植物生态学报 ›› 2018, Vol. 42 ›› Issue (6): 672-680.DOI: 10.17521/cjpe.2018.0033
收稿日期:
2018-01-30
修回日期:
2018-04-25
出版日期:
2018-06-20
发布日期:
2018-06-20
通讯作者:
龙光强
基金资助:
ZHU Qi-Lin1,XIANG Rui1,TANG Li1,2,LONG Guang-Qiang1,2,*()
Received:
2018-01-30
Revised:
2018-04-25
Online:
2018-06-20
Published:
2018-06-20
Contact:
Guang-Qiang LONG
Supported by:
摘要:
研究间作后作物光合碳同化和光合氮利用效率(PNUE)对氮投入的响应, 对阐释间作产量优势的氮调控效应, 指导间作氮肥管理有重要意义。本研究设置玉米(Zea mays)单作、玉米间作两种种植模式的4个氮水平(N0, 0 kg·hm -2; N1, 125 kg·hm -2; N2, 250 kg·hm -2; N3, 375 kg·hm -2), 分析间作与施氮量对玉米叶片特征、光合参数、PNUE和产量的影响。结果表明: 与单作相比, 间作显著增加玉米叶片的叶干质量和比叶质量; 各施氮水平(除N3)下, 间作中靠近马铃薯(Solanum tuberosum)侧的玉米叶面积均显著高于单作玉米。单间作对比发现, 间作提高了玉米光饱和点和暗呼吸速率。单作、间作靠玉米侧(I-M)、间作靠马铃薯侧(I-P)的玉米PNUE均随施氮量增加而降低, 降幅以I-P最大; 施氮量低于250 kg·hm -2时, 相同施氮量下的玉米PNUE和净光合速率(Pn)均以I-P最高, I-M和单作次之。间作显著提高了玉米产量(土地当量比>1)。该研究中当施氮量≤250 kg·hm -2时, 间作I-P的玉米叶片Pn和PNUE显著提高可能是间作玉米产量提高的重要原因。
朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响. 植物生态学报, 2018, 42(6): 672-680. DOI: 10.17521/cjpe.2018.0033
ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition. Chinese Journal of Plant Ecology, 2018, 42(6): 672-680. DOI: 10.17521/cjpe.2018.0033
图1 玉米单作和间作示意图。I, 间作; I-M, 靠近玉米侧的玉米叶片; I-P, 靠近马铃薯侧的玉米叶片; M, 单作。
Fig. 1 Illustration of maize monoculture and intercropping maize and potato. I, intercropping; I-M, intercropping maize leaves close to maize of other row; I-P, intercropping maize leaves close to potato; M, monoculture.
氮水平 N level (kg·hm-2) | 产量 Yield | 生物量 Biomass | 土地当量比 Land equivalent ratio | ||
---|---|---|---|---|---|
I | M | I | M | ||
0 (N0) | 7.54 ± 0.23Aa | 5.18 ± 0.71Aa | 17.62 ± 1.01Aa | 14.88 ± 1.24Aa | 1.46 |
125 (N1) | 12.30 ± 1.57Ab | 9.99 ± 1.63Ab | 25.69 ± 0.52Ab | 21.84 ± 0.73Bb | 1.23 |
250 (N2) | 14.40 ± 1.67Ab | 11.69 ± 1.97Bb | 28.82 ± 1.88Ac | 24.90 ± 2.73Bc | 1.23 |
375 (N3) | 14.29 ± 1.47Ab | 11.92 ± 1.11Bb | 28.63 ± 2.33Ac | 25.20 ± 1.75Bc | 1.20 |
表1 不同氮水平对玉米产量、生物量的影响(×103 kg·hm-2)(平均值±标准偏差)
Table 1 Effects of N levels on yield and biomass of maize (×103 kg·hm-2)(mean ± SD)
氮水平 N level (kg·hm-2) | 产量 Yield | 生物量 Biomass | 土地当量比 Land equivalent ratio | ||
---|---|---|---|---|---|
I | M | I | M | ||
0 (N0) | 7.54 ± 0.23Aa | 5.18 ± 0.71Aa | 17.62 ± 1.01Aa | 14.88 ± 1.24Aa | 1.46 |
125 (N1) | 12.30 ± 1.57Ab | 9.99 ± 1.63Ab | 25.69 ± 0.52Ab | 21.84 ± 0.73Bb | 1.23 |
250 (N2) | 14.40 ± 1.67Ab | 11.69 ± 1.97Bb | 28.82 ± 1.88Ac | 24.90 ± 2.73Bc | 1.23 |
375 (N3) | 14.29 ± 1.47Ab | 11.92 ± 1.11Bb | 28.63 ± 2.33Ac | 25.20 ± 1.75Bc | 1.20 |
