植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 150-160.DOI: 10.3773/j.issn.1005-264x.2009.01.017
徐新武1,2, 樊大勇1, 谢宗强1,*(), 张守仁1, 张想英1,2
收稿日期:
2008-02-25
接受日期:
2008-05-23
出版日期:
2009-02-25
发布日期:
2009-01-30
通讯作者:
谢宗强
作者简介:
*E-mail: xie@ibcas.ac.cn基金资助:
XU Xin-Wu1,2, FAN Da-Yong1, XIE Zong-Qiang1,*(), ZHANG Shou-Ren1, ZHANG Xiang-Ying1,2
Received:
2008-02-25
Accepted:
2008-05-23
Online:
2009-02-25
Published:
2009-01-30
Contact:
XIE Zong-Qiang
摘要:
植物通过木质部管道系统进行水分运输, 木质部的水分运输效率和抗空穴化能力等水力结构特征对于植物物种的分布、抗逆能力等方面起关键性作用。目前, 国内外学者一般采用“冲洗法”进行木质部水力结构研究, 然而在该方法中使用的不同冲洗溶质可能对植物木质部水力结构等产生较大影响, 因此该文研究了3种溶质的冲洗溶液对毛白杨(Populus tomentosa)和油松(Pinus tabulaeformis)枝条的水力导度和抵抗空穴化能力的影响。实验结果表明: 相对于去离子水, 用0.01 mol·L-1的草酸和0.03 mol·L-1KCl溶液作为冲洗溶液, 均导致毛白杨木质部导管和油松管胞的水力导度测定值的增大。KCl导致毛白杨和油松木质部抵抗空穴化能力测定值的提高, 草酸导致杨树抵抗空穴化能力测定值增强, 但导致油松抗空穴化能力显著(p<0.01)减弱。小枝水平上, 毛白杨和油松的水分运输效率和抗空穴化能力之间没有显著相关性。另外, 在截枝实验中发现, 毛白杨小枝木质部水力导度随长度增加变化不大, 而油松枝条的木质部水力导度有逐渐增大的趋势。以上的实验结果表明不同溶质下毛白杨和油松枝条的木质部水力导度和抵抗空穴化能力不同, 草酸和KCl可能对木质部管道系统及纹孔处的果胶等产生作用, 从而使毛白杨和油松的水力结构发生变化。毛白杨与油松水力结构在去离子水、草酸和KCl的作用下的不同结果及两物种截枝试验下水力导度的不同变化趋势表明, 导管运输系统和管胞运输系统可能具有不同的水分运输影响因素。
徐新武, 樊大勇, 谢宗强, 张守仁, 张想英. 不同冲洗液对毛白杨和油松枝条水力导度和抵抗空穴化能力测定值的影响. 植物生态学报, 2009, 33(1): 150-160. DOI: 10.3773/j.issn.1005-264x.2009.01.017
XU Xin-Wu, FAN Da-Yong, XIE Zong-Qiang, ZHANG Shou-Ren, ZHANG Xiang-Ying. EFFECTS OF DIFFERENT FLUSH SOLUTIONS ON VALUES OF HYDRAULIC CONDUCTIVITIES AND CAVITATION RESISTANCE ABILITIES OF TRESS OF POPULUS TOMENTOSA AND PINUS TABULAEFORMIS. Chinese Journal of Plant Ecology, 2009, 33(1): 150-160. DOI: 10.3773/j.issn.1005-264x.2009.01.017
物种 Species | 处理溶液 Treat solution | Ψ50 (MPa) | 最大导水率 Kh (kg·m-1·MPa-1·s-1) | 比导率 Ks (kg·m-1·MPa-1·s-1) | 叶比导率Kl (kg·m-1·MPa-1·s-1) |
---|---|---|---|---|---|
毛白杨 Populus tomentosa | 去离子水 Deionized water | -1.81 ± 0.19a | 4.08E-05 ± 0.91E-05a | 2.57 ± 0.31a | 0.000 271 ± 2.8E-05b |
草酸 Oxalic acid | -2.19 ± 0.21a | 5.27E-05 ± 0.95E-05a | 3.57 ± 0.58a | 0.000 367 ± 3.2E-05b | |
氯化钾 KCl | -2.40 ± 0.21a | 5.57E-05 ± 1.32E-05a | 3.55 ± 0.47a | 0.000 515 ± 6.6E-05a | |
油松 Pinus tabulaeformis | 去离子水 Deionized water | -2.38 ± 0.30b | 8.55E-06 ± 0.82E-06a | 0.511 ± 0.035a | 0.000 193 ± 2.1E-05a |
草酸 Oxalic acid | -1.14 ± 0.21c | 1.28E-05 ± 0.20E-05b | 0.583 ± 0.057a | 0.000 267 ± 5.2E-05a | |
氯化钾 KCl | -4.06 ± 0.20a | 1.23E-05 ± 0.10E-05ab | 0.605 ± 0.034a | 0.000 216 ± 3.1E-05a |
表1 不同处理溶液下两种植物的Ψ50、Kh、Ks和Kl数值(平均值±标准误差)
Table 1 Values of Ψ50, Kh, Ks and Kl of two plants in different flush solutions (mean±SE)
物种 Species | 处理溶液 Treat solution | Ψ50 (MPa) | 最大导水率 Kh (kg·m-1·MPa-1·s-1) | 比导率 Ks (kg·m-1·MPa-1·s-1) | 叶比导率Kl (kg·m-1·MPa-1·s-1) |
---|---|---|---|---|---|
毛白杨 Populus tomentosa | 去离子水 Deionized water | -1.81 ± 0.19a | 4.08E-05 ± 0.91E-05a | 2.57 ± 0.31a | 0.000 271 ± 2.8E-05b |
草酸 Oxalic acid | -2.19 ± 0.21a | 5.27E-05 ± 0.95E-05a | 3.57 ± 0.58a | 0.000 367 ± 3.2E-05b | |
氯化钾 KCl | -2.40 ± 0.21a | 5.57E-05 ± 1.32E-05a | 3.55 ± 0.47a | 0.000 515 ± 6.6E-05a | |
油松 Pinus tabulaeformis | 去离子水 Deionized water | -2.38 ± 0.30b | 8.55E-06 ± 0.82E-06a | 0.511 ± 0.035a | 0.000 193 ± 2.1E-05a |
