植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 141-149.DOI: 10.3773/j.issn.1005-264x.2009.01.016
收稿日期:
2007-11-01
接受日期:
2007-12-10
出版日期:
2009-11-01
发布日期:
2009-01-30
通讯作者:
刘蔚秋
作者简介:
*E-mail: lsslwq@mail.sysu.edu.cn基金资助:
LIU Bin-Yang1, LIU Wei-Qiu1,*(), LEI Chun-Yi2, ZHANG Yi-Shun1
Received:
2007-11-01
Accepted:
2007-12-10
Online:
2009-11-01
Published:
2009-01-30
Contact:
LIU Wei-Qiu
About author:
*E-mail: lsslwq@mail.sysu.edu.cn摘要:
该文研究了华南地区常见的3种苔藓植物大灰藓(Hypnum plumaeforme)、刺边小金发藓拟刺亚种(Pogonatum cirratum subsp. fuscatum)和石地钱(Reboulia hemisphaerica)在模拟N沉降条件下碳氮代谢的响应特征, 探讨了N沉降对这3种苔藓植物生长的影响。结果表明: 3种植物对N沉降的响应存在差异。大灰藓在加氮浓度为0 ~ 60 kg N·hm-2的范围内, 光合速率、淀粉、可溶性糖、总氮及可溶性蛋白的含量均随加氮浓度的升高而上升; 对照条件下NR(硝酸还原酶)可诱导活性很高, 表明其对氮的需求强烈; 膜K+渗漏在加氮浓度为20 kg N·hm-2时高于对照, 但更高的加氮浓度下并未使其进一步上升。刺边小金发藓拟刺亚种在加氮浓度为0~40 kg N·hm-2的范围内, 碳氮代谢的多数指标的变化趋势与大灰藓相似, 但当N沉降高于40 kg N·hm-2时, 呈现相反的变化趋势; 在对照条件下具一定的NR可诱导活性, 但人工加氮使其可诱导活性急剧下降。石地钱的可溶性糖及可溶性蛋白含量在不同处理条件下变化不明显, 但光合速率和淀粉含量在加氮浓度为20和40 kg N·hm-2时低于对照及加氮浓度为60 kg N·hm-2时, 而植物总氮含量的变化趋势刚好相反; NR固有活性及可诱导活性在各种N处理条件下均极低, 显示其对NO3-利用率低。刺边小金发藓拟刺亚种和石地钱的膜K+渗漏仅在60 kg N·hm-2处理时显著上升。
刘滨扬, 刘蔚秋, 雷纯义, 张以顺. 三种苔藓植物对模拟N沉降的生理响应. 植物生态学报, 2009, 33(1): 141-149. DOI: 10.3773/j.issn.1005-264x.2009.01.016
LIU Bin-Yang, LIU Wei-Qiu, LEI Chun-Yi, ZHANG Yi-Shun. PHYSIOLOGICAL RESPONSES OF THREE BRYOPHYTE SPECIES OF SOUTH CHINA TO SIMULATED NITROGEN DEPOSITION. Chinese Journal of Plant Ecology, 2009, 33(1): 141-149. DOI: 10.3773/j.issn.1005-264x.2009.01.016
图1 不同加氮浓度条件下大灰藓形态比较 1、2、3、4分别表示对照、20、40和60 kg N·hm-2的氮浓度处理 1, 2, 3 and 4 standing for treatment concentrations of control, 20, 40 and 60 kg N·hm-2, respectively
Fig. 1 Effects of nitrogen treatments on morphology of Hypnum plumaeforme
氮处理浓度 N treatments (kg N·hm-2) | 光合速率 Pn (nmol·s-1·g-1 FW) | 淀粉 Starch (mg·g-1 FW) | 可溶性糖 Soluble sugar (mg·g-1 FW) | 总氮 Total N (mg·g-1 DW) | 可溶性蛋白 Soluble protein (mg·g-1 FW) |
---|---|---|---|---|---|
大灰藓 Hypnum plumaeforme | |||||
0 | 21.87±0.84a | 19.23±2.28a | 9.93±0.68a | 9.09±2.15a | 2.71±0.14a |
20 | 27.68±2.59b | 23.96±1.45b | 12.07±0.99b | 17.89±1.14b | 3.53±0.02b |
