植物生态学报 ›› 2016, Vol. 40 ›› Issue (12): 1298-1309.DOI: 10.17521/cjpe.2016.0012
孔庆仙1,2, 夏江宝2,*, 赵自国2, 屈凡柱2
出版日期:
2016-12-31
发布日期:
2016-12-30
通讯作者:
夏江宝
基金资助:
Qing-Xian KONG1,2, Jiang-Bao XIA2,*, Zi-Guo ZHAO2, Fan-Zhu QU2
Online:
2016-12-31
Published:
2016-12-30
Contact:
Jiang-Bao XIA
摘要:
为揭示柽柳(Tamarix chinensis)光合能力及耗水特征对地下水矿化度的响应规律, 以黄河三角洲建群种——柽柳3年生植株为研究对象, 在1.2 m的潜水水位下, 模拟设置淡水、微咸水、咸水和盐水4种不同的地下水矿化度, 测定柽柳叶片光合-光响应、蒸腾速率和树干液流的日变化。结果表明: 地下水矿化度通过影响土壤盐分可显著影响柽柳光合特性及耗水性能。随地下水矿化度升高, 柽柳叶片净光合速率(Pn)、最大Pn、蒸腾速率、气孔导度、表观量子效率和暗呼吸速率均先升高后降低, 而水分利用效率(WUE)持续降低。淡水、微咸水和盐水处理下, 柽柳Pn光响应平均值分别比咸水处理降低44.1%、15.1%和62.6%; 微咸水、咸水和盐水处理下, 柽柳WUE光响应平均值分别比淡水处理降低25.0%、29.2%和41.7%。随地下水矿化度升高, 柽柳叶片光饱和点先升高后降低, 而光补偿点持续升高, 光照生态幅变窄, 光能利用率变低。淡水和盐水处理下, 柽柳Pn下降分别是非气孔限制和气孔限制引起的。柽柳树干液流速率随地下水矿化度升高而先升高后降低, 咸水处理下树干液流速率日变幅最大, 日液流量最高。淡水、微咸水和盐水处理下日液流速率平均值分别比咸水处理降低61.8%、13.1%和41.9%。咸水矿化度下柽柳有较高的光合特性, 在蒸腾耗水较严重的情况下可实现高效生理用水, 适宜柽柳较好地生长。
孔庆仙, 夏江宝, 赵自国, 屈凡柱. 不同地下水矿化度对柽柳光合特征及树干液流的影响. 植物生态学报, 2016, 40(12): 1298-1309. DOI: 10.17521/cjpe.2016.0012
Qing-Xian KONG, Jiang-Bao XIA, Zi-Guo ZHAO, Fan-Zhu QU. Effects of groundwater salinity on the characteristics of leaf photosynthesis and stem sap flow in Tamarix chinensis. Chinese Journal of Plant Ecology, 2016, 40(12): 1298-1309. DOI: 10.17521/cjpe.2016.0012
图1 不同地下水矿化度栽植柽柳的土柱模拟示意图和实景图。 A, 土柱模拟示意图。 B, 土柱试验照片。1, 柽柳; 2, 土壤; 3, 地下水; 4, 淹水区550 mm; 5, 潜水水位1200 mm; 6, 空隙层30 mm。
Fig. 1 Schematic diagram and photo of soil columns with Tamarix chinensis under different groundwater salinity. A, Schematic of soil column. B, Photo of experiment with soil columns. 1, Tamarix chinensis; 2, soil; 3, groundwater; 4, flooding depth at 550 mm; 5, groundwater level at 1200 mm; 6, interstice layer of 30 mm.
