植物生态学报 ›› 2013, Vol. 37 ›› Issue (5): 443-453.DOI: 10.3724/SP.J.1258.2013.00046

所属专题: 红树林及红树植物

• 研究论文 • 上一篇    下一篇

NaCl处理下两种引进红树的光合及抗氧化防御能力

陈坚1,李妮亚1,*(),刘强1,钟才荣2,黄敏1,曾佳1   

  1. 1海南师范大学生命科学学院, 海口 571158
    2海南东寨港国家级自然保护区管理局, 海口 571129
  • 发布日期:2013-05-16
  • 通讯作者: 李妮亚
  • 基金资助:
    海南省自然科学基金(211017);海南师范大学植物学重点学科项目(HS-1-2011- 071001);国家自然科学基金(31160150)

Antioxidant defense and photosynthesis for non-indigenous mangrove species Sonneratia apetala and Laguncularia racemosa under NaCl stress

CHEN Jian1,LI Ni-Ya1,*(),LIU Qiang1,ZHONG Cai-Rong2,HUANG Min1,ZENG Jia1   

  1. 1College of Life Sciences, Hainan Normal University, Haikou 571158, China
    2Administration Bureau of Dongzhai Harbor National Nature Reserve, Haikou 571129, China
  • Published:2013-05-16
  • Contact: LI Ni-Ya

摘要:

在长期盐胁迫(28天, NaCl浓度从100 mmol·L-1升至400 mmol·L-1)下, 比较研究了引进的无瓣海桑(Sonneratia apetala)和拉关木(Laguncularia racemosa)幼苗叶片的气体交换、叶绿素含量、最大光化学效率(Fv/Fm)、O2-· 产生速率以及抗氧化酶的活性, 探讨了两种红树幼苗光合、抗氧化防御能力的差异与耐盐性的关系。结果显示: NaCl处理没有明显地影响两种红树幼苗的生长, 表明盐生植物对盐环境的适应性, 但两种红树的生理反应对NaCl处理存在较大的差异。在实验的第28天(苗木的NaCl累计处理浓度递增到400 mmol·L-1)时, 与对照相比, 无瓣海桑叶片的净光合速率、水分利用效率增加, 气孔导度、蒸腾速率和胞间CO2浓度/大气CO2浓度(Ci/Ca)相应降低; 然而, 拉关木叶的净光合速率、蒸腾速率和水分利用效率均回落到对照的水平, 而气孔导度和Ci/Ca均增加, 表明同样的NaCl浓度处理对拉关木叶的净光合速率影响大于无瓣海桑。在NaCl处理期间, 无瓣海桑Fv/Fm一直保持在0.8以上, 而拉关木的Fv/Fm为0.75以下, 说明无瓣海桑具有高于拉关木的潜在最大光合能力。在实验的第7天(NaCl浓度为100 mmol·L-1)和14天(苗木的NaCl累计处理浓度递增到200 mmol·L-1)时, 两种红树O2-· 产生速率迅速增加, 在实验的第28天(苗木的NaCl累计处理浓度递增到400 mmol·L-1)时, 无瓣海桑O2-· 产生速率是对照的5.3倍, 差异极显著, 此时, 拉关木叶中O2-· 产生速率已降低到低于对照的水平。盐处理诱导了两种红树叶中抗氧化酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、过氧化物酶(POD))活性增加, 但拉关木增加的幅度大于无瓣海桑, 表明拉关木能响应盐胁迫并上调抗氧化酶活性, 降低盐诱导的膜脂过氧化, 提高耐盐的能力, 无瓣海桑通过提高水分利用效率来保持体内的水分, 同时, 保持PSII的最大光化学量子产量, 使得无瓣海桑在高盐处理时仍能保持高于对照水平的光合速率。

关键词: 抗氧化酶, 气体交换, 拉关木, 盐胁迫, 无瓣海桑

Abstract:

Aims Sonneratia apetala, a native mangrove species in India, Bengal and Sri-Lanka, was introduced in 1985 to Dongzhaigang Mangrove Nature Reserve in Hainan Island, China from Sundarban, southwest of Bangladesh. Laguncularia racemosa, another mangrove species from Mexico was introduced to the same reserve in 1999. Our objective was to investigate the salinity tolerance mechanism of S. apetala and L. racemosa in order to elucidate adaptive strategies of the halophytes in stressful saline habitat.
Methods We investigated the effects of increasing soil NaCl (100-400 mmol·L-1) on gas exchange, O2-· production rate, activity of antioxidant enzymes, and the relevance to salt tolerance over four weeks in 1-year-old seedlings of S. apetala and L. racemosa.
Important findings
Seedlings of the two mangrove species acclimated to different salinity levels through changing physiological and morphological traits. However, there were significant differences between S. apetala and L. racemosa in photosynthesis and anti-oxidant defense under salt stress. Increasing NaCl stress significantly elevated net photosynthetic rate (Pn), and stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) decreased. As a result, water use efficiency (WUE) increased in leaves of S. apetala seedlings. But L. racemosa showed a rapid increase of Pn in the initiation of salt stress, and Pn remained lower than control levels at the end of the experiment. As a result, Ci and Gs increase with the decrease of Pn, Tr and WUE. The reduction occurred after exposure of L. racemosa seedlings to severe salinity, 400 mmol·L-1 NaCl (28 d). These results indicated that the inhibitory effects of severe salinity were more pronounced in L. racemosa under the same salinity. Moreover, the magnitude of variation of S. apetala maximum photochemical efficiency of PSII (Fv/Fm) was significantly less than that of L. racemosa leaves. We speculated that photosynthetic capacity of S. apetala was higher than L. racemosa. O2-· production rate markedly increased after the two seedlings were subjected to 100 mmol·L-1 NaCl and 200 mmol·L-1 NaCl for 7 days and 14 days, respectively. However, O2-· production rate in S. apetala leaves markedly increased upon increasing salinity and reached the highest level after seedlings were subjected to 400 mmol·L-1 NaCl for 28 days, which was 5.3 fold of that in controls. In contrast to S. apetala, O2 -· production rate in L. racemosa leaves remained lower than control levels at the end of the experiment. Activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and glutathione reductase (GR) was elevated corresponding to the increased O2-· production in the salt-stressed two mangrove plants; however, the magnitude of increase of L. racemosa antioxidant enzyme activities was significantly greater than that of S. apetala, during the period of salt stress. We suggest that L. racemosa plants were able to sense salt stress and up-regulated the antioxidant enzymes to reduce salt-induced lipid peroxidation and membrane permeability, which contributed to maintenance of membrane integrity and salt tolerance in L. racemosa. Sonneratia apetala seedlings might adapt resistance to severe salinity through improving photosynthesis by higher WUE and maximum photochemical efficiency of PSII (Fv/Fm).

Key words: antioxidant enzyme, gas exchange, Laguncularia racemosa, salt stress, Sonneratia apetala