植物生态学报 ›› 2012, Vol. 36 ›› Issue (5): 438-446.DOI: 10.3724/SP.J.1258.2012.00438
王建林1, 温学发2,*(), 赵风华2, 房全孝1, 杨新民1
发布日期:
2012-05-04
通讯作者:
温学发
作者简介:
* E-mail: wenxf@igsnrr.ac.cn
WANG Jian-Lin1, WEN Xue-Fa2,*(), ZHAO Feng-Hua2, FANG Quan-Xiao1, YANG Xin-Min1
Published:
2012-05-04
Contact:
WEN Xue-Fa
摘要:
揭示作物光合作用、蒸腾作用和水分利用效率(WUE)对大气CO2浓度变化的响应, 对预测未来大气CO2浓度升高条件下作物生产力与需水规律的变化具有重要意义。在自然CO2浓度、CO2倍增和倍增后恢复到自然CO2浓度3种情况下, 对大豆(Glycine max)、甘薯(Ipomoea batatas)、花生(Arachis hypogaea)、水稻(Oryza sativa)、棉花(Gossypium hirsutum)、玉米(Zea mays)、高粱(Sorghum vulgare)和谷子(Setaria italica) 8种作物的气体交换参数进行了研究。结果表明: CO2浓度倍增可以提高光合速率, 降低蒸腾速率, 从而提高WUE, 其中光合速率提高的贡献更大; C3比C4作物的光合速率、WUE增幅大, C3作物光合速率提高对WUE的贡献大于C4作物; 通过对比倍增后恢复到自然CO2浓度时气体交换参数随环境条件变化的响应确定了其内在调控机制; 倍增后恢复到自然CO2浓度时作物光合速率低于自然CO2浓度下的光合速率, 而蒸腾速率无明显差异。由此判断: CO2浓度倍增下存在光合下调现象, 这可能是由于Rubisco酶蛋白含量、活化水平和比活性降低等“非气孔因素”造成的, 并非由气孔导度的降低引起的。
王建林, 温学发, 赵风华, 房全孝, 杨新民. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响. 植物生态学报, 2012, 36(5): 438-446. DOI: 10.3724/SP.J.1258.2012.00438
WANG Jian-Lin, WEN Xue-Fa, ZHAO Feng-Hua, FANG Quan-Xiao, YANG Xin-Min. Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species. Chinese Journal of Plant Ecology, 2012, 36(5): 438-446. DOI: 10.3724/SP.J.1258.2012.00438
图1 自然CO2浓度([375])、CO2浓度倍增([750])、倍增后恢复到自然CO2浓度([750-375])下8种作物的光合速率(Pn) (平均值±标准偏差, n = 3)。CO, 棉花; MA, 玉米; MI, 谷子; PE, 花生; RI, 水稻; SB, 大豆; SO, 高粱; SP, 甘薯。
Fig. 1 Photosynthesis rate (Pn) of eight crops under natural ([375]), doubled ([750]), natural after doubled ([750-375]) CO2 concentration conditions (mean ± SD, n = 3). CO, Gossypium hirsutum; MA, Zea mays; MI, Setaria italica; PE, Arachis hypogaea; RI, Oryza sativa; SB, Glyline max; SO, Sorghum vulgare; SP, Ipomoea batatas.
图2 自然CO2浓度([375])、CO2浓度倍增([750])、倍增后恢复到自然CO2浓度([750-375])下8种作物的最大羧化速率(Vcmax) (平均值±标准偏差, n = 3)。CO, 棉花; MA, 玉米; MI, 谷子; PE, 花生; RI, 水稻; SB, 大豆; SO, 高粱; SP, 甘薯。
Fig. 2 Maximum rate of carboxylation (Vcmax) of eight crops under natural ([375]), doubled ([750]), natural after doubled ([750-375]) CO2 concentration conditions (mean ± SD, n = 3). CO, Gossypium hirsutum; MA, Zea mays; MI, Setaria italica; PE, Arachis hypogaea; RI, Oryza sativa; SB, Glyline max; SO, Sorghum vulgare; SP, Ipomoea batatas.
图3 自然CO2浓度([375])、CO2浓度倍增([750])、倍增后恢复到自然CO2浓度([750-375])下8种作物的蒸腾速率(Tr) (平均值±标准偏差, n = 3)。CO, 棉花; MA, 玉米; MI, 谷子; PE, 花生; RI, 水稻; SB, 大豆; SO, 高粱; SP, 甘薯。
Fig. 3 Transpiration rate (Tr) of eight crops under natural ([375]), doubled ([750]), natural after doubled ([750-375]) CO2 concentration conditions (mean ± SD, n = 3). CO, Gossypium hirsutum; MA, Zea mays; MI, Setaria italica; PE, Arachis hypogaea; RI, Oryza sativa; SB, Glyline max; SO, Sorghum vulgare; SP, Ipomoea batatas.
