植物生态学报 ›› 2012, Vol. 36 ›› Issue (10): 1062-1074.DOI: 10.3724/SP.J.1258.2012.01062
刘柿良1, 马明东1,2, 潘远智1,*(), 魏刘利1,3, 何成相1, 杨开茂1
收稿日期:
2012-05-28
接受日期:
2012-07-24
出版日期:
2012-05-28
发布日期:
2012-09-26
通讯作者:
潘远智
作者简介:
(E-mail: scpyzls@163.com)LIU Shi-Liang1, MA Ming-Dong1,2, PAN Yuan-Zhi1,*(), WEI Liu-Li1,3, HE Cheng-Xiang1, YANG Kai-Mao1
Received:
2012-05-28
Accepted:
2012-07-24
Online:
2012-05-28
Published:
2012-09-26
Contact:
PAN Yuan-Zhi
摘要:
通过搭建荫棚设置3种不同的光强, 模拟森林幼苗生长的旷地(砍伐迹地)、林窗和林下光照环境(分别为100%、56.2%和12.5%的全光照), 比较研究了外来种台湾桤木(Alnus formosana)和乡土种桤木(A. cremastogyne)幼苗的叶形态、光合能力、热耗散和抗氧化酶的活性, 探讨了两树种幼苗对光强的适应及光保护策略。结果表明: 在3种光强下, 一定光强范围内随着光强的增加, 两种桤木幼苗的比叶重(LMA)、类胡萝卜素(Cars)、类胡萝卜素/叶绿素(Cars/Chl)和抗氧化酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX))活性升高, 最大净光合速率(Pmax)、光饱和点(LSP)、光补偿点(LCP)和非光化学猝灭系数(NPQ)具有升高的趋势; Chl含量和瞬时光能利用效率(LUE)降低; 净光合速率(Pn)、气孔导度(Gs)、气孔限制值(Ls)升高, 胞间CO2浓度(Ci)降低, 推测Pn降低的主要因素是非气孔限制, 表明两种桤木幼苗均能适应不同的生长光强。生长在相同光强下, 桤木幼苗光抑制现象比台湾桤木幼苗严重, 台湾桤木幼苗对光强适应能力较强。随着光照强度的增加, 台湾桤木幼苗NPQ增加不显著, 热耗散较少, 相同光强下Pmax和抗氧化酶活性显著高于桤木幼苗, 而桤木幼苗随着光强的增加热耗散显著, 表明在光抑制时, 台湾桤木幼苗主要是通过提高Pmax利用光能和抗氧化酶系统进行保护性调节, 桤木幼苗则通过天线系统非辐射耗散将过剩的光能以热能的形式消耗掉。
刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响. 植物生态学报, 2012, 36(10): 1062-1074. DOI: 10.3724/SP.J.1258.2012.01062
LIU Shi-Liang, MA Ming-Dong, PAN Yuan-Zhi, WEI Liu-Li, HE Cheng-Xiang, YANG Kai-Mao. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species. Chinese Journal of Plant Ecology, 2012, 36(10): 1062-1074. DOI: 10.3724/SP.J.1258.2012.01062
图1 光强对两种桤木幼苗叶片的比叶重和色素含量的影响(平均值±标准误差)。LT1, 全光照; LT2, (56.2 ± 1.03)%全光照; LT3, (12.5 ± 0.21)%全光照。L, 光照; S, 树种; S × L, 树种和光照的交互作用。**, p < 0.01; *, p < 0.05。不同大写字母表示相同光照处理下不同树种之间差异显著(p < 0.05); 不同小写字母表示相同树种在不同光照处理之间差异显著(p < 0.05)。
Fig. 1 Effect of light regimes on the lamina mass per unit area (LMA) and pigment content in seedling leaves of two Alnus species (mean ± SE). LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light. L, light; S, tree species; S × L, interaction of tree species and light. **, p < 0.01; *, p < 0.05. Different capital letters indicate significant differences among two tree species under the same light regimes (p < 0.05); Different small letters indicate significant differences among three light regimes of the same species (p < 0.05).
