植物生态学报 ›› 2023, Vol. 47 ›› Issue (12): 1728-1738.DOI: 10.17521/cjpe.2022.0339
所属专题: 微生物生态学
陈林康1,2, 赵平1, 王顶1,2, 向蕊1, 龙光强1,*()
收稿日期:
2022-08-22
接受日期:
2022-10-31
出版日期:
2023-12-20
发布日期:
2022-11-02
通讯作者:
*(ynaulong2316@163.com)
基金资助:
CHEN Lin-Kang1,2, ZHAO Ping1, WANG Ding1,2, XIANG Rui1, LONG Guang-Qiang1,*()
Received:
2022-08-22
Accepted:
2022-10-31
Online:
2023-12-20
Published:
2022-11-02
Contact:
*(ynaulong2316@163.com)
Supported by:
摘要:
有机残体混合分解对陆地生态系统物质循环至关重要, 但关于农田生态系统中混合秸秆分解过程的研究仍较缺乏。该研究在玉米(Zea mays)单作、马铃薯(Solanum tuberosum)单作和玉米马铃薯间作小区实验中, 设置了为期6个月的玉米秸秆、马铃薯秸秆和玉米马铃薯混合秸秆分解袋填埋实验, 通过Biolog-Eco微平板法分析秸秆类型和分解环境对秸秆微生物碳代谢活性的影响。结果表明, 马铃薯秸秆和玉米秸秆混合对分解过程产生了协同效应, 混合秸秆的分解率和微生物代谢活性高于单一秸秆, 增加了微生物对碳水化合物和羧酸类底物的利用。这种协同效应随时间延长而削弱。随机森林模型和结构方程模型分析表明, 土壤中溶解性有机碳、硝态氮、铵态氮含量以及秸秆碳氮比是驱动秸秆分解的重要因素。总之, 秸秆混合促进秸秆分解。
陈林康, 赵平, 王顶, 向蕊, 龙光强. 玉米马铃薯秸秆混合腐解的非加性效应. 植物生态学报, 2023, 47(12): 1728-1738. DOI: 10.17521/cjpe.2022.0339
CHEN Lin-Kang, ZHAO Ping, WANG Ding, XIANG Rui, LONG Guang-Qiang. Non-additive effect of mixed decomposition of maize and potato straw. Chinese Journal of Plant Ecology, 2023, 47(12): 1728-1738. DOI: 10.17521/cjpe.2022.0339
秸秆类型 Straw type | 全氮(N)含量 Total nitrogen (N) content (g·kg-1) | 全钾含量 Total potassium content (g·kg-1) | 全碳(C)含量 Total carbon (C) content (g·kg-1) | 全磷含量 Total phosphorus content (g·kg-1) | C:N |
---|---|---|---|---|---|
MS | 7.96 | 5.69 | 405.11 | 2.02 | 50.92 |
PS | 9.66 | 17.70 | 360.01 | 2.41 | 37.27 |
表1 玉米秸秆(MS)和马铃薯秸秆(PS)原样基本性质
Table 1 Basic chemical properties of Zea mays (MS) and Solanum tuberosum straw (PS) before decomposition
秸秆类型 Straw type | 全氮(N)含量 Total nitrogen (N) content (g·kg-1) | 全钾含量 Total potassium content (g·kg-1) | 全碳(C)含量 Total carbon (C) content (g·kg-1) | 全磷含量 Total phosphorus content (g·kg-1) | C:N |
---|---|---|---|---|---|
MS | 7.96 | 5.69 | 405.11 | 2.02 | 50.92 |
PS | 9.66 | 17.70 | 360.01 | 2.41 | 37.27 |
分解环境 Decomposition environmental | pH | 土壤有机质含量 SOM content (g·kg-1) | 全氮含量 TN content (g·kg-1) | 全钾含量 TK content (g·kg-1) | 全磷含量 TP content (g·kg-1) | 速效钾含量 AK content (mg·kg-1) | 速效磷含量 AP content (mg·kg-1) | 硝态氮含量 Nitrate nitrogen content (mg·kg-1) | 铵态氮含量 Ammonium nitrogen content (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
间作 Intercropping | 7.3 | 22.88 | 1.72 | 12.99 | 0.17 | 130.11 | 4.33 | 7.54 | 2.52 |
玉米单作 Maize monoculture | 7.5 | 23.64 | 1.46 | 16.44 | 0.24 | 149.84 | 4.52 | 10.76 | 2.35 |