地下水矿化度 Groundwater salinity | 淡水 Fresh water | 微咸水 Brackish water | 咸水 Saline water | 盐水 Salt water |
---|---|---|---|---|
土壤含盐量 Soil salt content (%) | 0.11 ± 0.07a | 0.49 ± 0.14b | 1.05 ± 0.17c | 1.17 ± 0.13d |
土壤含水量 Soil water content (%) | 17.31 ± 5.46a | 18.33 ± 4.73a | 19.53 ± 5.40a | 17.47 ± 6.22a |
土壤溶液绝对浓度 Absolute concentration in soil solution (%) | 0.64 ± 0.01a | 2.67 ± 0.03b | 5.38 ± 0.03c | 6.70 ± 0.02d |
表1 不同地下水矿化度下土壤水盐特征(平均值±标准误差, n = 3)
Table 1 Characteristics of soil water and salt parameters under different groundwater salinity (mean ± SE, n = 3)
地下水矿化度 Groundwater salinity | 淡水 Fresh water | 微咸水 Brackish water | 咸水 Saline water | 盐水 Salt water |
---|---|---|---|---|
土壤含盐量 Soil salt content (%) | 0.11 ± 0.07a | 0.49 ± 0.14b | 1.05 ± 0.17c | 1.17 ± 0.13d |
土壤含水量 Soil water content (%) | 17.31 ± 5.46a | 18.33 ± 4.73a | 19.53 ± 5.40a | 17.47 ± 6.22a |
土壤溶液绝对浓度 Absolute concentration in soil solution (%) | 0.64 ± 0.01a | 2.67 ± 0.03b | 5.38 ± 0.03c | 6.70 ± 0.02d |
图2 不同地下水矿化度下柽柳叶片净光合速率的光响应曲线(平均值±标准误差, n = 3)。
Fig. 2 Light response curves of net photosynthetic rate in leaves of Tamarix chinensis under different groundwater salinities (mean ± SE, n = 3).
地下水矿化度 Groundwater salinity | 表观量子效率 Apparent quantum yield (mol∙mol-1) | 最大净光合速率 Maximum net photosynthetic rate (μmol∙m-2∙s-1) | 暗呼吸速率 Dark respiration rate (mmol∙m-2∙s-1) | 光补偿点 Light compensation point (µmol∙m-2∙s-1) | 光饱和点 Light saturation point (µmol∙m-2∙s-1) |
---|---|---|---|---|---|
淡水 Fresh water | 0.042 ± 0.001 9c | 25.58 ± 1.15c | 0.19 ± 0.02d | 20.14 ± 0.99d | 1181 ± 57c |
微咸水 Brackish water | 0.085 ± 0.004 0b | 38.33 ± 1.72b | 0.96 ± 0.05c | 31.32 ± 1.53c | 1441 ± 69a |
咸水 Saline water | 0.104 ± 0.005 5a | 45.96 ± 2.07a | 2.37 ± 0.11a | 53.19 ± 2.60b | 1258 ± 60b |
盐水 Salt water | 0.036 ± 0.001 9d | 18.06 ± 0.82d | 1.54 ± 0.07b | 63.35 ± 3.10a | 1241 ± 59b |
表2 柽柳叶片光合光响应参数(平均值±标准误, n=3)
Table 2 Light response parameters of photosynthesis of Tamarix chinensis (mean ± SE, n = 3)
地下水矿化度 Groundwater salinity | 表观量子效率 Apparent quantum yield (mol∙mol-1) | 最大净光合速率 Maximum net photosynthetic rate (μmol∙m-2∙s-1) | 暗呼吸速率 Dark respiration rate (mmol∙m-2∙s-1) | 光补偿点 Light compensation point (µmol∙m-2∙s-1) | 光饱和点 Light saturation point (µmol∙m-2∙s-1) |
---|---|---|---|---|---|
淡水 Fresh water | 0.042 ± 0.001 9c | 25.58 ± 1.15c | 0.19 ± 0.02d | 20.14 ± 0.99d | 1181 ± 57c |
微咸水 Brackish water | 0.085 ± 0.004 0b | 38.33 ± 1.72b | 0.96 ± 0.05c | 31.32 ± 1.53c | 1441 ± 69a |
咸水 Saline water | 0.104 ± 0.005 5a | 45.96 ± 2.07a | 2.37 ± 0.11a | 53.19 ± 2.60b | 1258 ± 60b |
盐水 Salt water | 0.036 ± 0.001 9d | 18.06 ± 0.82d | 1.54 ± 0.07b | 63.35 ± 3.10a | 1241 ± 59b |
图3 同地下水矿化度下柽柳叶片蒸腾速率的光响应(平均值±标准误差, n = 3)。
Fig. 3 Light response curves of transpiration rate in leaves of Tamarix chinensis under different groundwater salinities (mean ± SE, n = 3).