图2 不同光强下两种桤木幼苗光合作用的光响应曲线。LT1, 全光照; LT2, (56.2 ± 1.03)%全光照; LT3, (12.5 ± 0.21)%全光照。
Fig. 2 Light-photosynthetic response curves of two Alnus seedlings under different light regimes. LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light.
物种 Species | 处理 Treatment | Pmax (μmol CO2 ?m-2?s-1) | LSP (μmol CO2?m-2?s-1) | LCP (μmol CO2 ?m-2?s-1) |
---|---|---|---|---|
台湾桤木 A. formosana | LT1 | 8.52 ± 0.45A, a | 1205.7 ± 104.0A, a | 98.05 ± 1.49B, a |
LT2 | 7.48 ± 0.43A, a | 995.8 ± 55.4A, ab | 83.22 ± 1.76A, b | |
LT3 | 5.46 ± 0.27A, b | 755.9 ± 79.5A, b | 38.42 ± 3.12B, c | |
桤木 A. cremastogyne | LT1 | 7.13 ± 0.05B, a | 877.3 ± 60.9A, a | 104.57 ± 3.02A, a |
LT2 | 6.62 ± 0.30B, a | 749.4 ± 56.1B, a | 86.93 ± 5.04A, b | |
LT3 | 4.75 ± 0.18A, b | 489.6 ±16.0B, b | 84.69 ± 1.06A, b |
表1 不同光强下两种桤木幼苗的最大净光合速率(Pmax)、光饱和点(LSP)和光补偿点(LCP) (平均值±标准误差)
Table 1 Maximum net photosynthetic rate (Pmax), light saturation point (LSP) and light compensation point (LCP) for the seedlings of two Alnus species under different light regimes (mean ± SE)
物种 Species | 处理 Treatment | Pmax (μmol CO2 ?m-2?s-1) | LSP (μmol CO2?m-2?s-1) | LCP (μmol CO2 ?m-2?s-1) |
---|---|---|---|---|
台湾桤木 A. formosana | LT1 | 8.52 ± 0.45A, a | 1205.7 ± 104.0A, a | 98.05 ± 1.49B, a |
LT2 | 7.48 ± 0.43A, a | 995.8 ± 55.4A, ab | 83.22 ± 1.76A, b | |
LT3 | 5.46 ± 0.27A, b | 755.9 ± 79.5A, b | 38.42 ± 3.12B, c | |
桤木 A. cremastogyne | LT1 | 7.13 ± 0.05B, a | 877.3 ± 60.9A, a | 104.57 ± 3.02A, a |
LT2 | 6.62 ± 0.30B, a | 749.4 ± 56.1B, a | 86.93 ± 5.04A, b | |
LT3 | 4.75 ± 0.18A, b | 489.6 ±16.0B, b | 84.69 ± 1.06A, b |
物种 Species | 处理 Treatment | Pn (μmol CO2·m-2·s-1) | Tr (mmol H2O·m-2·s-1) | Gs (mmol H2O·m-2 ·s-1) | Ci (μmol CO2?m-2?s-1) | LUE (mmol?mol-1) | Ls |
---|---|---|---|---|---|---|---|
台湾桤木 A. formosana | LT1 | 7.32 ± 0.42A, a | 5.61 ± 0.21A, a | 236.91 ± 13.48A, a | 249.15 ± 15.91A, b | 8.81 ± 0.77A, b | 0.24 ± 0.01B, a |
LT2 | 7.45 ± 0.32A, a | 4.12 ± 0.14A, b | 192.41 ± 4.20A, b | 281.85 ± 12.71A, ab | 13.11 ± 2.12B, b | 0.27 ± 0.01A, a | |
LT3 | 2.96 ± 0.36A, b | 2.93 ± 0.09A, c | 161.09 ± 13.27A, b | 337.01 ± 21.78B, a | 35.98 ± 1.11B, a | 0.14 ± 0.01A, b | |
桤木 A.cremastogyne | LT1 | 6.66 ± 084B, a | 3.73 ± 0.49B, a | 196.32 ± 15.35A, a | 262.24 ± 10.86A, b | 9.63 ± 0.33A, b | 0.29 ± 0.01A, a |
LT2 | 5.47 ± 0.78B, a | 2.89 ± 0.09B, a | 151.46 ± 11.87B, ab | 291.87 ± 7.97A, b | 15.25 ± 3.09A, b | 0.26 ± 0.02A, a | |