图2 不同氮水平下单作和间作对玉米光合特征参数的影响(平均值+标准偏差)。不同小写字母代表同一种植模式下的不同氮水平间差异显著(p < 0.05)。不同大写字母代表同一施氮水平下间作和单作之间差异显著(p < 0.05)。I-M, 靠近玉米侧玉米叶片; I-P, 靠近马铃薯侧玉米叶片; M, 单作; Pn, 净光合速率; Ci, 胞间CO2浓度; Gs, 气孔导度; Tr, 蒸腾速率; Ls, 气孔限制值; WUE, 水分利用效率。
Fig. 2 Effects of monoculture and intercropping on photosynthetic characteristics of maize under different nitrogen levels (mean + SD). Different lowercase letters indicate significant difference among different N levels in the same planting pattern (p < 0.05). Different capital letters mean significant difference between monoculture and intercropping at the same N level (p < 0.05). I-M, intercropping maize leaves close to maize of other row; I-P, intercropping maize leaves close to potato; M, monoculture, Pn, net photosynthetic rate; Ci, intercellular CO2 concentration; Gs, stomatal conductance; Tr, transpiration rate; Ls, stomatal limitation; WUE, water use efficiency.
图3 单作和间作玉米叶片光响应曲线。I, 间作; M, 单作; Pn, 净光合速率。
Fig. 3 Response of net photosynthetic rate (Pn) of maize leaves to photon flux density at monoculture and intercropping planting. I, intercropping; M, monoculture.
叶片指标 Leaf indexes | 种植模式 planting pattern | 氮水平 N level (kg·hm-2) | |||
---|---|---|---|---|---|
0 (N0) | 125 (N1) | 250 (N2) | 375 (N3) | ||
叶面积 Leaf area (cm2·leaf-1) | M | 308 ± 14Aa | 466 ± 26Ab | 493 ± 19Ab | 553 ± 28Ac |
I-M | 283 ± 17Aa | 478 ± 19Ab | 524 ± 13ABb | 562 ± 22Ac | |
I-P | 394 ± 8Ba | 498 ± 16Bb | 549 ± 23Bc | 576 ± 12Ac | |
叶干质量 Leaf dry mass (g·leaf-1) | M | 1.71 ± 0.09Aa | 2.55 ± 0.08Ab | 2.68 ± 0.10Ab | 2.86 ± 0.22Ab |
I-M | 1.19 ± 0.07Ba | 2.66 ± 0.19Ab | 2.68 ± 0.14Ab | 3.02 ± 0.19Ac | |
I-P | 1.44 ± 0.11ABa | 2.90 ± 0.16Bb | 3.30 ± 0.28Bb | 3.62 ± 0.10Bc | |
比叶质量 LMA (g·m-2 ) | M | 55.72 ± 3.97Aa | 54.90 ± 4.22Aa | 54.41 ± 1.87Aa | 51.82 ± 4.94Aa |
I-M | 42.42 ± 5.11Ba | 58.33 ± 2.16Abc | 63.00 ± 3.86Bb | 53.78 ± 4.60Ac | |
I-P | 36.65 ± 2.07Ba | 55.59 ± 4.78Abc | 62.75 ± 2.21Bc | 48.82 ± 3.76Bb | |
单位质量含氮量 Nmass (g·kg-1) | M | 14.55 ± 1.30Aa | 21.62 ± 1.04Ab | 31.02 ± 0.89Ac | 34.04 ± 1.15Ac |
I-M | 15.99 ± 0.71Aa | 23.78 ± 1.03Ab | 31.17 ± 0.76Ac | 34.08 ± 0.80Ac | |
I-P | 18.68 ± 0.86Ba | 24.86 ± 0.66Ab | 32.97 ± 1.23Ac | 37.12 ± 0.49Ac | |
单位面积含氮量 Narea (mg·cm-2) | M | 0.42 ± 0.05Aa | 0.62 ± 0.01Ab | 0.84 ± 0.06Abc | 0.89 ± 0.06Ac |
I-M | 0.34 ± 0.03Aa | 0.69 ± 0.08Ab | 0.82 ± 0.06Ac | 0.92 ± 0.06Ac | |