40 | 41.44±2.10c | 28.28±1.22c | 13.8±0.09c | 20.45±0.79c | 3.84±0.07c |
60 | 45.61±2.96d | 32.38±0.85d | 15.09±0.51d | 24.22±0.53d | 3.89±0.13c |
刺边小金发藓拟刺亚种 Pogonatum cirratum subsp. fuscatum | |||||
0 | 37.71±1.96a | 36.72±1.68a | 19.13±1.11a | 8.97±1.13a | 2.69±0.08a |
20 | 41.36±1.94b | 44.42±2.03b | 15.41±1.02b | 10.82±0.49b | 2.88±0.06b |
40 | 43.32±1.61c | 52.32±2.25c | 12.83±1.1c | 15.5±1.37c | 3.08±0.15c |
60 | 37.03±1.44a | 39.78±0.97a | 15.35±0.28b | 13.13±0.44d | 3.08±0.08c |
石地钱 Reboulia hemisphaerica | |||||
0 | 20.79±1.18a | 19.28±1.14a | 5.56±0.77 | 15.43±2.91a | 3.09±0.19 |
20 | 15.88±1.51b | 16.65±0.55b | 4.78±0.78 | 27.78±1.15b | 3.16±0.15 |
40 | 15.81±2.29b | 14.55±1.05c | 5.16±0.35 | 29.4±1.51b | 3.19±0.11 |
60 | 22.11±0.54a | 18.48±0.11a | 6.37±0.66 | 22.84±2.13c | 3.3±0.19 |
表1 不同氮处理下苔藓淀粉、可溶性糖及总氮和可溶性蛋白含量(平均值±标准偏差, n=3)
Table 1 Concentrations of starch, soluble sugar, total nitrogen and soluble protein in bryophytes grown under variable N treatments (mean±SD, n=3)
氮处理浓度 N treatments (kg N·hm-2) | 光合速率 Pn (nmol·s-1·g-1 FW) | 淀粉 Starch (mg·g-1 FW) | 可溶性糖 Soluble sugar (mg·g-1 FW) | 总氮 Total N (mg·g-1 DW) | 可溶性蛋白 Soluble protein (mg·g-1 FW) |
---|---|---|---|---|---|
大灰藓 Hypnum plumaeforme | |||||
0 | 21.87±0.84a | 19.23±2.28a | 9.93±0.68a | 9.09±2.15a | 2.71±0.14a |
20 | 27.68±2.59b | 23.96±1.45b | 12.07±0.99b | 17.89±1.14b | 3.53±0.02b |
40 | 41.44±2.10c | 28.28±1.22c | 13.8±0.09c | 20.45±0.79c | 3.84±0.07c |
60 | 45.61±2.96d | 32.38±0.85d | 15.09±0.51d | 24.22±0.53d | 3.89±0.13c |
刺边小金发藓拟刺亚种 Pogonatum cirratum subsp. fuscatum | |||||
0 | 37.71±1.96a | 36.72±1.68a | 19.13±1.11a | 8.97±1.13a | 2.69±0.08a |
20 | 41.36±1.94b | 44.42±2.03b | 15.41±1.02b | 10.82±0.49b | 2.88±0.06b |
40 | 43.32±1.61c | 52.32±2.25c | 12.83±1.1c | 15.5±1.37c | 3.08±0.15c |
60 | 37.03±1.44a | 39.78±0.97a | 15.35±0.28b | 13.13±0.44d | 3.08±0.08c |
石地钱 Reboulia hemisphaerica | |||||
0 | 20.79±1.18a | 19.28±1.14a | 5.56±0.77 | 15.43±2.91a | 3.09±0.19 |
20 | 15.88±1.51b | 16.65±0.55b | 4.78±0.78 | 27.78±1.15b | 3.16±0.15 |
40 | 15.81±2.29b | 14.55±1.05c | 5.16±0.35 | 29.4±1.51b | 3.19±0.11 |