图4 不同地下水矿化度下柽柳叶片水分利用效率的光响应(平均值±标准误差, n = 3)。
Fig. 4 Light response curves of water use efficiency in leaves of Tamarix chinensis under different groundwater salinities (mean ± SE, n = 3).
图5 不同地下水矿化度下柽柳叶片气孔导度(A)、胞间CO2浓度(B)和气孔限制值(C)的光响应(平均值±标准误差, n = 3)。
Fig. 5 Light response curves of stomatal conductance (A), intercellular CO2 concentration (B), stomatal limitation (C) in leaves of Tamarix chinensis under different groundwater salinities (mean ± SE, n = 3).
图6 观测期(7月3-5日)不同地下水矿化度下柽柳光合有效辐射、水气压亏缺(A)、蒸腾速率(B)和液流速率(C)的平均日动态(平均值±标准误差, n = 3)。
Fig. 6 The mean daily change of photosynthetically available radiation (PAR), vapor pressure deficit (VPD) (A), transpiration rate (B) and stem sap flow rate (C) in Tamarix chinensis under different groundwater salinities during study period on 3 to 5, July (mean ± SE, n = 3).
1 | Álvarez S, Sánchez-Blanco MJ (2014). Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and iron distribution inCallistemon citrinus. Plant Biology, 16, 757-764. |
2 | An LS, Zhao QS, Ye SY, Liu GQ, Ding XG (2011). Water-salt interactions factors and vegetation effects in the groundwater ecosystem in Yellow River Delta.Advances in Water Science, 22, 689-695.(in Chinese with English abstract)[安乐生, 赵全生, 叶思源, 刘贯群, 丁喜桂 (2011). 黄河三角洲地下水关键水盐因子及其植被效应. 水科学进展, 22, 689-695.] |
3 | Anderson GL, Garruthers RI, Ge SK, Gong P (2005). Monitoring of invasiveTamarix distribution and effects of biological control with airborne hyperspectral remote sensing. International Journal of Remote Sensing, 26, 2487-2489. |
4 | Armas C, Padilla FM, Pugnaire FI, Jackson RB (2010). Hydraulic lift and tolerance to salinity of semiarid species: Consequences for species interactions.Oecologia, 162, 11-21. |
5 | Cao D, Shi FC, Takayoshi K, Lu ZH, Sun JK (2014). Halophyte plant communities affecting enzyme activity and microbes in saline soils of the Yellow River Delta in China. Clean—Soil, Air,Water, 42, 1433-1440. |
6 | Cao JR, Xü YX, Yü HJ, Huang C (2014). Research on the variation and evolution of groundwater chemistry in the Yellow River Delta. Marine Sciences, 38, 78-85.(in Chinese with English abstract)[曹建荣, 徐永兴, 于洪军, 黄翀 (2014). 黄河三角洲浅层地下水化学特征与演化. 海洋科学, 38, 78-85.] |
7 | Cao SK, Feng Q, Si JH, Chang ZQ, Zhuo MC, Xi HY, Su YH (2009). Summary on the plant water use efficiency at leaf lever.Acta Ecological Sinica, 29, 3882-3892.(in Chinese with English abstract)[曹生奎, 冯起, 司建华, 常宗强, 卓玛错, 席海洋, 苏永红 (2009). 植物叶片水分利用效率研究综述. 生态学报, 29, 3882-3892.] |
8 | Chen YP, Chen YN, Xu CC, Li WH (2011). Photosynthesis and water use efficiency of Populus euphratica in response to changing groundwater depth and CO2 concentration. Environmental Earth Sciences, 62, 119-125. |
9 | Cui BS, Tang N, Zhao XS, Bai JH (2009). A management- oriented valuation method to determine ecological water requirement for wetlands in Yellow River Delta of China.Journal for Nature Conservation, 17, 129-141. |
10 | Deng X, Li XM, Zhang XM, Ye WH, Foezki A, Runge M (2003). Studies on gas exchange ofTamarix ramosissima Lbd. Acta Ecologica Sinica, 23, 180-187.(in Chinese with English abstract)[邓雄, 李小明, 张希明, 叶万辉, Andrea Foezki, Michael Runge (2003). 多枝柽柳气体交换特性研究. 生态学报, 23, 180-187.] |