I-P | 0.36 ± 0.03Aa | 0.72 ± 0.05Ab | 0.91 ± 0.01Ac | 0.93 ± 0.02Ac | |
光合氮利用效率 PNUE (CO2 μmol·g-1·s-1) | M | 49.85 ± 5.24Aa | 32.57 ± 0.48Ab | 32.73 ± 2.37Ab | 32.01 ± 2.39Ab |
I-M | 64.71 ± 6.25Ba | 31.53 ± 2.03Ab | 28.65 ± 0.23Ab | 26.32 ± 5.41Ab | |
I-P | 75.58 ± 5.38Ca | 47.14 ± 5.39Bb | 39.29 ± 5.40Bc | 30.28 ± 2.06Ad |
表2 不同氮水平对单作和间作玉米叶片形态特征的影响(平均值±标准偏差)
Table 2 Effects of N levels on morphological characteristics of maize leaves grown in monoculture and intercropping pattern (mean ± SD)
叶片指标 Leaf indexes | 种植模式 planting pattern | 氮水平 N level (kg·hm-2) | |||
---|---|---|---|---|---|
0 (N0) | 125 (N1) | 250 (N2) | 375 (N3) | ||
叶面积 Leaf area (cm2·leaf-1) | M | 308 ± 14Aa | 466 ± 26Ab | 493 ± 19Ab | 553 ± 28Ac |
I-M | 283 ± 17Aa | 478 ± 19Ab | 524 ± 13ABb | 562 ± 22Ac | |
I-P | 394 ± 8Ba | 498 ± 16Bb | 549 ± 23Bc | 576 ± 12Ac | |
叶干质量 Leaf dry mass (g·leaf-1) | M | 1.71 ± 0.09Aa | 2.55 ± 0.08Ab | 2.68 ± 0.10Ab | 2.86 ± 0.22Ab |
I-M | 1.19 ± 0.07Ba | 2.66 ± 0.19Ab | 2.68 ± 0.14Ab | 3.02 ± 0.19Ac | |
I-P | 1.44 ± 0.11ABa | 2.90 ± 0.16Bb | 3.30 ± 0.28Bb | 3.62 ± 0.10Bc | |
比叶质量 LMA (g·m-2 ) | M | 55.72 ± 3.97Aa | 54.90 ± 4.22Aa | 54.41 ± 1.87Aa | 51.82 ± 4.94Aa |
I-M | 42.42 ± 5.11Ba | 58.33 ± 2.16Abc | 63.00 ± 3.86Bb | 53.78 ± 4.60Ac | |
I-P | 36.65 ± 2.07Ba | 55.59 ± 4.78Abc | 62.75 ± 2.21Bc | 48.82 ± 3.76Bb | |
单位质量含氮量 Nmass (g·kg-1) | M | 14.55 ± 1.30Aa | 21.62 ± 1.04Ab | 31.02 ± 0.89Ac | 34.04 ± 1.15Ac |
I-M | 15.99 ± 0.71Aa | 23.78 ± 1.03Ab | 31.17 ± 0.76Ac | 34.08 ± 0.80Ac | |
I-P | 18.68 ± 0.86Ba | 24.86 ± 0.66Ab | 32.97 ± 1.23Ac | 37.12 ± 0.49Ac | |
单位面积含氮量 Narea (mg·cm-2) | M | 0.42 ± 0.05Aa | 0.62 ± 0.01Ab | 0.84 ± 0.06Abc | 0.89 ± 0.06Ac |
I-M | 0.34 ± 0.03Aa | 0.69 ± 0.08Ab | 0.82 ± 0.06Ac | 0.92 ± 0.06Ac | |
I-P | 0.36 ± 0.03Aa | 0.72 ± 0.05Ab | 0.91 ± 0.01Ac | 0.93 ± 0.02Ac | |
光合氮利用效率 PNUE (CO2 μmol·g-1·s-1) | M | 49.85 ± 5.24Aa | 32.57 ± 0.48Ab | 32.73 ± 2.37Ab | 32.01 ± 2.39Ab |
I-M | 64.71 ± 6.25Ba | 31.53 ± 2.03Ab | 28.65 ± 0.23Ab | 26.32 ± 5.41Ab | |
I-P | 75.58 ± 5.38Ca | 47.14 ± 5.39Bb | 39.29 ± 5.40Bc | 30.28 ± 2.06Ad |
氮水平 N rate (kg·hm-2) | Pn (%) | Narea (%) | PNUE (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
M | I-M | I-P | M | I-M | I-P | M | I-M | I-P | |
0 (N0) | - | - | - | - | - | - | - | - | - |
125 (N1) | -1.8 | 4.8 | 16.2 | 50.2 | 116.5 | 86.8 | -34.7 | -51.3 | -37.6 |
250 (N2) | 28.8 | 18.8 | 32.5 | 98.6 | 172.1 | 158.6 | -34.3 | -55.7 | -48.0 |