60 | 22.11±0.54a | 18.48±0.11a | 6.37±0.66 | 22.84±2.13c | 3.3±0.19 |
图2 大灰藓(空心柱)、刺边小金发藓拟刺变种(黑色柱)和石地钱(阴影柱)总钾含量及膜钾离子渗漏随加氮浓度的变化 数据为平均值±标准偏差(n=3)
Fig. 2 Effects of nitrogen treatments on total potassium concentration and percentage potassium leakage in Hypnum plumaeforme (open columns), Pogonatum cirratum subsp. fuscatum (black columns) and Reboulia hemisphaerica (hatched columns) Data represents mean±SD (n=3)
加氮浓度 N treatments (kg N·hm-2) | 硝酸还原酶活性 NRA (μg N·g-1 FW·h-1) | |
---|---|---|
绝对活性 Constitutive activity | 可诱导活性 Inducible activity | |
大灰藓 Hypnum plumaeforme | ||
0 | 4.42±0.50a | 14.88±1.79a |
20 | 1.08±0.13b | 1.74±0.09b |
40 | 0.83±0.06b | 0.00±0.00bc |
60 | 0.86±0.07b | -0.43±0.15c |
刺边小金发藓拟刺亚种 Pogonatum cirratum subsp. fuscatum | ||
0 | 3.09±0.78a | 2.20±0.49a |
20 | 1.45±0.08b | 0.13±0.09b |
40 | 0.69±0.06c | -0.28±0.14bc |
60 | 0.63±0.04c | -0.59±0.05c |
石地钱 Reboulia hemisphaerica | ||
0 | 0.64±0.10 | 0.47±0.14a |
20 | 0.51±0.08 | 0.11±0.03b |
40 | 0.44±0.19 | -0.02±0.04b |
60 | 0.57±0.10 | -0.2±0.23c |
表2 不同种类苔藓的硝酸还原酶绝对活性及可诱导活性随加氮浓度升高的变化(平均值±标准偏差, n=3)
Table 2 Effects of nitrogen treatments on constitutive and inducible nitrate reductase activity (NRA) of bryophytes (means±SD, n=3)
加氮浓度 N treatments (kg N·hm-2) | 硝酸还原酶活性 NRA (μg N·g-1 FW·h-1) | |
---|---|---|
绝对活性 Constitutive activity | 可诱导活性 Inducible activity | |
大灰藓 Hypnum plumaeforme | ||
0 | 4.42±0.50a | 14.88±1.79a |
20 | 1.08±0.13b | 1.74±0.09b |
40 | 0.83±0.06b | 0.00±0.00bc |
60 | 0.86±0.07b | -0.43±0.15c |
刺边小金发藓拟刺亚种 Pogonatum cirratum subsp. fuscatum | ||
0 | 3.09±0.78a | 2.20±0.49a |
20 | 1.45±0.08b | 0.13±0.09b |
40 | 0.69±0.06c | -0.28±0.14bc |
60 | 0.63±0.04c | -0.59±0.05c |
石地钱 Reboulia hemisphaerica | ||
0 | 0.64±0.10 | 0.47±0.14a |
20 | 0.51±0.08 | 0.11±0.03b |
40 | 0.44±0.19 | -0.02±0.04b |
60 | 0.57±0.10 | -0.2±0.23c |
[1] |
Baddeley JA, Thompson DBA, Lee JA (1994). Regional and historical viriation in the nitrogen content of Racomitrium lanuginosum in Britain in relation to atmospheric nitrogen deposition. Environmental Pollution, 84, 189-196.