LT3 | 2.30 ± 0.45A, b | 1.71 ± 0.22B, b | 108.16 ± 25.93A, b | 340.35 ± 8.39A, a | 30.81 ± 3.70A, a | 0.15 ± 0.01A, b |
表2 不同光强下两种桤木幼苗叶片的气体交换参数和瞬时光能利用效率(平均值±标准误差)
Table 2 Gas exchange parameters and instantaneous light utilization efficiency in seedling leaves of two Alnus species under different light regimes (mean ± SE)
物种 Species | 处理 Treatment | Pn (μmol CO2·m-2·s-1) | Tr (mmol H2O·m-2·s-1) | Gs (mmol H2O·m-2 ·s-1) | Ci (μmol CO2?m-2?s-1) | LUE (mmol?mol-1) | Ls |
---|---|---|---|---|---|---|---|
台湾桤木 A. formosana | LT1 | 7.32 ± 0.42A, a | 5.61 ± 0.21A, a | 236.91 ± 13.48A, a | 249.15 ± 15.91A, b | 8.81 ± 0.77A, b | 0.24 ± 0.01B, a |
LT2 | 7.45 ± 0.32A, a | 4.12 ± 0.14A, b | 192.41 ± 4.20A, b | 281.85 ± 12.71A, ab | 13.11 ± 2.12B, b | 0.27 ± 0.01A, a | |
LT3 | 2.96 ± 0.36A, b | 2.93 ± 0.09A, c | 161.09 ± 13.27A, b | 337.01 ± 21.78B, a | 35.98 ± 1.11B, a | 0.14 ± 0.01A, b | |
桤木 A.cremastogyne | LT1 | 6.66 ± 084B, a | 3.73 ± 0.49B, a | 196.32 ± 15.35A, a | 262.24 ± 10.86A, b | 9.63 ± 0.33A, b | 0.29 ± 0.01A, a |
LT2 | 5.47 ± 0.78B, a | 2.89 ± 0.09B, a | 151.46 ± 11.87B, ab | 291.87 ± 7.97A, b | 15.25 ± 3.09A, b | 0.26 ± 0.02A, a | |
LT3 | 2.30 ± 0.45A, b | 1.71 ± 0.22B, b | 108.16 ± 25.93A, b | 340.35 ± 8.39A, a | 30.81 ± 3.70A, a | 0.15 ± 0.01A, b |
Pn | Tr | Gs | Ci | Ls | LUE | |
---|---|---|---|---|---|---|
Pn | 1.00 | |||||
Tr | 0.77** | 1.00 | ||||
Gs | 0.72** | 0.87** | 1.00 | |||
Ci | -0.73** | -0.80** | -0.65** | 1.00 | ||
Ls | 0.81** | 0.50* | 0.49* | -0.73** | 1.00 | |
LUE | -0.89** | -0.66 | -0.68** | 0.79** | -0.89** | 1.00 |
表3 两种桤木幼苗叶片气体交换参数和瞬时光能利用效率之间的相关性(n = 18)
Table 3 Correlation coefficients among gas exchange parameters and LUE in seedling leaves of two Alnus species (n = 18)
Pn | Tr | Gs | Ci | Ls | LUE | |
---|---|---|---|---|---|---|
Pn | 1.00 | |||||
Tr | 0.77** | 1.00 | ||||
Gs | 0.72** | 0.87** | 1.00 | |||
Ci | -0.73** | -0.80** | -0.65** | 1.00 | ||
Ls | 0.81** | 0.50* | 0.49* | -0.73** | 1.00 | |
LUE | -0.89** | -0.66 | -0.68** | 0.79** | -0.89** | 1.00 |
图3 不同光强下两种桤木幼苗叶片光系统II最大光能转化效率(Fv/Fm)日变化(平均值±标准误差)。LT1, 全光照; LT2, (56.2 ± 1.03)%全光照; LT3, (12.5 ± 0.21)%全光照。
Fig. 3 Diurnal changes of maximum efficiency of PSII photochemistry (Fv/Fm) for the seedling leaves of two Alnus species under different light regimes (mean ± SE). LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light.