375 (N3) | 27.6 | 28.9 | -3.0 | 101.9 | 174.9 | 173.5 | -35.8 | -59.3 | -59.9 |
表3 不同氮水平对间作玉米净光合速率(Pn)、单位面积叶片含氮量(Narea)及光合氮利用效率(PNUE)的影响
Table 3 Effects of intercropping pattern on net photosynthetic rate (Pn), nitrogen content per unit area (Narea) and photosynthetic nitrogen use efficiency (PNUE) of maize leaves grown under different nitrogen levels
氮水平 N rate (kg·hm-2) | Pn (%) | Narea (%) | PNUE (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
M | I-M | I-P | M | I-M | I-P | M | I-M | I-P | |
0 (N0) | - | - | - | - | - | - | - | - | - |
125 (N1) | -1.8 | 4.8 | 16.2 | 50.2 | 116.5 | 86.8 | -34.7 | -51.3 | -37.6 |
250 (N2) | 28.8 | 18.8 | 32.5 | 98.6 | 172.1 | 158.6 | -34.3 | -55.7 | -48.0 |
375 (N3) | 27.6 | 28.9 | -3.0 | 101.9 | 174.9 | 173.5 | -35.8 | -59.3 | -59.9 |
[1] | Al-Dalain SA ( 2009). Effect of intercropping of zea maize with potato Solanum tuberosum, L. on potato growth and on the productivity and land equivalent ratio of potato and zea maize. Agricultural Journal, 4, 164-170. |
[2] |
Banik P, Sharma RC ( 2009). Yield and resource utilization efficiency in baby corn-legume-intercropping system in the eastern plateau of India. Journal of Sustainable Agriculture, 33, 379-395.
DOI URL |
[3] |
Bindraban PS ( 1999). Impact of canopy nitrogen profile in wheat on growth. Field Crops Research, 63, 63-77.
DOI URL |
[4] | Chen YS, Dai JF, Luo WH, Tai X, Han L, Mi XJ, Ding QF, Pu CX ( 2008). Quantifying the effects of leaf nitrogen concentration on the maximum leaf gross photosynthesis rate of greenhouse cucumber under different radiation and temperature conditions after flowering. Transactions of the Chinese Society of Agricultural Engineering, 24(7), 13-19. |
[ 陈永山, 戴剑锋, 罗卫红, 邰翔, 韩利, 米晓洁, 丁琪峰, 卜崇兴 ( 2008). 叶片氮浓度对温室黄瓜花后叶片最大总光合速率影响的模拟. 农业工程学报, 24(7), 13-19.] | |
[5] |
Cheng L, Fuchigami LH ( 2000). Rubisco activation state decreases with increasing mitogen content in apple leaves. Journal of Experimental Botany, 51, 1687-1694.
DOI URL PMID |
[6] | Chu GH, Zhang JX ( 2016). Effects of nitrogen application on photosynthetic characteristics, yield and nitrogen use efficiency in drip irrigation of super high-yield spring maize. Journal of Maize Sciences, 24(1), 130-136. |
[ 楚光红, 章建新 ( 2016). 施氮量对滴灌超高产春玉米光合特性、产量及氮肥利用效率的影响. 玉米科学, 24(1), 130-136.] | |
[7] |
Ding L, Wang KJ, Jiang GM, Biswas DK, Xu H, Li LF, Li YH ( 2005). Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Annals of Botany, 96, 925-930.
