志云 (2010). 哀牢山常绿阔叶林优势树种热值与养分特征. 浙江林学院学报, 27, 251-258.] | |
[29] | You CX (1983). Classification of vegetation in Xujiaba region in Ailao Mts. In: Wu ZY ed. Research of Forest Ecosystems on Ailao Mountains, Yunnan. Yunnan Science and Technology Press, Kunming. 74-117. (in Chinese) |
[游承侠 (1983). 哀牢山徐家坝地区的植被分类. 见: 吴征镒主编. 云南哀牢山森林生态系统研究-1983. 云南科技出版社, 昆明. 74-117.] | |
[30] | Yu Q (2009). Ecological Stoichiometric Study on Vascular Plants in the Inner Mongolia Steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 8-10. (in Chinese with English abstract) |
[庾强 (2009). 内蒙古草原植物化学计量生态学研究. 博士学位论文, 中国科学院植物研究所, 北京. 8-10.] | |
[31] | Zeng DH, Chen GS (2005). Ecological stoichiometry: A science to explore the complexity of living systems.Acta Phytoecologica Sinica, 29, 1007-1019. (in Chinese with English abstract) |
[曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.] | |
[32] | Zhang LX, Bai YF, Han XG (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol.Acta Botanica Sinica, 46, 259-270. |
[33] | Zheng MH, Huang J, Chen H, Wang H, Mo JM (2015). Effect of nitrogen and phosphorus additions on soil phosphatase activity in different forest types. Acta Ecologica Sinica, 35, . (in Chinese with English abstract) |
[郑棉海, 黄娟, 陈浩, 王晖, 莫江明 (2015). 氮、磷添加对不同林型土壤磷酸酶活性的影响. 生态学报, 35, .] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[4] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[5] | 王燕玲, 招礼军, 朱栗琼, 莫若果, 林婷, 赵小雨. 广西天然红鳞蒲桃种群幼苗数量特征及动态分析[J]. 植物生态学报, 2023, 47(9): 1278-1286. |
[6] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[7] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[8] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[9] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[10] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[11] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[12] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[15] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19