马铃薯单作 Potato monoculture | 7.6 | 20.95 | 1.06 | 12.29 | 0.20 | 121.99 | 5.30 | 7.87 | 2.37 |
表2 秸秆填埋前田间实验小区土壤基本化学性质
Table 2 Basic chemical properties of soils in the experiment field before straw imbedding
分解环境 Decomposition environmental | pH | 土壤有机质含量 SOM content (g·kg-1) | 全氮含量 TN content (g·kg-1) | 全钾含量 TK content (g·kg-1) | 全磷含量 TP content (g·kg-1) | 速效钾含量 AK content (mg·kg-1) | 速效磷含量 AP content (mg·kg-1) | 硝态氮含量 Nitrate nitrogen content (mg·kg-1) | 铵态氮含量 Ammonium nitrogen content (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
间作 Intercropping | 7.3 | 22.88 | 1.72 | 12.99 | 0.17 | 130.11 | 4.33 | 7.54 | 2.52 |
玉米单作 Maize monoculture | 7.5 | 23.64 | 1.46 | 16.44 | 0.24 | 149.84 | 4.52 | 10.76 | 2.35 |
马铃薯单作 Potato monoculture | 7.6 | 20.95 | 1.06 | 12.29 | 0.20 | 121.99 | 5.30 | 7.87 | 2.37 |
图1 秸秆分解袋填埋示意图。MS, 玉米秸秆; PS, 马铃薯秸秆; XS, 混合秸秆。
Fig. 1 Schematic diagram of straw decomposition bag placement. MS, maize straw; PS, potato straw; XS, mixed straw.
分解环境 Decomposition environment | 分解3个月 Decompose 3 months | 分解6个月 Decompose 6 months |
---|---|---|
间作 Intercropping | 13.97% | -0.01% |
玉米单作 Maize monoculture | 17.23% | 8.01% |
马铃薯单作 Potato monoculture | 11.27% | 13.73% |
表3 不同分解环境中混合秸秆的非加性效应
Table 3 Non-additive effects of mixed straw under different decomposition environments
分解环境 Decomposition environment | 分解3个月 Decompose 3 months | 分解6个月 Decompose 6 months |
---|---|---|
间作 Intercropping | 13.97% | -0.01% |
玉米单作 Maize monoculture | 17.23% | 8.01% |
马铃薯单作 Potato monoculture | 11.27% | 13.73% |
图2 不同时期秸秆分解率变化(平均值±标准差)。I, 玉米马铃薯间作; M, 玉米单作; P, 马铃薯单作。MS, 玉米秸秆; PS, 马铃薯秸秆; XS, 混合秸秆。不同大写字母表示不同分解环境同种秸秆分解率差异显著; 不同小写字母表示不同秸秆同一分解环境下秸秆分解率差异显著; 星号表示不同秸秆间分解率差异显著(**, p < 0.01; ***, p < 0.001)。
Fig. 2 Change of straw decomposition rate during different periods (mean ± SD). I, maize and potato intercropping; M, maize monoculture; P, potato monoculture. MS, maize straw; PS, potato straw; XS, mixed straw. Different uppercase letters in the figure indicate significant differences in decomposition rates of the same straw between different decomposition environments; different lowercase letters indicate that the decomposition rates of different straw under the same decomposition environment are significantly different; asterisks indicate significant differences in decomposition rates among different straw types (**, p < 0.01; ***, p < 0.001).