DOI URL |
[8] |
Duan WW, Li HL, Xiao K, Li YM ( 2007). Effects of nitrogen fertilizer on photosynthesis and its physiological and biochemical characteristics in ear-leaf of maize. Acta Agriculture Boreali-Sinica, 22(1), 26-29.
DOI URL |
[ 段巍巍, 李慧玲, 肖凯, 李雁鸣 ( 2007). 氮肥对玉米穗位叶光合作用及其生理生化特性的影响. 华北农学报, 22(1), 26-29.]
DOI URL |
|
[9] | Evans JR ( 1983). Nitrogen and photosynthesis in the flag leaf of wheat ( Triticum aestivum L.). Plant Physiology, 72, 292-302. |
[10] |
Furbank RT, Foyer CH, Walker DA ( 1987). Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 894, 552-561.
DOI URL |
[11] |
Ghallnoum O, Evans JR, Chow WS, Andrews TJ, Conroy JP, von Caemmerer S ( 2005). Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiology, 137, 638-650.
DOI URL |
[12] | Guan YX, Lin B, Ling BY ( 2000). The interactive effects of growth light condition and nitrogen supply on maize ( Zea mays L.) seedling photosynthetic traits and metabolism of carbon and nitrogen. Acta Agronomica Sinica, 26, 806-812. |
[ 关义新, 林葆, 凌碧莹 ( 2000). 光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响. 作物学报, 26, 806-812.] | |
[13] | Huang JY, Li XP, Sun DL ( 2003). Ecophysiological effects of multiple cropping of winter wheat-spring corn-summer corn in Huanghuaihai Plain. Chinese Journal of Applied Ecology, 14, 51-56. |
[ 黄进勇, 李新平, 孙敦立 ( 2003). 黄淮海平原冬小麦-春玉米-夏玉米复合种植模式生理生态效应研究. 应用生态学报, 14, 51-56.] | |
[14] |
Hikosaka K ( 2004). Interspecific difference in the photosynthesis-?nitrogen relationship: Patterns, physiological causes, and ecological importance. Journal of Plant Research, 117, 481-494.
DOI URL |
[15] | Jiao NY, Ning TY, Yang MK, Fu GZ, Yin F, Xu GW, Li ZJ ( 2013 a). Effects of maize‖peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 33, 4324-4330. |
[ 焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉 ( 2013 a). 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 33, 4324-4330.] | |
[16] | Jiao NY, Yang MK, Ning TY, Yin F, Xu GW, Fu GZ, Li YJ ( 2013 b). Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 37, 1010-1017. |
[ 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军 ( 2013b ). 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 37, 1010-1017.] | |
[17] |
Li DD, Tian MY, Cai J, Jiang D, Cao WX, Dai TB ( 2013). Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation, 70, 257-263.
DOI URL |
[18] |
Li DY, Chen ZY, Xu KZ, Zhang ZA, Wu ZH, Ji P, Zhang P ( 2013). Changes of nitrogen content in leaf and its correlations with net photosynthetic rate of soybean cultivars released in different years. Chinese Journal of Oil Crop Sciences, 35, 171-178.
DOI URL |
[ 李大勇, 陈展宇, 徐克章, 张治安, 武志海, 季平, 张鹏 ( 2013). 不同年代大豆品种叶片氮含量及其与净光合速率的关系. 中国油料作物学报, 35, 171-178.]
DOI URL |
|
[19] |
Li G, Gao HY, Liu P, Yang JS, Dong ST, Zhang JW, Wang JF ( 2010). Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage. Plant Nutrition and Fertilizer Science, 16, 536-542.
DOI URL |
[ 李耕, 高辉远, 刘鹏, 杨吉顺, 董树亭, 张吉旺, 王敬锋 ( 2010). 氮素对玉米灌浆期叶片光合性能的影响. 植物营养与肥料学报, 16, 536-542.]