11 | Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis.Annual Review of Plant Physiology, 33, 317-345. |
12 | Glenn EP, Nelson SG, Ambrose B, Martinez K, Soliz D (2012). Comparison of salinity tolerance of threeAtriplex spp. in well-watered and drying soil. Environmental and Experimental Botany, 83, 62-72. |
13 | Gong ZN, Gong HL, Deng W, Zhao WJ (2006). An overview of water movement in groundwater-soil-plant-atmosphere continuum with shallow water table.Journal of Agro-Environment Science, 25, 365-373.(in Chinese with English abstract)[宫兆宁, 宮辉力, 邓伟, 赵文吉 (2006). 浅埋条件下地下水-土壤-植物-大气连续体中水分运移研究规律, 农业环境科学学报, 25, 365-373.] |
14 | Gou S, Miller G (2014). A groundwater-soil-plant-atmosphere continuum approach for modelling water stress, uptake, and hydraulic redistribution in phreatophytic vegetation.Ecohydrology, 7, 1029-1041. |
15 | He Q, Cui BS, Zhao XS, Fu HL (2008). Niches of plant species in wetlands of the Yellow River Delta under gradients of water table depth and soil salinity.Chinese Journal of Applied Ecology, 19, 969-975.(in Chinese with English abstract)[贺强, 崔宝山, 赵欣胜, 付华龄 (2008). 水、盐梯度下黄河三角洲湿地植物种的生态位. 应用生态学报, 19, 969-975.] |
16 | He Q, Cui BS, Zhao XS, Fu HL, Xiong X, Feng GH (2007). Vegetation distribution patterns to the gradients of water depth and soil salinity in wetlands of Yellow River Delta, China.Wetland Science, 5, 208-214.(in Chinese with English abstract)[贺强, 崔保山, 赵欣胜, 付华龄, 雄熊, 冯光海 (2007). 水盐梯度下黄河三角洲湿地植被空间分异规律的定量分析. 湿地科学, 5, 208-214.] |
17 | Jin Y, Wang CK, Sang Y (2011). Contribution of stem water storage to daily transpiration of three temperate trees in northeastern China.Chinese Journal of Plant Ecology, 35, 1310-1317.(in Chinese with English abstract)[金鹰, 王传宽, 桑英 (2011). 三种温带树种树干储存水对蒸腾的贡献. 植物生态学报, 35, 1310-1317.] |
18 | Li J, Yu B, Zhao C, Nowak RS, Zhao Z, Sheng Y, Li J (2013). Physiological and morphological responses ofTamarix ramosissima and Populus euphratica to altered groundwater availability. Tree Physiology, 33, 57-68. |
19 | Li ZW, Ma TY, Liang GT, Guo J (2014). Photosynthesis in leaves ofMedicago truncatula under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 34, 2070-2077.(in Chinese with English abstract)[李紫薇, 马天意,梁国婷, 国静 (2014). 蒺藜苜蓿叶片光合作用对盐胁迫的响应. 西北植物学报, 34, 2070-2077.] |
20 | Liu X, Zhang JC, Zhuang JY, Gu ZY, Han C, Wu YW (2014). Impact factors of sap flow of Chinese fir sapling and its contribution to transpiration of Chinese fir forest.Bulletin of Soil and Water Conservation, 34(6), 73-78.(in Chinese with English abstract)[刘鑫, 张金池, 庄家尧, 顾哲衍, 韩诚, 吴雁雯 (2014). 杉木幼树树干液流影响因子及其对杉木林蒸腾量的贡献. 水土保持通报, 34(6), 73-78.] |
21 | Liu YJ, He KN, Wang LW, Wang H, Xu T, Wang Y (2015). Effect of salt stress on diurnal variation of photosynthesis ofNitraria tangutorum and Tamarix chinensis. Chinese Agricultural Science Bulletin, 31, 6-12.(in Chinese with English abstract)[刘玉娟, 贺康宁, 王伟路, 王辉, 徐特, 王颖 (2015). 盐胁迫对柽柳和白刺光合日变化的影响. 中国农学通报, 31, 6-12.] |