指标 Index | 秸秆类型 Straw type | 分解3个月 Decompose 3 months | 分解6个月 Decompose 6 months | ||||
---|---|---|---|---|---|---|---|
I | M | P | I | M | P | ||
AWCD | XS | 1.88 ± 0.08Aa | 1.57 ± 0.09Ba | 1.62 ± 0.05Ba | 0.96 ± 0.18Bab | 1.68 ± 0.17Aa | 1.71 ± 0.22Aa |
MS | 1.70 ± 0.06Aa | 1.22 ± 0.05Cb | 1.53 ± 0.03Bb | 1.23 ± 0.10Aa | 1.14 ± 0.18Ab | 1.46 ± 0.10Aab | |
PS | 1.73 ± 0.09Aa | 1.64 ± 0.06Aab | 1.50 ± 0.02Bb | 0.88 ± 0.06Bb | 0.91 ± 0.12Bb | 1.29 ± 0.03Ab | |
Simpson指数 Simpson index | XS | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Bab | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa |
MS | 0.96 ± 0.00Ab | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | |
PS | 0.96 ± 0.00Aab | 0.96 ± 0.00Aa | 0.96 ± 0.00Ba | 0.95 ± 0.00Bb | 0.95 ± 0.00Ab | 0.96 ± 0.00Aa | |
Shannon-Wiener指数 Shannon-Wiener index | XS | 3.36 ± 0.00Aa | 3.33 ± 0.03Aa | 3.34 ± 0.01Aa | 3.24 ± 0.04Ba | 3.30 ± 0.02ABa | 3.34 ± 0.03Aa |
MS | 3.33 ± 0.01Ab | 3.34 ± 0.01Aa | 3.34 ± 0.02Aa | 3.27 ± 0.02Aa | 3.30 ± 0.03Ab | 3.29 ± 0.02Aa | |
PS | 3.35 ± 0.01Aab | 3.34 ± 0.01Aa | 3.32 ± 0.00Ba | 3.12 ± 0.05Bb | 3.21 ± 0.01Ab | 3.29 ± 0.04Aa |
表4 培养120 h秸秆降解微生物平均颜色变化率(AWCD)、Simpson指数和Shannon-Wiener指数(平均值±标准差)
Table 4 Average well color development (AWCD), Simpson index and Shannon-Wiener index of straw decomposing microorganism cultured for 120 h (mean ± SD)
指标 Index | 秸秆类型 Straw type | 分解3个月 Decompose 3 months | 分解6个月 Decompose 6 months | ||||
---|---|---|---|---|---|---|---|
I | M | P | I | M | P | ||
AWCD | XS | 1.88 ± 0.08Aa | 1.57 ± 0.09Ba | 1.62 ± 0.05Ba | 0.96 ± 0.18Bab | 1.68 ± 0.17Aa | 1.71 ± 0.22Aa |
MS | 1.70 ± 0.06Aa | 1.22 ± 0.05Cb | 1.53 ± 0.03Bb | 1.23 ± 0.10Aa | 1.14 ± 0.18Ab | 1.46 ± 0.10Aab | |
PS | 1.73 ± 0.09Aa | 1.64 ± 0.06Aab | 1.50 ± 0.02Bb | 0.88 ± 0.06Bb | 0.91 ± 0.12Bb | 1.29 ± 0.03Ab | |
Simpson指数 Simpson index | XS | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Bab | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa |
MS | 0.96 ± 0.00Ab | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | 0.96 ± 0.00Aa | |
PS | 0.96 ± 0.00Aab | 0.96 ± 0.00Aa | 0.96 ± 0.00Ba | 0.95 ± 0.00Bb | 0.95 ± 0.00Ab | 0.96 ± 0.00Aa | |
Shannon-Wiener指数 Shannon-Wiener index | XS | 3.36 ± 0.00Aa | 3.33 ± 0.03Aa | 3.34 ± 0.01Aa | 3.24 ± 0.04Ba | 3.30 ± 0.02ABa | 3.34 ± 0.03Aa |
MS | 3.33 ± 0.01Ab | 3.34 ± 0.01Aa | 3.34 ± 0.02Aa | 3.27 ± 0.02Aa | 3.30 ± 0.03Ab | 3.29 ± 0.02Aa | |
PS | 3.35 ± 0.01Aab | 3.34 ± 0.01Aa | 3.32 ± 0.00Ba | 3.12 ± 0.05Bb | 3.21 ± 0.01Ab | 3.29 ± 0.04Aa |
图3 秸秆微生物对单一碳源的利用率。AA, 氨基酸; AM, 胺类; CA, 羧酸; CH, 碳水化合物; PA, 酚类化合物; PM, 多聚物。I, 玉米马铃薯间作; M, 玉米单作; P, 马铃薯单作。MS, 玉米秸秆; PS, 马铃薯秸秆; XS, 混合秸秆。
Fig. 3 Utilization ratio of single carbon group by straw decomposing microorganisms. AA, amino acid; AM, amine; CA, carboxylic acid; CH, carbohydrate; PA, phenolic compound; PM, polymer. I, intercropping of maize and potato; M, maize monocropping; P, potato monocropping. MS, maize straw; PS, potato straw; XS, mixed straw.