DOI URL |
|
[20] |
Liu T, Lu JW, Ren T, Li XK, Cong RH ( 2016). Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels. Journal of Plant Nutrition and Fertilizer, 22, 518-524.
DOI URL |
[ 刘涛, 鲁剑巍, 任涛, 李小坤, 丛日环 ( 2016). 不同氮水平下冬油菜光合氮利用效率与光合器官氮分配的关系. 植物营养与肥料学报, 22, 518-524.]
DOI URL |
|
[21] |
Li Y ( 2011). Studies on Mechanisms of the Effects of Photosynthesis and photosynthetic Nitrogen Use Efficiency of Rice Plants. PhD dissertation, Nanjing Agricultural University, Nanjing.
DOI URL |
[ 李勇 ( 2011). 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究. 博士学位论文, 南京农业大学, 南京.]
DOI URL |
|
[22] | Lü LH, Zhao M, Zhao JR, Tao HB, Wang P ( 2008). Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 41, 2624-2632. |
[ 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞 ( 2008). 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 41, 2624-2632.] | |
[23] | Ma XL, Zhu QL, Geng CX, Lu ZG, Long GQ, Tang L ( 2017). Contribution of nutrient uptake and utilization on yield advantage in maize and potato intercropping under different nitrogen application rates. Chinese Journal of Applied Ecology, 28, 1265-1273. |
[ 马心灵, 朱启林, 耿川雄, 鲁泽刚, 龙光强, 汤利 ( 2017). 不同氮水平下作物养分吸收与利用对玉米马铃薯间作产量优势的贡献. 应用生态学报, 28, 1265-1273.] | |
[24] |
Mushagalusa GN ( 2008). Shoot and root competition in potato/maize intercropping: Effects on growth and yield. Environmental & Experimental Botany, 64, 180-188.
DOI URL |
[25] |
Pal M, Rao LS, Jain V, Srivastava AC, Pandey R, Raj A, Singh KP . ( 2005). Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biologia Plantarum, 49, 467-470.
DOI URL |
[26] |
Shen LX, Wang P, Zhang RB ( 2005). Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. Plant Nutrition and Fertilizer Science, 11, 314-319.
DOI URL |
[ 申丽霞, 王璞, 张软斌 ( 2005). 施氮对不同种植密度下夏玉米产量及籽粒灌浆的影响. 植物营养与肥料学报, 11, 314-319.]
DOI URL |
|
[27] | Song H, Yang Y, Zhou WX, Zhang YQ, Li HP, Li CH ( 2017). Effects of light, nitrogen and their interaction on photosynthetic traits and matter accumulation of maize. Journal of Maize Sciences, 25(1), 121-126. |
[ 宋航, 杨艳, 周卫霞, 张勇强, 李鸿萍, 李潮海 ( 2017). 光、氮及其互作对玉米光合特性与物质生产的影响. 玉米科学, 25(1), 121-126.] | |
[28] |
Sun NX, Zong XF, Wang SG ( 2005). Effects of nitrogen supply on photosynthetic traits of maize. Journal of Southwest Agricultural University (Natural Science), 27, 389-392.
DOI URL |
[ 孙年喜, 宗学凤, 王三根 ( 2005). 不同供氮水平对玉米光合特性的影响. 西南农业大学学报(自然科学版), 27, 389-392.]
DOI URL |
|
[29] |
Tambussi EA, Nogués S, Araus JL ( 2005). Ear of durum wheat under water stress: Water relations and photosynthetic metabolism. Planta, 221, 446-458.
DOI URL PMID |
[30] |
Vos J, Pelvander P ( 2001). Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts. European Journal of Agronomy, 14, 209-220.