图4 不同光强下两种桤木幼苗叶片荧光非光化学猝灭系数(NPQ)日变化(平均值±标准误差)。LT1, 全光照; LT2, (56.2 ± 1.03)%全光照; LT3, (12.5 ± 0.21)%全光照。
Fig. 4 Diurnal changes of non-photochemical quenching (NPQ) for the seedling leaves of two Alnus species grown under different light regimes (mean ± SE). LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light.
图5 不同光强下两种桤木幼苗叶片的丙二醛(MDA)和H2O2含量(平均值±标准误差)。LT1, 全光照; LT2, (56.2 ± 1.03)%全光照; LT3, (12.5 ± 0.21)%全光照。L, 光照; S, 树种; S × L, 树种和光照的交互作用。**, p < 0.01; *, p < 0.05; ns, p > 0.05。不同大写字母表示相同光照处理下不同树种之间差异显著(p < 0.05); 不同小写字母表示相同树种在不同光照处理之间差异显著(p < 0.05)。
Fig. 5 Malondialdehyde (MDA) and H2O2 contents in seedling leaves of two Alnus species under different light regimes (mean ± SE). LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light. L, light; S, tree species; S × L, interaction of tree species and light. **, p < 0.01; *, p < 0.05; ns, p > 0.05. Different capital letters indicate significant differences among two tree species under the same light regimes (p < 0.05); Different small letters indicate significant differences among three light regimes of the same species (p < 0.05).
MDA含量 MDA content | H2O2含量 H2O2 content | CAT活性 CAT activity | SOD活性 SOD activity | APX活性 APX activity | |
---|---|---|---|---|---|
MDA含量 MDA content | 1.00 | ||||
H2O2含量 H2O2 content | 0.20 | 1.00 | |||
CAT活性 CAT activity | 0.15 | 0.82** | 1.00 | ||
SOD活性 SOD activity | -0.21 | 0.81** | 0.84** | 1.00 | |
APX活性 APX activity | -0.04 | 0.80** | 0.91** | 0.89** | 1.00 |
表4 两种桤木幼苗叶片中丙二醛(MDA)含量、过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性和抗坏血酸过氧化物酶(APX)活性之间的相关性(n = 18)
Table 4 Correlation coefficients among malondialdehyde (MDA) content, H2O2 content, superoxide dismutase (SOD) activity, catalase (CAT) activity and ascorbate peroxidase (APX) activity in seedling leaves of two Alnus species (n = 18)
MDA含量 MDA content | H2O2含量 H2O2 content | CAT活性 CAT activity | SOD活性 SOD activity | APX活性 APX activity | |
---|---|---|---|---|---|
MDA含量 MDA content | 1.00 | ||||
H2O2含量 H2O2 content | 0.20 | 1.00 | |||
CAT活性 CAT activity | 0.15 | 0.82** | 1.00 | ||
SOD活性 SOD activity | -0.21 | 0.81** | 0.84** | 1.00 | |
APX活性 APX activity | -0.04 | 0.80** | 0.91** | 0.89** | 1.00 |
图6 不同光强下两种桤木幼苗叶片抗氧化酶活性(平均值±标准误差)。APX, 抗坏血酸过氧化物酶; CAT, 过氧化氢酶; SOD, 超氧化物歧化酶。LT1, 全光照; LT2, (56.2 ± 1.03)%全光照; LT3, (12.5 ± 0.21)%全光照。L, 光照; S, 树种; S × L, 树种和光照的交互作用。**, p < 0.01; *, p < 0.05; ns, p > 0.05。不同大写字母表示相同光照处理下不同树种之间差异显著(p < 0.05); 不同小写字母表示相同树种在不同光照处理之间差异显著(p < 0.05)。
Fig. 6 Activities of antioxidant enzyme in seedling leaves of two Alnus species under different light regimes (mean ± SE). APX, ascorbate peroxidase; CAT, catalase; SOD, superoxide dismutase. LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light. L, light; S, tree species; S × L, interaction of tree species and light. **, p < 0.01; *, p < 0.05; ns, p > 0.05. Different capital letters indicate significant differences among two tree species under the same light regimes (p < 0.05); Different small letters indicate significant differences among three light regimes of the same species (p < 0.05).