22 | Ma JX, Chen YN, Li WH, Huang X, Zhu CG, Ma XD (2010). Response of sap flow inPopulus euphratica to changes in groundwater depth in the middle and lower reaches of the Tarim River of northwestern China. Chinese Journal of Plant Ecology, 34, 915-923.(in Chinese with English abstract)[马建新, 陈亚宁, 李卫红, 黄湘, 朱成刚, 马晓东 (2010). 胡杨液流对地下水埋深变化的响应. 植物生态学报, 34, 915-923.] |
23 | Ma YL, Wang D, Liu JM, Wen XH, Gao M, Shao HB (2013). Relationships between typical vegetations, soil salinity, and groundwater depth in the Yellow River Delta of China.Chinese Journal of Applied Ecology, 24, 2423-2430.(in Chinese with English abstract)[马玉蕾, 王德, 刘俊民, 温小虎, 高猛, 邵宏波 (2013). 黄河三角洲典型植被与地下水埋深和土壤盐分的关系. 应用生态学报, 24, 2423-2430.] |
24 | Mi WJ, Liu KD, Zhao YG, Zheng CX, Shi C, Hao JQ, Lü K (2011). Initial selection of plant species for ecological restoration in salinized soil in Datong Basin.Journal of Beijing Forestry University, 33(1), 49-54.(in Chinese with English abstract)[米文精, 刘克东, 赵永刚, 郑彩霞, 时朝, 郝建卿, 吕坤 (2011). 大同盆地盐碱地生态修复利用植物的初步选择. 北京林业大学学报, 33(1), 49-54.] |
25 | Ni GY, Zhao P, Zhu LW, Niu JF, Zhao XH, Zeng XP (2015). Hydraulic responses of whole tree transpiration of Schima superba to soil moisture in dry and wet seasons. Acta Ecologica Sinica, 35, 652-662.(in Chinese with English abstract)[倪广艳, 赵平, 朱丽薇, 牛俊峰, 赵秀华, 曾小平 (2015). 荷木整树蒸腾对干湿季土壤水分的水力响应. 生态学报, 35, 652-662.] |
26 | Nijs I, Ferris R, Blum H, Hendrey G, Impens I (1997). Stomatal regulation in a changing climate: A field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE).Plant, Cell & Environment, 20, 1041-1050. |
27 | Qin J, Dong WY, He KN, Yu Y, Tan GD, Han L, Dong M, Zhang YY, Zhang D, Li AZ, Wang ZL (2010). NaCl salinity-induced changes in water status, iron contents and photosynthetic properties ofShepherdia argentea (Pursh) Nutt. seedings. Plant Soil Environment, 56, 325-332. |
28 | Rong LS, Liu GH, Shu LC, Song CY, Huang C (2010). Study on ecologic water lever cover depth in Yellow River Delta.Water Resource and Power, 28(6), 92-95, 148.(in Chinese with English abstract)[荣丽杉, 刘高焕, 束龙仓, 宋创业, 黄翀 (2010). 黄河三角洲地下水生态水位埋深研究. 水电能源科学, 28(6), 92-95, 148.] |
29 | Sanchez E, Scordia D, Lino C, Arias C, Cosentino SL, Nogues S (2015). Salinity and water stress effects on biomass production in differentArundo donax L. Clones. Bioenergy Research, 8, 1461-1479. |
30 | Scholander PF, Bradstreet ED, Hammel HT, Hemmingsen EA (1996). Sap concentrations in halophytes and some other plants.Plant Physiology, 41, 529-532. |
31 | Singh V, Brar MS, Sharma P, Malhi SS (2010). Arsenic in water, soil, and rice plants in the Indo-Gangetic plains of northwestern India.Communication in Soil Science and Plant Analysis, 41, 1350-1360. |
32 | Su H, Li YG, Su BY, Sun JX (2012). Effects of groundwater decline on photosynthetic characteristic and stress tolerance ofUlmus pumila in Hunshandake Sandy Land, China. Chinese Journal of Plant Ecology, 36, 178-186.(in Chinese with English abstract)[苏华, 李永庚, 苏本营, 孙建新 (2012). 地下水位下降对浑善达克沙地榆树光合及抗逆性的影响. 植物生态学报, 36, 178-186.] |