DOI URL |
[31] | Wang D, Yu ZW, Li YQ, Shi GP ( 2007). Effects of nitrogen fertilizer rate on photosynthetic character, sucrose synthesis in flag leaves and grain yield of strong gluten wheat Jimai 20. Acta Agronomica Sinica, 33, 903-908. |
[ 王东, 于振文, 李延奇, 史桂萍 ( 2007). 施氮量对济麦20旗叶光合特性和蔗糖合成及籽粒产量的影响. 作物学报, 33, 903-908.] | |
[32] | Wang S, Yang JF, Han XR, Liu XH, Zhan XM, Liu SG ( 2008). Effect of fertilizer application on photosynthetic traits of spring maize. Soils and Fertilizers Sciences in China,( 6), 23-27. |
[ 王帅, 杨劲峰, 韩晓日, 刘小虎, 战秀梅, 刘顺国 ( 2008). 不同施肥处理对旱作春玉米光合特性的影响. 中国土壤与肥料, ( 6), 23-27.] | |
[33] | Warren CR, Dreyer E, Adams MA ( 2003). Photosynthesis-?Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Tree, 17, 359-366. |
[34] | Xiao JP, Xie WQ, Guo HC ( 2011). Characteristics of photosynthesis and yield in potato intercropping with maize. Chinese Potato, 25, 339-341. |
[ 肖继坪, 颉炜清, 郭华春 ( 2011). 马铃薯与玉米间作群体的光合及产量效应. 中国马铃薯杂志, 25, 339-341.] | |
[35] | Yan YH, Yang WY, Zhang XQ, Chen XL, Chen ZQ ( 2011). Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming. Acta Prataculturae Sinica, 20, 233-238. |
[ 闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群 ( 2011). 施氮量对套作大豆花后光合特性、干物质积累及产量的影响. 草业学报, 20, 233-238.] | |
[36] | Yang LF, Yan JJ, Cai ZC ( 2010). Effects of N-applications and photosynthesis of maize ( Zea mays L.) on soil respiration and its diurnal variation. Frontiers of Agriculture in China, 4, 42-49. |
[37] | Yuan Y, Wu FZ, Zhou XG, Zhang LZ ( 2011). Interactive effect of light intensify and nitrogen supply on photosynthetic characteristics of tomato. Crops, 1(1), 13-16. |
[ 袁野, 吴凤芝, 周新刚, 张丽茁 ( 2011). 光氮互作对番茄光合特性的影响. 作物杂志, 1(1), 13-16.] | |
[38] | Zhang YQ, Wang JD, Gong SH, Sui J ( 2015). Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 31(6), 170-177. |
[ 张彦群, 王建东, 龚时宏, 隋娟 ( 2015). 滴灌条件下冬小麦施氮增产的光合生理响应. 农业工程学报, 31(6), 170-177.] |
[1] | 林雍 陈智 杨萌 陈世苹 高艳红 刘冉 郝彦宾 辛晓平 周莉 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[2] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[3] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[4] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[5] | 司晓林, 王文银, 高小刚, 徐当会. 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响[J]. 植物生态学报, 2016, 40(12): 1238-1244. |
[6] | 唐海萍, 薛海丽, 房飞. 叶片和群落尺度净光合速率关系的探讨[J]. 植物生态学报, 2015, 39(9): 924-931. |
[7] | 杨浩, 罗亚晨. 糙隐子草功能性状对氮添加和干旱的响应[J]. 植物生态学报, 2015, 39(1): 32-42. |
[8] | 彭东海,杨建波,李健,邢永秀,覃刘东,杨丽涛,李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响[J]. 植物生态学报, 2014, 38(9): 959-969. |
[9] | 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报, 2013, 37(2): 111-121. |
[10] | 焦念元,杨萌珂,宁堂原,尹飞,徐国伟,付国占,李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响[J]. 植物生态学报, 2013, 37(11): 1010-1017. |
[11] | 王建林, 温学发, 赵风华, 房全孝, 杨新民. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响[J]. 植物生态学报, 2012, 36(5): 438-446. |
[12] | 陈卫英, 陈真勇, 罗辅燕, 彭正松, 余懋群. 光响应曲线的指数改进模型与常用模型比较[J]. 植物生态学报, 2012, 36(12): 1277-1285. |
[13] | 孙东宝, 王庆锁. 水分对苜蓿叶片光合特性的影响[J]. 植物生态学报, 2012, 36(1): 72-80. |
[14] | 夏江宝, 张光灿, 孙景宽, 刘霞. 山杏叶片光合生理参数对土壤水分和光照强度的阈值效应[J]. 植物生态学报, 2011, 35(3): 322-329. |
[15] | 魏雅芬, 方杰, 赵学勇, 李胜功. 科尔沁沙地樟子松人工林不同年龄针叶生理生态性状[J]. 植物生态学报, 2011, 35(12): 1271-1280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19