1 | Cakmak I, Marschner H ( 1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227. |
2 | Cardol P, de Paepe R, Franck F, Forti G, Finazzi G ( 2010). The onset of NPQ and ΔμH + upon illumination of tobacco plants studied through the influence of mitochondrial electron transport. Biochimica et Biophysica Acta, 1797, 177-188. |
3 | Chen YT ( 陈益泰), Zhuo RY ( 卓仁英), Wu TL ( 吴天林 ) ( 2004). Introduction and early adaptability of exotic alders. Forest Research (林业科学研究), 17, 139-146. (in Chinese with English abstract) |
4 | Dai YJ, Shen ZG, Liu Y, Wang LL, Hannaway D, Lu HF ( 2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65, 177-182. |
5 | Farquhar GD, Sharkey TD ( 1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345. |
6 | Feng YL ( 冯玉龙), Cao KF ( 曹坤芳), Feng ZL ( 冯志立), Ma L ( 马玲 ) ( 2002). Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species. Acta Ecologica Sinica (生态学报), 22, 901-910. (in Chinese with English abstract) |
7 | Foyer CH, Noctor G ( 1999). Leaves in the dark see the light. Science, 284, 599-601. |
8 | Funk JL, Vitousek PM ( 2007). Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081. |
9 | Giannopolitis CN, Ries SK ( 1977). Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 59, 309-314. |
10 |
Guo XR ( 郭晓荣), Cao KF ( 曹坤芳), Xu ZF ( 许再富 ) ( 2004). Response of photosynthesis and antioxygenic enzymes in seedlings of three tropical forest tree species to different light environments. Chinese Journal of Applied Ecology (应用生态学报), 15, 377-381. (in Chinese with English abstract)
URL PMID |
11 | Gutiérrez D, Gutiérrez E, Pérez P, Morcuende R, Verdejo AL, Martinez-Carrasco R ( 2009). Acclimation to future atmospheric CO2 levels increases photochemical eff- iciency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. Physiologia Plantarum, 137, 86-100. |
12 | Han YZ ( 韩有志), Wang ZQ ( 王政权 ) ( 2002). Spatial heterogeneity and forest regeneration. Chinese Journal of Applied Ecology (应用生态学报), 13, 615-619. (in Chinese with English abstract) |
13 | Herrera A, Tezara W, Marín O, Rengifo E ( 2008). Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiologia Plantarum, 134, 41-48. |
14 | Huang D, Wu L, Chen JR, Dong L ( 2011). Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica, 49, 611-618. |
15 | Huang HY ( 黄红英), Dou XY ( 窦新永), Sun BY ( 孙蓓育), Deng B ( 邓斌), Wu GJ ( 吴国江), Peng CL ( 彭长连 ) ( 2009). Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer. Acta Ecologica Sinica (生态学报), 29, 2862-2866. (in Chinese with English abstract) |
16 | Jablonski PP, Anderson JW ( 1981). Light-dependent reduction of dehydroascorbate by ruptured pea chloroplasts. Plant Physiology, 67, 1239-1244. |
17 | Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, Al-Juburi HJ, Zhao CX, Shao HB, Panneerselvam R ( 2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31, 427-436. |
18 | Johnson DM, Woodruff DR, Mcculloh KA, Meinzer FC ( 2009). Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Tree Physiology, 29, 879-887. |
19 | Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y ( 2000). Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell & Environment, 23, 81-89. |
20 | Krause GH, Koroleva OY, Dalling JW, Winter K ( 2001). Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant, Cell & Environment, 24, 1345-1352. |
21 | Lai YC, Chen CK, Lin WW, Lee SS ( 2012). A comprehensive investigation of anti-inflammatory diarylheptanoids from the leaves of Alnus formosana. Phytochemistry, 73, 84-94. |