DOI URL PMID |
[2] |
Bauer GA, Bazzaz FA, Minocha R, Long S, Magill A, Aber J, Berntson GM (2004). Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine ( Pinus resinosa Ait.) stand in the NE United States. Forest Ecology and Management, 196, 173-186.
DOI URL |
[3] |
Baxter R, Emes MJ, Lee JA (1992). Effects of an experimentally applied increase in ammoniumon growth and amino acid metabolism of Sphagnum cuspidatum Ehrh. ex. Hoffm. from differently polluted areas. New Phytologist, 120, 265-274.
DOI URL |
[4] | Fan HB (樊后保), Huang YZ (黄玉梓) (2006). Ecophysiological mechanism underlying the impacts of nitrogen saturation in terrestrial ecosystems on plants. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 32, 395-402. (in Chinese with English abstract) |
[5] | Fang YT (方运霆), Mo JM (莫江明), Zhou GY (周国逸), Xue JH (薛璟花) (2005). Response of diameter at breast height increment to N additions in forests of Dinghushan biosphere reserve. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 13, 198-204. (in Chinese with English abstract) |
[6] | Galloway JN, Cowling EB (2002). Reactive Nitrogen and the world: 200 years of change. A Journal of the Human Environment, 31, 64-71. |
[7] | Galloway JN, Levy H II, Kasibhatla PS (1994). Year 2020: consequences of population growth and development on the deposition of oxidized nitrogen. A Journal of the Human Environment, 23, 120-123. |
[8] |
Jefferies RL, Maron JL (1997). The embarrassment of riches: atmospheric deposition of nitrogen and community and ecosystem processes. Trends of Ecological Evolution, 12, 74-78.
DOI URL |
[9] | Jiang QQ (蒋琦清), Tang JJ (唐建军), Chen X (陈欣), Chen J (陈静), Yang RY (杨如意), Hu S (2005). Effects of simulated nitrogen deposition on weeds growth and nitrogen uptake. Chinese Journal of Applied Ecology (应用生态学报), 16, 951-955. (in Chinese with English abstract) |
[10] |
Končalová H, Kvĕt J, Pokorný J, Hauser V (1993). Effect of flooding with sewage water on three wetland sedges. Wetlands Ecology and Management, 2, 199-211.
DOI URL |
[11] | Kubín P, Melzer A (1996). Does ammonium affect accumulation of starch in rhizomes of Phragmites australis(Cav.) Trin ex Steud? Folia Geobotanica and Phytoxaonimica, 31, 99-109. |
[12] | Lambers H, Stuart Chapin IIIF, Pons TL (1998). Plant Physiological Ecology. Springer-Verlag, New York, 10-95. |
[13] |
Lee JA (1998). Unintentional experiments with terrestrial ecosystems: ecological effects of sulphur and nitrogen pollutants. Journal of Ecology, 86, 1-12.
DOI URL |
[14] |
Lee JA, Caporn SJM (1998). Ecological effects of atmospheric reactive nitrogen deposition on semi-natural terrestrial ecosystems. New Phytologist, 139, 127-134.
DOI URL |
[15] | Li ZH, Piippo S (1994). Preliminary list of bryophytes of Heishiding Nature Reserve, Guangdong Province, China. Tropical Bryology, 9, 35-41. |
[16] | Liu XE (刘雄恩), Wang BS (王伯荪) (1987). The vegetation classification system and main kinds of their distribution in Heishiding Nature Reserve. Ecological Science (生态科学), 1(2), 19-34. (in Chinese with English abstract) |
[17] | Lu XK (鲁显楷), Mo JM (莫江明), Peng SL (彭少麟), Fang YT (方运霆), Li DJ (李德军), Lin QF (林琼芳) (2006). Effects of simulated N deposition on free amino acids and soluble protein of three dominant understory species in a monsoon evergreen broad-leaved forest of subtropical China. Acta Ecologica Sinica (生态学报), 26, 743-753. (in Chinese with English abstract) |
[18] | Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999). The globalization of N deposition ecosystem consequences in tropical environments. Biogeochemistry, 46, 67-83. |
[19] |
Matthews E (1994). Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochemical Cycles, 8, 411-439.