草酸 Oxalic acid | -1.14 ± 0.21c | 1.28E-05 ± 0.20E-05b | 0.583 ± 0.057a | 0.000 267 ± 5.2E-05a | |
氯化钾 KCl | -4.06 ± 0.20a | 1.23E-05 ± 0.10E-05ab | 0.605 ± 0.034a | 0.000 216 ± 3.1E-05a |
图5 不同溶质下毛白杨和油松木质部导管脆弱性曲线 室温26 ℃下测定, 10~12根枝条重复
Fig. 5 Curves of the vulnerability of xylem to cavitation for stems in different flush solutions Indoor temperature 26 ℃, 10-12 stem replications
[1] | Ackerly DD (1999). Phylogeny and the comparative method in plant functional ecology. In: Press MC, Scholes JD, Baker MG eds. Plant Physiological Ecology. Blackwell Scientific Press, Oxford, UK, 391-413. |
[2] | An F (安锋), Zhang SX (张硕新), Zhao PJ (赵平娟) (2002). Progress on study of vulnerability of xylem embolism in woody plants. Journal of Northwest Forestry Universit y (西北林业大学学报), 17, 30-34. (in Chinese with English abstract). |
[3] |
Burgess SQ, Jarmila P, Dawon TE (2006). Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens(D. Don) crowns. Plant, Cell and Environment, 29, 229-239.
DOI URL PMID |
[4] |
Chiu ST, Ewers FW (1993). The effect of segment length on conductance measurements in Lonicera fragrantissima. Journal of Experimental Botany, 44, 175-181.
DOI URL |
[5] |
Cochard H, Cruizia P, Tyree MT (1992). Use of positive pressures to establish vulnerability curves. Plant Physiology, 100, 205-209.
DOI URL PMID |
[6] |
Cruiziat P, Cochard H, Ameglio T (2002). Hydraulic architecture of trees: main concepts and results. Annals of Forest Science, 59, 723-752.
DOI URL |
[7] |
Gasco A, Nardini A, Gortan E, Salleo S (2006). Ion- mediated increase in the hydraulic conductivity of Laurel stems: role of pits and consequences for the impact of cavitation on water transport. Plant, Cell and Environment, 29, 1946-1955.
DOI URL PMID |
[8] |
Gollan T, Schurr U, Schulize ED (1992). Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus L. The concentration of cations, anions, amino acids in, and pH of, the xylem sap. Plant, Cell and Environment, 15, 551-559.
DOI URL |
[9] |
Hacke UG, Sperry JS, Pittermannn J (2004). Analysis of circular bordered pit function Ⅱ. Gymnosperm traheids with torus-margo pit membranes. American Journal of Botany, 91, 386-400.
URL PMID |
[10] |
Herdel K, Schmidt P, Feil R, Mohr A, Schurr U (2001). Dynamics of concentrations and nutrient fluxes in the xylem of Ricinus communis—diurnal course, impact of nutrient availability and nutrient uptake. Plant, Cell and Environment, 24, 41-52.
DOI URL |
[11] |
Hukin D, Cochard H, Dreyer E, Le Thiec D, Bogeat- Triboulot MB (2005). Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from aridareas of Central Asia, differ from other poplar species? Journal of Experimental Botany, 56, 2003-2010.
DOI URL PMID |
[12] | Li JY (李吉跃), Zhai HB (翟洪波) (2000). Hydraulic architecture and drought resistance of woody plants. Chinese Journal of Applied Ecology (应用生态学报), 11, 301-305. (in Chinese with English abstract) |
[13] |
Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006). Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell and Environment, 29, 571-583.