图4 不同秸秆(A、B)和不同分解环境(C、D)下单一碳源利用率(平均值±标准差)。不同小写字母表示不同处理下同种碳源含量差异显著(p < 0.05)。AWCD, 孔平均颜色变化率。AA, 氨基酸; AM, 胺类; CA, 羧酸; CH, 碳水化合物; PA, 酚类化合物; PM, 多聚物。I, 玉米马铃薯间作; M, 玉米单作; P, 马铃薯单作. MS, 玉米秸秆; PS, 马铃薯秸秆; XS, 混合秸秆。
Fig. 4 Utilization ratio of single carbon group for different straw types (A, B) and under different decomposition environment (C, D) (mean ± SD). Different lowercase letters indicate that the content of the same carbon source varies significantly among different treatments (p < 0.05). AWCD, average well color development. AA, amino acid; AM, amine; CA, carboxylic acid; CH, carbohydrate; PA, phenolic compound; PM, polymer. I, intercropping of maize and potato; M, maize monocropping; P, potato monocropping. MS, maize straw; PS, potato straw; XS, mixed straw.
图5 秸秆分解率与单一碳源的相关性热图。SDR, 秸秆分解率。AA, 氨基酸; AM, 胺类; CA, 羧酸; CH, 碳水化合物; PA, 酚类化合物; PM, 多聚物。MS, 玉米秸秆; PS, 马铃薯秸秆; XS, 混合秸秆。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 5 Heat map of correlation between straw decomposition rate and each carbon group. SDR, straw decomposition rate. AA, amino acid; AM, amine; CA, carboxylic acid; CH, carbohydrate; PA, phenolic compound; PM, polymer. MS, maize straw; PS, potato straw; XS, mixed straw. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图6 马铃薯秸秆、玉米秸秆和混合秸秆分解率驱动因素的随机森林回归模型分析。图中仅展示了|均方误差| ≥3.0%的驱动因子。MS, 玉米秸秆; PS, 马铃薯秸秆; XS, 混合秸秆。AN, 铵态氮含量; AP, 速效磷含量; DGA, D-半乳糖醛酸; DL, D,L-a-甘油; DOC, 溶解性有机碳含量; DX, D-木糖; GL, 肝糖; GP, 葡萄糖-1-磷酸盐; I-a, I-赤藻糖醇; NADG, N-乙酰基-D-葡萄胺; NN, 硝态氮含量。*, p < 0.05; **, p < 0.01。
Fig. 6 Random forest regression model analysis on the main driving factors for decomposition rates of potato straw, maize straw and mixed straw. |mean square error| ≥ 3.0% factor was shown in the figure. MS, maize straw; PS, potato straw; XS, mixed straw. AN, ammonium nitrogen content; AP, available phosphorus content; DGA, D-galacturonic acid; DL, D,L-a-glycerol; DOC, dissolved organic carbon content; DX, D-xylose; GL, glycogen; GP, glucose-1-phosphate; I-a, I-alginol; NADG, N-acetyl-D-glucamine; NN, nitrate nitrogen content. *, p < 0.05; **, p < 0.01.