22 | Lee YL, Lee MH, Chang HJ, Huang PY, Huang IJ, Cheng KT, Leu SJ ( 2009). Taiwanese native plants inhibit matrix metalloproteinase-9 activity after ultraviolet B irradiation. Molecules, 14, 1062-1071. |
23 | Liao TS, Weng JH ( 2002). Ecophysiological characteristics of Taiwan alder ( Alnus formosana) seedlings adapted to the subtropical region. Tree Physiology, 22, 355-362. |
24 | Lichtenthaler HK ( 1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. |
25 |
Liu CC ( 刘长成), Liu YG ( 刘玉国), Guo K ( 郭柯 ) ( 2011). Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats. Chinese Journal of Plant Ecology (植物生态学报), 35, 1070-1082. (in Chinese with English abstract)
DOI URL |
26 | Liu SJ ( 刘守江), Su ZX ( 苏智先), Wu Y ( 吴勇 ) ( 2004). Floristic analysis of plant community on the east slope of Jiuding Mountain in Sichuan Province. Chinese Journal of Ecology (生态学杂志), 23, 41-44. (in Chinese with English abstract) |
27 | Mao PL ( 毛培利), Zang RG ( 臧润国), Ding Y ( 丁易), Li YD ( 李意德), Lin MX ( 林明献 ) ( 2011). Photosynthetic characteristics of three typical tree species at different succession stages of a tropical montane rain forest on Hainan Island, China. Forest Research (林业科学研究), 24, 563-571. (in Chinese with English abstract) |
28 | Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S ( 2010). Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant and Cell Physiology, 51, 190-200. |
29 | Munné-Bosch S, Aleger L ( 2000). The xanthophyll cycle is induced by light irrespective of water status in field-grown lavender (Lavandula stoechas) plants. Physiologia Plantarum, 108, 147-151. |
30 | Nakano Y, Asada K ( 1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. |
31 | Niyogi KK ( 1999). Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333-359. |
32 | Patterson BD, Macrae EA, Ferguson IB ( 1984). Estimation of hydrogen peroxide in plant extracts using titanium (IV). Analytical Biochemistry, 139, 487-492. |
33 | Qi X ( 齐欣), Cao KF ( 曹坤芳), Feng YL ( 冯玉龙 ) ( 2004). Photosynthetic acclimation to different growth light environments in seedlings of three tropical rainforest Syzygium species. Acta Phytoecologica Sinica (植物生态学报), 28, 31-38. (in Chinese with English abstract) |
34 |
Reddy AR, Chaitanya KV, Vivekanandan M ( 2004). Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202.
DOI URL |
35 |
Richardson AD, Beryln GP ( 2002). Spectral reflectance and photosynthetic properties of Betula papyrifera( Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journal of Botany, 89, 88-94.
DOI URL |
36 | Rozendaal DMA, Hurtado VH, Poorter L ( 2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216. |
37 | Shirke PA, Pathre UV (2003). Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress. Photosynthetica, 2003,41, 83-89. |
38 | Wang BY ( 王博轶), Feng YL ( 冯玉龙 ) ( 2005). Effects of growth light intensities on photosynthesis in seedlings of two tropical rain forest species. Acta Ecologica Sinica (生态学报), 25, 23-30. (in Chinese with English abstract) |
39 | Wang GG, Bauerle WL ( 2006). Effects of light intensity on the growth and energy balance of photosystem II electron transport in Quercus alba seedlings. Annals of Forest Science, 63, 111-118. |
40 | Wang JH ( 王军辉), Gu WC ( 顾万春), Xia LF ( 夏良放), Li B ( 李斌), Guo WY ( 郭文英 ) ( 2001). Genetic variation and selection of wood property of Alnus cremastogyne provenance and family. Forest Research (林业科学研究), 14, 362-368. (in Chinese with English abstract) |