33 | Wang H, Zhao P, Holscher D, Wang Q, Lu P, Cai XA, Zeng XP (2012). Nighttime sap flow ofAcacia mangium and its implications for nighttime transpiration and stem water storage. Journal of Plant Ecology, 5, 294-304. |
34 | Wang P, Zhao CY, Li J (2012). Effects of groundwater depth and mineralization degree on photosynthesis and growth ofTamarix ramosissima seedlings. Bulletin of Soil and Water Conservation, 32(2), 84-89.(in Chinese with English abstract)[王鹏, 赵成义, 李君 (2012). 地下水埋深及矿化度对多枝柽柳幼苗光合特性及生长的影响. 水土保持通报, 32(2), 84-89.] |
35 | Wang W, Wang RQ, Yuan YF, Du N, Guo WH (2011). Effects of salt and water stress on plant biomass and photosynthetic characteristics of Tamarix (Tamarix chinensis L.) seedlings. Africa Journal of Biotechnical, 10, 17981-17989. |
36 | Wang WH, Zhang XM, Yan HL, Ling SM, Yang XL (2009). Effects of salt stress on photosynthetic and osmoregulation substances ofTamarix ramosissima Ledeb. Arid Zone Research, 26, 561-568.(in Chinese with English abstract)[王伟华, 张希明, 闫海龙, 梁少民, 杨小林 (2009). 盐处理对多枝柽柳光合作用和渗调物质的影响. 干旱区研究, 26, 561-568.] |
37 | Wang ZR, Zhao GX, Gao MX, Jiang SQ, Chang CY, Jia JC (2015). Characteristics of soil water and salt spatial variation in the spring season in typical Yellow River Delta areas of Kenli County, China.Journal of Agricultural Resource and Environment, 32(2), 154-161.(in Chinese with English abstract)[王卓然, 赵庚兴, 高明秀, 姜曙千, 常春艳, 贾吉超 (2015). 黄河三角洲典型地区春季土壤水盐空间分异特征研究——以垦利县为例. 农业资源与环境学报, 32(2), 154-161.] |
38 | Wong SC, Cowan IR, Farquhar GD (1979). Stomatal conductance correlates with photosynthetic capacity.Nature, 282, 424-426. |
39 | Wu ZF, Zhao SL, Zhang XL (1994). Studies on interrelation between salt vegetation and soil salinity in the Yellow River Delta.Acta Phytoecologica Sinica, 18, 184-193.(in Chinese with English abstract)[吴志芬, 赵善伦, 张学雷 (1994). 黄河三角洲盐生植被与土壤盐分的相关性研究. 植物生态学报, 18, 184-193.] |
40 | Xia JB, Zhang SY, Guo J, Kong QQ, Zhang GC (2015). Critical effects of gas exchange parameters inTamarix chinensis on soil water and its relevant environmental factors on a shell ridge island in China’s Yellow River Delta. Ecological Engineering, 76, 36-46. |
41 | Xia JB, Zhang SY, Zhu LP, Zhao ZG, Zhao YY (2014). Responds characteristics of stem sap flow and leaf photosynthesis ofZiziphus jujuba var. spinosus in responds to soil moisture in shell ridge island. Scientia Silvae Sinicae, 50(10), 24-32.(in Chinese with English abstract)[夏江宝, 张淑勇, 朱丽平, 赵自国, 赵艳云 (2014). 贝壳堤岛酸枣树干液流及光合参数对土壤水分的响应特征. 林业科学, 50(10), 24-32.] |
42 | Xia JB, Zhao XM, Zhao ZG, Chen YP, Liu JH (2015). Migration characteristics of soil water and salt and their interaction under different groundwater levers.Transactions of the Chinese Society of Agricultural Engineering, 31(15), 93-100.(in Chinese with English abstract)[夏江宝, 赵西梅, 赵自国, 陈印平, 刘俊华 (2015). 不同潜水埋深下土壤水盐运移特征及其交互效应. 农业工程学报, 31(15), 93-100.] |
43 | Xu SQ, Ji XB, Jin BW (2015). Dynamics and responses of sap flow of typical sand binding plantsHaloxylon ammodendron to environmental variables. Chinese Journal of Plant Ecology, 39, 890-900.(in Chinese with English abstract)[徐世琴, 吉喜斌, 金博文 (2015). 典型固沙植物梭梭生长季蒸腾变化及其对环境因子的响应. 植物生态学报, 39, 890-900.] |