图7 土壤性质、碳源和腐解秸秆碳氮比(C:N)对混合秸秆(A)、玉米秸秆(B)和马铃薯秸秆(C)分解率(SDR)影响的结构方程模型。实线表示负相关(蓝色)和正相关(红色), 虚线表示相关性不显著。AN, 铵态氮含量; DOC, 溶解性有机碳含量; NN, 硝态氮含量。MD, 微生物功能多样性, 用Shannon-Wiener指数和Simpson指数表示; CH, 碳水化合物, 用来I-赤藻糖醇(I-a)和D, L-a-甘油(DL)表示; CG, 碳源。GFI, 拟分优度指数; RMSEA, 均方根近似误差。*, p < 0.05; **, p < 0.01; ***, p < 0.001。PCA1, 马铃薯秸秆中D-木糖、N-乙酰基-D-葡萄胺、葡萄糖-1-磷酸盐、D-半乳糖醛酸和肝糖的第一主成分。
Fig. 7 Structural equation model of the effects of soil properties, carbon group and straw carbon nitrogen ratio (C:N) on decomposition rates (SDR) of mixed straw (A), maize straw (B) and potato straw (C). Solid lines represent negative (blue) and positive (red) correlations, respectively, dashed lines indicate that the correlation is not significant. AN, ammonium nitrogen content; DOC, dissolved organic carbon content; NN, nitrate nitrogen content. MD, microbial functional diversity, expressed by Shannon-Wiener index and Simpson index; CH, carbohydrate, expressed by I-alginol (I-a) and D, L-a-glycerin (DL); CG, carbon group. GFI, goodness-of-fit index; RMSEA, root mean square error of approximation. *, p < 0.05; **, p < 0.01; ***, p < 0.001. PCA1, the first principal components of D-xylose, N-acetyl-D-glucamine, glucose-1-phosphate, D-galacturonic acid and hepatic sugar in potato straw.
[1] | An YM, Wang JK, Huang Y, Xu XM (2016). Determination of cellulose and hemicellulose content in potato stalk. Modern Agricultural Science and Technology, (17), 159-160. |
[ 安玉民, 王菊葵, 黄烨, 徐晓梅 (2016). 马铃薯秸秆中纤维素与半纤维素含量的测定. 现代农业科技, (17), 159- 160.] | |
[2] | Bao SD (2000). Soil and Agriculture Chemical Analysis. China Agricultural Press, Beijing. |
[ 鲍士旦 (2000). 土壤农化分析. 中国农业出版社, 北京.] | |
[3] |
Benito-Carnero G, Gartzia-Bengoetxea N, Arias-González A, Rousk J (2021). Low-quality carbon and lack of nutrients result in a stronger fungal than bacterial home-field advantage during the decomposition of leaf litter. Functional Ecology, 35, 1783-1796.
DOI URL |
[4] | Cuartero J, Pascual JA, Vivo JM, Özbolat O, Sánchez-Navarro V, Egea-Cortines M, Zornoza R, Mena MM, Garcia E, Ros M (2022). A first-year melon/cowpea intercropping system improves soil nutrients and changes the soil microbial community. Agriculture, Ecosystems & Environment, 328, 107856. DOI: 10.1016/j.agee.2022.107856. |
[5] | Curtright AJ, Tiemann LK (2021). Intercropping increases soil extracellular enzyme activity: a meta-analysis. Agriculture, Ecosystems & Environment, 319, 107489. DOI: 10.1016/ j.agee.2021.107489. |
[6] |
Fanin N, Fromin N, Bertrand I (2016). Functional breadth and home-field advantage generate functional differences among soil microbial decomposers. Ecology, 97, 1023- 1037.
PMID |
[7] |
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372- 380.
DOI URL |
[8] |
Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, et al. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218-221.
DOI |
[9] |
Jiang Y, Luan L, Hu K, Liu M, Chen Z, Geisen S, Chen X, Li H, Xu Q, Bonkowski M, Sun B (2020). Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome, 8, 142. DOI: 10.1186/s40168- 020-00918-6.
PMID |
[10] |
Jiang YJ, Qian HY, Wang XY, Chen LJ, Liu MQ, Li HX, Sun B (2018). Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biology & Biochemistry, 119, 22-31.
DOI URL |
[11] |
Keiser AD, Keiser DA, Strickland MS, Bradford MA (2014). Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology, 102, 603-609.