DOI URL |
[20] | Mo JM (莫江明), Fang YT (方运霆), Lin ED (林而达), Li YE (李玉娥) (2006). Soil N2O emission and its response to simulated N deposition in the main forests of Dinghushan in subtropical China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 901-910. (in Chinese with English abstract) |
[21] | Mo JM (莫江明), Xue JH (薛璟花), Fang YT (方运霆) (2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica (生态学报), 24, 1413-1420. (in Chinese with English abstract) |
[22] |
Paulissen MPCP, Besalú LE, de Bruijn H, van der Ven PJM, Bobbink R (2005). Contrasting effects of ammonium enrichment on fen bryophytes. Journal of Bryology, 27, 109-117.
DOI URL |
[23] |
Pearce ISK, van der Wal R (2002). Effect of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath. Biological Conservation, 104, 83-89.
DOI URL |
[24] |
Pearce ISK, Woodin SJ, van der Wal R (2003). Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition. New Phytologist, 160, 145-155.
DOI URL |
[25] |
Pearson J, Stewart GR (1993). The deposition of atmospheric ammonia and its effects on plants. New Phytologist, 125, 283-305.
DOI URL |
[26] |
Pérez-Soba M, Stulen I, Van der Eerden LJM (1994). Effect of atmospheric ammonia on the nitrogen metabolism of Scots pine ( Pinus sylvestris) needles. Physiologia Plantarum, 90, 629-636.
DOI URL |
[27] | Press MC, Lee JA (1982). Nitrate reductase activity of sphagnum species in the south Pennines. New Phytologist, 92, 487-494. |
[28] | Ren R (任仁), Mi FJ (米丰杰), Bai NB (白乃彬) (2000). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University (北京工业大学学报), 26(2), 90-95. (in Chinese with English abstract) |
[29] |
Skrindo A, ØKland RH (2002). Effects of fertilization on understorey vegetation in a Norwegian Pinus sylvestris forest. Applied Vegetation Science, 5, 167-172.
DOI URL |
[30] | Soares A, Pearson J (1997). Short-term physiological responses of mosses to atmospheric ammonium and nitrate. Water, Air and Soil Pollution, 93, 225-254. |
[31] |
Stulen I, Perez-Soba M, de Kok LJ, van der Eerden L (1998). Impact of gaseous nitrogen deposition on plant functioning. New Phytologist, 139, 61-70.
DOI URL |
[32] |
Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2003). Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition. Journal of Ecology, 91, 357-370.
DOI URL |
[33] |
Van der Heijden E, Verbeek SK, Kuiper PJC (2000). Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum(Russ.) Warnst. Global Change Biology, 6, 201-212.
DOI URL |
[34] |
Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997). Human domination of Earth’s ecosystems. Science, 277, 494-499.
DOI URL |
[35] |
Vojtíšková L, Munzarová E, Votrubová O, Čížková H, Lipavská H (2006a). The influence of nitrogen nutrition on the carbohydrate and nitrogen status of emergent macrophyte Acorus calamus L. Hydrobiologia, 563, 73-85.
DOI URL |
[36] |
Vojtíšková L, Tylová E, Soukup A, Novická H, Votrubová O, Lipavská H, Čížková H (2006b). Influence of nutrient supply on growth, carbohydrate, and nitrogen metabolic relations in Typha angustifolia. Environmental and Experimental Botany, 57, 246-257.
DOI URL |
[37] |
Wang SH, Zhu Y, Jiang HD, Cao WX (2006). Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crops Research, 96, 224-234.