44 | Yan HL, Zhang XM, Xu H, Liu Y (2010). Photosynthetic characteristics responds of three plants to drought stress in Tarim Desert Highway shelterbelt.Acta Ecologica Sinica, 30, 2519-2528.(in Chinese with English abstract)[闫海龙, 张希明, 许浩, 刘英 (2010). 塔里木沙漠公路防护林3种植物光合特性对干旱胁迫的响应. 生态学报, 30, 2519-2528.] |
45 | Ye ZP (2007). A new model for relationship between irradiance and the rate of photosynthesis inOryza sativa. Photosynthetica, 45, 637-640. |
46 | Zhang SY, Xia JB, Zhang GC, Zhao ZG, Zhao YY, Shao HB, Sun JK, Shao CY, Liu Q (2014). Threshold effects of photosynthetic efficiency parameters of wildjujube in response to soil moisture variation on shell beach ridges, Shandong, China. Plant Biosystems, 148, 140-149. |
47 | Zhao CY, Si JH, Feng Q, Yu TF, Li W (2015). Research progress and prospect of stem sap flow.Journal of Northwest Forestry University, 30(5), 98-105.(in Chinese with English abstract)[赵春彦, 司建华, 冯起, 鱼腾飞, 李炜 (2015). 树干液流研究进展与展望. 西北林学院学报, 30(5), 98-105.] |
48 | Zhao Y, Zhao CY, Xu ZL, Liu YY, Wang Y, Wang C, Peng HH, Zheng XL (2012). Physiological responses ofPopulus euphratica Oliv. to groundwater table variation in the lower reaches of Heihe River, Northwest China. Journal of Arid Land, 4, 281-291. |
49 | Zhu JF, Liu JT, Lu ZH, Xia JB, Liu HN, Jin Y (2015). Effects of salt stress on physiological characteristics ofTamarix chinensis Lour. seedlings. Acta Ecologica Sinica, 35, 5141-5146.(in Chinese with English abstract)[朱金方, 刘京涛, 陆兆华, 夏江宝, 柳海宁, 金悦 (2015). 盐胁迫对中国柽柳幼苗生理特性的影响. 生态学报, 35, 5141-5146.] |
50 | Zhu JF, Lu ZH, Xia JB, Chen X, Zhang M, Liu JT (2013). Changes of osmotic adjusting substances in leaves ofTamarix chinensis seedlings under salt and drought stress. Acta Botanica Boreali-Occidentalia Sinica, 33, 357-363.(in Chinese with English abstract)[朱金方, 陆兆华, 夏江宝, 陈曦, 张萌, 刘京涛 (2013). 盐旱交叉胁迫对柽柳幼苗渗透调节物质含量的影响. 西北植物学报, 33, 357-363.] |
51 | Zhu JF, Xia JB, Lu ZH, Liu JT, Sun JK (2012). Growth, physiological and biochemical characteristics ofTamarix chinensis seedlings under salt-drought intercross stress. Acta Botanica Boreali-Occidentalia Sinica, 32, 124-130.(in Chinese with English abstract)[朱金方, 夏江宝, 陆兆华, 刘京涛, 孙景宽 (2012). 盐旱交叉胁迫对柽柳幼苗生长及生理生化特性的影响. 西北植物学报, 32, 124-130.] |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[4] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[5] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[6] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[7] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[8] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[9] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[10] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[11] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[12] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[13] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[14] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[15] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19