DOI URL PMID |
[14] |
Maherali H, Pockman WT, Jackson RB (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184-2199.
DOI URL |
[15] |
Pammenter NW, Willigen CV (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18, 589-593.
DOI URL PMID |
[16] |
Pinol J, Sala A (2000). Ecological implications of xylem cavitation for several Pinaceae in the Pacific northern U.S.A. Functional Ecology, 14, 538-545.
DOI URL |
[17] |
Salleo S, Lo Gullo MA, Trifilò P, Nardini A (2004). New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant, Cell and Environment, 27, 1065-1076.
DOI URL |
[18] |
Schurr U (1998). Xylem sap sampling—new approaches to an old topic. Trends in Plant Science, 3, 293-298.
DOI URL |
[19] | Shen WJ (申卫军), Peng SL (彭少麟), Zhang SX (张硕新) (2000). Studies on the xylem draught-tolerant characteristics of three draught-tolerant tree species. Chinese Journal of Ecology (生态学杂志), 19, 1-6. (in Chinese with English abstract) |
[20] |
Sperry JS (2003). Evolution of water transport and xylem structure. International Journal of Plant Science, 164, S115-S127.
DOI URL |
[21] |
Sperry JS, Donnelly JR, Tyree MT (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11, 35-40.
DOI URL |
[22] |
Sperry JS, Hacke UG (2004). Analysis of circular bordered pit function Ⅰ. Angiosperm vessels with homogenous pit membranes. American Journal of Botany, 91, 369-385.
DOI URL PMID |
[23] |
Sperry JS, Hacke UG, Wheeler JK (2005). Comparative analysis of end wall resistance in xylem conduits. Plant, Cell and Environment, 28, 456-465.
DOI URL |
[24] |
Sperry JS, Saliendra NZ (1994). Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell and Environment, 17, 1233-1241.
DOI URL |
[25] | Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? International Association of Wood Anatomists Journal, 15, 335-360. |
[26] | Tyree MT, Salleo S, Nardini A, Lo Gullo MA (1999). Refilling of embolized vessels in young stems of Laurel. Do we need a new paradigm? Plant Physiology, 120, 11-21. |
[27] |
Tyree MT, Sperry JS (1989). Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-38.
DOI URL |
[28] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. |
[29] |
van Ieperen W (2007). Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? Trends in Plant Science, 12, 137-142.
DOI URL |
[30] |
van Ieperen W, van Meeteren U, van Gelder H (2000). Fluid ionic composition influences hydraulic conductance of xylem conduits. Journal of Experimental Botany, 51, 769-776.
URL PMID |
[31] | Vogel S (1994). Life in Moving Fluids: the Physical Biology of Flow. Princeton University Press, Princeton, New Jersey, USA. |
[32] | Zhai HB (翟洪波), Li JY (李吉跃), Li BH (李保华), Wu WQ (吴文强) (2001). Application of Darcy’s laws in testing water conductivity characteristics of xylem. Journal of Beijing Forestry University (北京林业大学学报), 23, 6-9. (in Chinese with English abstract) |
[33] | Zhai HB (翟洪波), Li JY (李吉跃), Wei XX (魏晓霞) (2002). Discussing the pipe model through hydraulic architecture of Pinus tabulaeformis seedlings. Journal of Beijing Forestry University (北京林业大学学报), 24, 22-25. (in Chinese with English abstract) |
[34] | Zhang QX (张庆轩), Yang PJ (杨普江), Yang GH (杨国华) (2005). Study on acid-extraction of soy hull pectin. Chemical Research and Application (化学研究与应用), 17, 689-690. (in Chinese with English abstract) |
[35] |
Zimmermann MH (1978). Hydraulic architecture of some diffuse-porous trees. Canadian Journal of Botany, 56, 2286-2295.
DOI URL |
[36] |
Zwieniecki MA, Melcher PJ, Field TS, Holbrook NM (2004). A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance. Tree Physiology, 24, 911-917.
DOI URL PMID |
[37] |
Zwieniecki MA, Melcher PJ, Holbrook NM (2001). Hydrogel control of xylem hydraulic resistance in plants. Science, 291, 1059-1062.
URL PMID |
[1] | 安瑞, 孟凤, 尹鹏先, 杜光源. 刺槐木质部栓塞脆弱性检测的方法比较[J]. 植物生态学报, 2018, 42(11): 1113-1119. |
[2] | 张红香, 田雨, 周道玮, 郑伟, 王敏玲. 大麦种子对盐的发芽响应模型[J]. 植物生态学报, 2012, 36(8): 849-858. |
[3] | 闫顺国, 沈禹颖. 生态因子对碱茅种子萌发期耐盐性影响的数量分析[J]. 植物生态学报, 1996, 20(5): 414-422. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3742
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 4728
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La