DOI URL |
[12] |
Keiser AD, Strickland MS, Fierer N, Bradford MA (2011). The effect of resource history on the functioning of soil microbial communities is maintained across time. Biogeosciences, 8, 1477-1486.
DOI URL |
[13] | Li C, Liu X, Meng MJ, Zhai L, Zhang B, Jia ZH, Gu ZY, Liu QQ, Zhang YL, Zhang JC (2021). The use of Biolog Eco microplates to compare the effects of sulfuric and nitric acid rain on the metabolic functions of soil microbial communities in a subtropical plantation within the Yangtze River Delta region. Catena, 198, 105039. DOI: 10.1016/ j.catena.2020.105039. |
[14] | Li H, Zhao P, Chen LK, Li LH, Xiang R, Long GQ (2022). Effects of addition of different types of straw on soil CO2 emission and soil chemical properties. Journal of Agro- Environment Science, 41, 909-918. |
[ 李欢, 赵平, 陈林康, 李连华, 向蕊, 龙光强 (2022). 添加不同类型秸秆对土壤CO2排放和化学性质的影响. 农业环境科学学报, 41, 909-918.] | |
[15] |
Li J, Zhou LJ, Lin WF (2019). Calla lily intercropping in rubber tree plantations changes the nutrient content, microbial abundance, and enzyme activity of both rhizosphere and non-rhizosphere soil and Calla lily growth. Industrial Crops and Products, 132, 344-351.
DOI URL |
[16] |
Li Y, Li Q, Yang J, Lü X, Liang W, Han X,Martijn Bezemer T (2017). Home-field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective. Functional Ecology, 31, 1792-1801.
DOI URL |
[17] |
Lin D, Dou P, Yang G, Qian S, Wang H, Zhao L, Yang Y, Mi X, Ma K, Fanin N (2020). Home-field advantage of litter decomposition differs between leaves and fine roots. New Phytologist, 227, 995-1000.
DOI PMID |
[18] | Liu HY, Li GL, Xue DH, Xu HZ, Ye XJ (2013). Determination of cellulose and hemicellulose contents in corn straw using near-infrared spectroscopy. Chinese Agricultural Science Bulletin, 29, 182-186. |
[ 刘会影, 李国立, 薛冬桦, 徐洪章, 叶小金 (2013). 近红外光谱法测定玉米秸秆纤维素和半纤维素含量. 中国农学通报, 29, 182-186.] | |
[19] |
Liu J, Liu X, Song Q, Compson ZG, LeRoy CJ, Luan F, Wang H, Hu Y, Yang Q (2020). Synergistic effects: a common theme in mixed-species litter decomposition. New Phytologist, 227, 757-765.
DOI PMID |
[20] |
Madritch MD, Cardinale BJ (2007). Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA: a multi-site experiment along a latitudinal gradient. Plant and Soil, 292, 147-159.
DOI URL |
[21] |
Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012). Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecology Letters, 15, 1033-1041.
DOI PMID |
[22] |
Makkonen M, Berg MP, van Hal JR, Aerts R (2013). Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos, 122, 987- 997.
DOI URL |
[23] |
Mun S, Lee EJ (2020). Litter decomposition rate and nutrient dynamics of giant ragweed (Ambrosia trifida L.) in the non-native habitat of South Korea. Plant and Soil, 449, 373-388.
DOI |
[24] | Porre RJ, van der Werf W, de Deyn GB, Stomph TJ, Hoffland E (2020). Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biology & Biochemistry, 145, 107791. DOI: 10.1016/j.soilbio.2020.107791. |
[25] |
Prieto I, Almagro M, Bastida F, Querejeta JI (2019). Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. Journal of Ecology, 107, 2364-2382.
DOI |
[26] |
Santonja M, Rancon A, Fromin N, Baldy V, Hättenschwiler S, Fernandez C, Montès N, Mirleau P (2017). Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biology & Biochemistry, 111, 124-134.
DOI URL |
[27] |
Steinwandter M, Schlick-Steiner BC, Steiner FM, Seeber J (2019). One plus one is greater than two: mixing litter types accelerates decomposition of low-quality alpine dwarf shrub litter. Plant and Soil, 438, 405-419.