图4 自然CO2浓度([375])、CO2浓度倍增([750])、倍增后恢复到自然CO2浓度([750-375])下8种作物的水分利用效率(WUE) (平均值±标准偏差, n = 3)。CO, 棉花; MA, 玉米; MI, 谷子; PE, 花生; RI, 水稻; SB, 大豆; SO, 高粱; SP, 甘薯。
Fig. 4 Water use efficiency (WUE) of eight crops under natural ([375]), doubled ([750]), natural after doubled ([750-375]) CO2 concentration conditions (mean ± SD, n = 3). CO, Gossypium hirsutum; MA, Zea mays; MI, Setaria italica; PE, Arachis hypogaea; RI, Oryza sativa; SB, Glyline max; SO, Sorghum vulgare; SP, Ipomoea batatas.
物种 Species | 大豆 Glycine max | 甘薯 Ipomoea batatas | 花生 Arachis hypogaea | 水稻 Oryza sativa | 棉花 Gossypium hirsutum | 玉米 Zea mays | 高粱 Sorghum vulgare | 谷子 Setaria italica |
---|---|---|---|---|---|---|---|---|
WUE增幅 Elevated WUE (%) | 68.18 | 87.78 | 81.78 | 93.05 | 61.34 | 47.97 | 46.89 | 47.02 |
光合速率升高的贡献 Proffer from photosynthetic rate (%) | 69.31 | 66.27 | 75.53 | 69.06 | 70.49 | 61.73 | 56.74 | 41.18 |
蒸腾速率降低的贡献 Proffer from transpiration rate (%) | 30.69 | 33.73 | 24.47 | 30.94 | 29.51 | 38.27 | 43.26 | 58.82 |
表1 CO2浓度倍增下水分利用效率(WUE)的增幅及光合增强和蒸腾减弱的贡献率
Table 1 Elevated water use efficiency (WUE) by increased photosynthesis and decreased transpiration under doubled CO2 concentration
物种 Species | 大豆 Glycine max | 甘薯 Ipomoea batatas | 花生 Arachis hypogaea | 水稻 Oryza sativa | 棉花 Gossypium hirsutum | 玉米 Zea mays | 高粱 Sorghum vulgare | 谷子 Setaria italica |
---|---|---|---|---|---|---|---|---|
WUE增幅 Elevated WUE (%) | 68.18 | 87.78 | 81.78 | 93.05 | 61.34 | 47.97 | 46.89 | 47.02 |
光合速率升高的贡献 Proffer from photosynthetic rate (%) | 69.31 | 66.27 | 75.53 | 69.06 | 70.49 | 61.73 | 56.74 | 41.18 |
蒸腾速率降低的贡献 Proffer from transpiration rate (%) | 30.69 | 33.73 | 24.47 | 30.94 | 29.51 | 38.27 | 43.26 | 58.82 |
[1] | Bai LP (白莉萍), Zhou GS (周广胜) (2004). Research of effect of global environment change on agricultural crops. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 10, 394-397. (in Chinese with English abstract) |
[2] |
Bowes G (1993). Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 309-332.
DOI URL |
[3] |
Drake BG, Gonzàlez-Meler MA, Long SP (1997). More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609-639.
URL PMID |
[4] | Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81, 417-425. |
[5] | He P (何平) (2001). Green house effect and plant photosynthesis: an analysis on the influence of CO2 enrichment on photosynthetic mechanism in plants. Journal of Central South Forestry University (中南林学院学报), 21(1), 1-4. (in Chinese with English abstract) |
[6] | IPCC (2007). Climate change 2007: impacts, adaptation, and vulnerability. In: Pachauri RK, Reisinger A eds. Contribution of Working Group II to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[7] | Jiang GM (蒋高明), Han XG (韩兴国), Lin GH (林光辉) (1997). Response of plant growth to elevated CO2: a review on the chief methods and basic conclusions based on experiments in the external countries in past decade. Acta Phytoecologica Sinica (植物生态学报), 21, 489-502. (in Chinese with English abstract) |
[8] |
Karl TR, Trenberth KE (2003). Modern global climate change. Science, 302, 1719-1723.
URL PMID |
[9] | Kimball BA, Kobayashi K, Bindi M (2002). Responses of agricultural crops to free-air CO2 enrichment. Advance in Agronomy, 77, 293-368. |
[10] | Kiziloglu FM, Sahin U, Kuslu Y, Tunc T (2009). Determining water-yield relationship, water use efficiency, crop and pan coefficients for silage maize in a semiarid region. Irrigation Science, 27, 129-137. |
[11] | Koch KE, Jones PH, Avigne WT, Allen LH Jr (1986). Growth, dry matter partitioning, and diurnal activities of RUBP carboxylase in citrus seedlings maintained at two levels of CO2. Plant Physiology, 67, 477-484. |
[12] |
Liao Y (廖轶), Chen GY (陈根云), Zhang HB (张海波), Cai SQ (蔡时青), Zhu JG (朱建国), Han Y (韩勇), Liu G (刘钢), Xu DQ (许大全) (2002). Response and acclimation of photosynthesis in rice leaves to free-air CO2 enrichment (FACE). Chinese Journal of Applied Ecology (应用生态学报), 13, 1205-1209. (in Chinese with English abstract)
URL PMID |
[13] | Lin WH (林伟宏) (1998). Response of photosynthesis to elevated atmospheric CO2. Acta Ecologica Sinica (生态学报), 18, 529-538. (in Chinese with English abstract) |
[14] | Liu CM (刘昌明), Yu HN (于沪宁) (1997). The Soil-Plant- Atmosphere System Experimental Study on Moisture Movement (土壤-作物-大气系统水分运动实验研究). Meteorological Press, Beijing. (in Chinese) |
[15] |
Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 431, 622-625.