DOI URL |
[38] | Wang XK (王学奎) (2006). Plant Physiology and Biochemistry Experimental Theory and Technology (植物生理生化实验原理和技术). Higher Education Press, Beijing, 220-227. (in Chinese) |
[39] | Yang XY (杨贤燕), Jiang QQ (蒋琦清), Tang JJ (唐建军), Chen X (陈欣), Hu S (2007). Effects of simulated nitrogen deposition on competition of weedy species (Echinochloa crusgalli var. mitis L.) and upland rice (Oryza sativa L.) under different air temperatures. Chinese Journal of Applied Ecology (应用生态学报), 18, 848-852. (in Chinese with English abstract) |
[40] | Zhang ZL (张志良), Qu WJ (瞿伟菁) (1994). Experimental Guidance of Plant Physiology (植物生理学实验指导). Higher Education Press, Beijing, 65-67. (in Chinese) |
[41] | Zhao SJ (赵世杰), Liu HS (刘华山), Dong XC (董新纯) (1998). Experimental Guidance of Plant Physiology (植物生理学实验指导). Chinese Agricultural Science and Technology Press, Beijing. (in Chinese) |
[42] | Zhou GY (周国逸), Yan JH (闫俊华) (2001). The influence of region atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems. Acta Ecologica Sinica (生态学报), 21, 2002-2012. (in Chinese with English abstract) |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 王艺宸, 邓芝燕, 张守信, 肖楚楚, 冯广, 龙文兴, 刘积史. 海南热带云雾林附生维管植物对宿主的选择性[J]. 植物生态学报, 2022, 46(4): 405-415. |
[3] | 刘凌, 樊英杰, 宋晓彤, 李敏, 邵小明, 王晓蕊. 色季拉山不同腐解等级华山松倒木上的苔藓植物组合[J]. 植物生态学报, 2020, 44(8): 842-853. |
[4] | 蒙文萍, 戴全厚, 冉景丞. 苔藓植物岩溶作用研究进展[J]. 植物生态学报, 2019, 43(5): 396-407. |
[5] | 姜炎彬, 邵小明. 叶附生苔植物物种多样性分布格局及生态成因[J]. 植物生态学报, 2016, 40(5): 523-532. |
[6] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
[7] | 石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦. 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应[J]. 植物生态学报, 2015, 39(10): 962-970. |
[8] | 庞丽, 张一, 周志春, 丰忠平, 储德裕. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1): 27-35. |
[9] | 赵哈林, 曲浩, 周瑞莲, 李瑾, 潘成臣, 王进. 沙埋对两种沙生植物幼苗生长的影响及其生理响应差异[J]. 植物生态学报, 2013, 37(9): 830-838. |
[10] | 吕晋慧,任磊,李艳锋,王玄,赵夏陆,张春来. 不同基因型茶菊对盐胁迫的响应[J]. 植物生态学报, 2013, 37(7): 656-664. |
[11] | 王海翠, 胡林林, 李敏, 陈为峰, 王莹, 周佳佳. 多环芳烃(PAHs)对油菜生长的影响及其积累效应[J]. 植物生态学报, 2013, 37(12): 1123-1131. |
[12] | 汪岱华, 王幼芳, 左勤, 李敏, 吴文英, 黄建花, 赵明水. 浙江西天目山主要森林类型的苔藓多样性比较[J]. 植物生态学报, 2012, 36(6): 550-559. |
[13] | 李义勇, 黄文娟, 赵亮, 方熊, 刘菊秀. 大气CO2浓度升高和N沉降对南亚热带主要乡土树种叶片元素含量的影响[J]. 植物生态学报, 2012, 36(5): 447-455. |
[14] | 刘滨扬, 刘蔚秋, 张以顺, 雷纯义. 低温胁迫后苔藓植物对模拟氮沉降条件的生理响应[J]. 植物生态学报, 2011, 35(3): 268-274. |
[15] | 涂利华, 胡庭兴, 张健, 李仁洪, 戴洪忠, 雒守华. 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响[J]. 植物生态学报, 2011, 35(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19