DOI |
[28] |
Tiunov AV (2009). Particle size alters litter diversity effects on decomposition. Soil Biology & Biochemistry, 41, 176-178.
DOI URL |
[29] |
Veen GFC, Snoek BL, Bakx-Schotman T, Wardle DA, Putten WH (2019). Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Functional Ecology, 33, 1524-1535.
DOI URL |
[30] |
Wang D, Yi WB, Li H, Chen LK, Zhao P, Long GQ (2022). Effects of intercropping and nitrogen application on soil microbial metabolic functional diversity in maize cropping soil. Chinese Journal of Applied Ecology, 33, 793-800.
DOI |
[ 王顶, 伊文博, 李欢, 陈林康, 赵平, 龙光强 (2022). 玉米间作和施氮对土壤微生物代谢功能多样性的影响. 应用生态学报, 33, 793-800.]
DOI |
|
[31] | Wang L, Zhou Y, Chen Y, Xu Z, Zhang J, Liu Y, Joly FX (2022). Litter diversity accelerates labile carbon but slows recalcitrant carbon decomposition. Soil Biology & Biochemistry, 168, 108632. DOI: 10.1016/j.soilbio.2022. 108632. |
[32] | Wang W, Zhang Q, Sun X, Chen D, Insam H, Koide RT, Zhang S (2020). Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biology & Biochemistry, 141, 107690. DOI: 10.1016/j.soilbio.2019.107690. |
[33] | Wang X, Cao X, Liu H, Guo L, Lin Y, Liu X, Xiong Y, Ni K, Yang F (2021). Effects of lactic acid bacteria on microbial metabolic functions of paper mulberry silage, a BIOLOG ECO microplates approach. Frontiers in Microbiology, 12, 689174. DOI: 10.3389/fmicb.2021.689174. |
[34] | Zhang BB, Wan XH, Yang JQ, Wang T, Huang ZQ (2021). Effects of litters different in quality on soil microbial community structure in Cunninghamia lanceolata plantation. Acta Pedologica Sinica, 58, 1040-1049. |
[ 张冰冰, 万晓华, 杨军钱, 王涛, 黄志群 (2021). 不同凋落物质量对杉木人工林土壤微生物群落结构的影响. 土壤学报, 58, 1040-1049.] | |
[35] | Zhang H, Cao YF, Xu WX, Lü JL (2019). Decomposition of plant straws and accompanying variation of microbial communities. Acta Pedologica Sinica, 56, 1482-1492. |
[ 张红, 曹莹菲, 徐温新, 吕家珑 (2019). 植物秸秆腐解特性与微生物群落变化的响应. 土壤学报, 56, 1482-1492.] | |
[36] | Zhang H, Lü JL, Cao YF, Xu WX (2014). Decomposition characteristics of different plant straws and soil microbial functional diversity. Acta Pedologica Sinica, 51, 743-752. |
[ 张红, 吕家珑, 曹莹菲, 徐温新 (2014). 不同植物秸秆腐解特性与土壤微生物功能多样性研究. 土壤学报, 51, 743-752.] | |
[37] |
Zhou S, Butenschoen O, Barantal S, Handa IT, Makkonen M, Vos V, Aerts R, Berg MP, McKie B, van Ruijven J, Hättenschwiler S, Scheu S (2020). Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. Journal of Ecology, 108, 2283- 2297.
DOI URL |
[1] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[2] | 彭东海,杨建波,李健,邢永秀,覃刘东,杨丽涛,李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响[J]. 植物生态学报, 2014, 38(9): 959-969. |
[3] | 焦念元,杨萌珂,宁堂原,尹飞,徐国伟,付国占,李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响[J]. 植物生态学报, 2013, 37(11): 1010-1017. |
[4] | 刘天学, 李潮海, 马新明, 赵霞, 刘士英. 不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响[J]. 植物生态学报, 2008, 32(4): 914-921. |
[5] | 刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献[J]. 植物生态学报, 2008, 32(2): 477-484. |
[6] | 吴刚, 冯宗炜, 秦宜哲. 果粮间作生态系统功能特征研究[J]. 植物生态学报, 1994, 18(3): 243-252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19