DOI URL PMID |
[16] | Peng CL (彭长连), Lin ZF (林植芳), Lin GZ (林桂珠) (1999). Changes of antioxidative ability in leaves of rice cultivars grown under enriched CO2. Acta Agronomica Sinica (作物学报), 25, 39-43. (in Chinese with English abstract) |
[17] |
Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B III, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172.
DOI URL PMID |
[18] |
Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997). Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502-509.
URL PMID |
[19] | Wang JL (王建林), Yu GR (于贵瑞), Fang QX (房全孝), Jiang DF (姜德锋), Qi H (齐华), Wang QF (王秋凤) (2008). Responses of water use efficiency of nine plant species to light and CO2 and its modeling. Acta Ecologica Sinica (生态学报), 28, 525-533. (in Chinese with English abstract) |
[20] | Xie H (谢辉), Fan GZ (范桂枝), Jing YH (荆彦辉), Dong L (东丽), Deng HF (邓华凤) (2006). Progress of research on photosynthetic acclimation of plant to elevated atmospheric CO2. Review of China Agricultural Science and Technology (中国农业科技导报), 8(3), 29-34. (in Chinese with English abstract) |
[21] | Xu DQ (许大全) (1994). Responses of photosynthesis and related processes to long-term high CO2 concentration. Plant Physiology Communications (植物生理学通讯), 30, 81-87. (in Chinese) |
[22] | Xue S (薛崧), Wang PH (汪沛洪), Xu DQ (许大全), Li LR (李立人) (1992). Effects of water stress on CO2 assimilation of two winter wheat cultivars with different drought resistance. Acta Photophysiologica Sinica (植物生理学报), 18, 1-7. (in Chinese with English abstract) |
[23] | Yang JY (杨建莹), Mei XR (梅旭荣), Liu Q (刘勤), Yan CR (严昌荣), He WQ (何文清), Liu EK (刘恩科), Liu S (刘爽) (2011). Variations of winter wheat growth stages under climate changes in northern China. Chinese Journal of Plant Ecology (植物生态学报), 35, 623-631. (in Chinese with English abstract) |
[24] | Yu GR (于贵瑞), Wang QF (王秋凤), Yu ZL (于振良) (2004). Study on the coupling cycle of water-carbon and process management in terrestrial ecosystem. Advances in Earth Science (地球科学进展), 19, 831-839. (in Chinese with English abstract) |
[25] | Yu GR, Wang QF, Zhuang J (2004). Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis-transpiration based on stomatal behavior. Journal of Plant Physiology, 161, 308-318. |
[26] | Zhang XQ (张小全), Xu DY (徐德应), Zhao MS (赵茂盛), Chen ZL (陈仲庐) (2000). The responses of 17-years-old Chinese fir shoots to elevated CO2. Acta Ecologica Sinica (生态学报), 20, 390-396. (in Chinese with English abstract) |
[27] | Zhao TH (赵天宏), Wang MY (王美玉), Zhang WW (张巍巍), Zhang X (张鑫) (2006). Effects of elevated atmospheric CO2 concentration on plant photosynthesis. Ecology and Environment (生态环境), 15, 1096-1100. (in Chinese with English abstract) |
[28] | Zheng FY (郑凤英), Peng SL (彭少麟) (2001). Meta-analysis of the response of plant ecophysiological variables to doubled atmospheric CO2 concentrations. Acta Botanica Sinica (植物学报), 43, 1101-1109. (in Chinese with English abstract) |
[29] | Zuo BY (左宝玉), Jiang GZ (姜桂珍), Bai KZ (白克智), Kuang TY (匡廷云) (1996). Effect of doubled-CO2 concentration on the ultrastructure of chloroplasts from Medicago sativa and Setaria italica. Acta Botanica Sinica (植物学报), 38, 72-76. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[3] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[4] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[5] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[6] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[7] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[8] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[9] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[10] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[11] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[12] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[13] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[14] | 叶子飘, 段世华, 安婷, 康华靖. C4作物电子传递速率对CO2响应模型的构建及应用[J]. 植物生态学报, 2018, 42(10): 1000-1008. |
[15] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19