41 | Wang Q ( 王强), Wen XG ( 温晓刚), Zhang QD ( 张其德 ) ( 2003). Progress in studies on photoinhibition. Chinese Bulletin of Botany (植物学通报), 20, 539-548. (in Chinese with English abstract) |
42 | Weng JH, Chen YN, Liao TZ ( 2006). Relationships between chlorophyll fluorescence parameters and photochemical reflectance index of tree species adapted to different temperature regimes. Functional Plant Biology, 33, 241-246. |
43 | Xu F ( 徐飞), Guo WH ( 郭卫华), Xu WH ( 徐伟红), Wang RQ ( 王仁卿 ) ( 2010). Effects of light intensity on growth and photosynthesis of seedlings of Quercus acutissima and Robinia pseudoacacia. Acta Ecologica Sinica (生态学报), 30, 3098-3107. (in Chinese with English abstract) |
44 | Yang Y ( 杨莹), Wang CH ( 王传华), Liu YH ( 刘艳红 ) ( 2010). The effect of low irradiance on growth, photosynthetic characteristics, and biomass allocation in two deciduous broad-leaved tree seedlings in southeast of Hubei Province. Acta Ecologica Sinica (生态学报), 30, 6083-6090. (in Chinese with English abstract) |
45 | Zhang JL ( 张教林), Cao KF ( 曹坤芳 ) ( 2002). The effect of irradiance on photosynthetic capacity, heat dissipation, and antioxidants of seedlings of two tropical rain forest tree species. Acta Phytoecologica Sinica (植物生态学报), 26, 639-646. (in Chinese with English abstract) |
46 | Zhang SY ( 张淑勇), Zhou ZF ( 周泽福), Zhang GC ( 张光灿), Xia JB ( 夏江宝 ) ( 2009). Changes of gas exchange parameters in leaves of natural secondary shrubs Prunus davidiana and Prunus sibirica L. in semi-arid Loess Hilly region. Acta Ecologica Sinica (生态学报), 29, 499-507. (in Chinese with English abstract) |
47 | Zhu WZ ( 朱万泽), Xue JH ( 薛建辉), Wang JX ( 王金锡 ) ( 2004). Effects of water stress on net photosynthesis of Alnus formosana provenances and its drought tolerance. Journal of Soil and Water Conservation (水土保持学报), 18, 170-173, 181. (in Chinese with English abstract) |
[1] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[2] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[3] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[4] | 许红梅, 李进, 张元明. 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响[J]. 植物生态学报, 2017, 41(8): 882-893. |
[5] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[6] | 刘盟盟, 贾丽, 程路芸, 张洪芹, 臧晓琳, 宝音陶格涛, 张汝民, 高岩. 冷蒿酚酸及其抗氧化防御酶活性对机械损伤的响应[J]. 植物生态学报, 2017, 41(2): 219-230. |
[7] | 樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏. 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定[J]. 植物生态学报, 2016, 40(9): 942-951. |
[8] | 尹本丰, 张元明. 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响[J]. 植物生态学报, 2015, 39(5): 517-529. |
[9] | 胡文海, 张斯斯, 肖宜安, 闫小红. 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制[J]. 植物生态学报, 2015, 39(11): 1093-1100. |
[10] | 郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁. 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响[J]. 植物生态学报, 2014, 38(8): 896-903. |
[11] | 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制[J]. 植物生态学报, 2014, 38(7): 720-728. |
[12] | 张超, 占东霞, 张鹏鹏, 张亚黎, 罗宏海, 张旺锋. 棉花苞叶光呼吸和PSII热耗散对土壤水分的响应[J]. 植物生态学报, 2014, 38(4): 387-395. |
[13] | 师生波, 张怀刚, 师瑞, 李妙, 陈文杰, 孙亚男. 青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J]. 植物生态学报, 2014, 38(4): 375-386. |
[14] | 苗宇,陈栎霖,李贤伟,范川,刘运科,杨正菊,张军,蔡新莉. 施肥对台湾桤木-扁穗牛鞭草复合模式下桤木细根形态特征、生物量及组织碳氮含量的影响[J]. 植物生态学报, 2013, 37(7): 674-683. |
[15] | 陈坚,李妮亚,刘强,钟才荣,黄敏,曾佳. NaCl处理下两种引进红树的光合及抗氧化防御能力[J]. 植物生态学报, 2013, 37(5): 443-453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19