植物生态学报 ›› 2013, Vol. 37 ›› Issue (7): 674-683.DOI: 10.3724/SP.J.1258.2013.00070
所属专题: 碳储量
苗宇,陈栎霖,李贤伟(),范川,刘运科,杨正菊,张军,蔡新莉
收稿日期:
2013-01-28
接受日期:
2013-04-26
出版日期:
2013-01-28
发布日期:
2013-07-05
通讯作者:
李贤伟
基金资助:
MIAO Yu,CHEN Yue-Lin,LI Xian-Wei(),FAN Chuan,LIU Yun-Ke,YANG Zheng-Ju,ZHANG Jun,CAI Xin-Li
Received:
2013-01-28
Accepted:
2013-04-26
Online:
2013-01-28
Published:
2013-07-05
Contact:
LI Xian-Wei
摘要:
细根具有良好的可塑性, 不同根序等级的细根会表现不同的策略来适应土壤资源有效性的改变, 了解各级细根对土壤资源有效性的可塑性反应对认识细根的养分和水分吸收规律、预测碳(C)在地下的分配特点具有重要意义。该文以四川省丹陵县台湾桤木(Alnus formosana)-扁穗牛鞭草(Hemarthria compressa)复合模式为研究对象, 采用施肥处理, 应用土柱法采样, 探讨了施肥对台湾桤木-扁穗牛鞭草模式土壤表层(0-10 cm)和亚表层(10-20 cm)台湾桤木1-5级细根的生物量、形态特征(直径、比根长)、全C和全氮(N)含量的影响。结果表明: (1)台湾桤木1-5级细根直径随根序的增大而增加, 施肥降低土壤表层台湾桤木各级细根直径而增加了土壤亚表层台湾桤木各级细根直径; 台湾桤木1-5级细根比根长则随根序的增加而减小, 施肥增加了台湾桤木各级细根的比根长, 且施肥极显著增加了表层和亚表层台湾桤木前三级细根的比根长(p < 0.01)。(2)台湾桤木1-5级细根生物量均随土层深度的增加而减小, 施肥减少了台湾桤木各个土层各级细根生物量, 且显著降低了台湾桤木前三级细根生物量占总生物量的比例(p < 0.05), 而增加了4、5级细根生物量。(3)台湾桤木3级细根全C最大, 1级根最小, 且土壤表层台湾桤木各级细根全C含量大于亚表层; 施肥降低了台湾桤木各级细根全C含量, 但影响并不显著(p > 0.05)。台湾桤木细根全N含量随根序的增加而降低, 且土壤表层1-5级细根全N含量均高于亚表层; 施肥极显著(p < 0.01)增加了土壤表层1级细根及亚表层1、2级细根的全N含量, 而对于3-5级细根全N含量则影响不显著(p > 0.05)。以上结果显示, 当土壤资源有效性变化时, 各级根序细根会作出不同的可塑性反应, 且施肥对各级细根的影响主要表现在低级根上。
苗宇,陈栎霖,李贤伟,范川,刘运科,杨正菊,张军,蔡新莉. 施肥对台湾桤木-扁穗牛鞭草复合模式下桤木细根形态特征、生物量及组织碳氮含量的影响. 植物生态学报, 2013, 37(7): 674-683. DOI: 10.3724/SP.J.1258.2013.00070
MIAO Yu,CHEN Yue-Lin,LI Xian-Wei,FAN Chuan,LIU Yun-Ke,YANG Zheng-Ju,ZHANG Jun,CAI Xin-Li. Effects of fertilization on Alnus formosana fine root morphological characteristics, biomass and issue content of C, N under A. formosana-Hemarthria compressa compound mode. Chinese Journal of Plant Ecology, 2013, 37(7): 674-683. DOI: 10.3724/SP.J.1258.2013.00070
林草模式 Forest-herb mode | 处理 Treatment | 年龄 Age (a) | 平均胸径 Average DBH (cm) | 平均高 Average height (m) | 郁闭度或盖度 Canopy density or coverage | 株行距 Planting distance (m × m) |
---|---|---|---|---|---|---|
台湾桤木 Alnus formosana | 10 | 17.4 | 7.3 | 0.6% | 2.5 × 2.5 | |
扁穗牛鞭草 Hemarthria compressa | 施肥 Fertilizer | 多年生 Perennial | - | 0.5 | 100% | - |
扁穗牛鞭草 H. compressa | 不施肥 No fertilizer | 多年生 Perennial | - | 0.3 | 80% | - |
表1 试验地植被概况
Table 1 Situation of the experimental field vegetation
林草模式 Forest-herb mode | 处理 Treatment | 年龄 Age (a) | 平均胸径 Average DBH (cm) | 平均高 Average height (m) | 郁闭度或盖度 Canopy density or coverage | 株行距 Planting distance (m × m) |
---|---|---|---|---|---|---|
台湾桤木 Alnus formosana | 10 | 17.4 | 7.3 | 0.6% | 2.5 × 2.5 | |
扁穗牛鞭草 Hemarthria compressa | 施肥 Fertilizer | 多年生 Perennial | - | 0.5 | 100% | - |
扁穗牛鞭草 H. compressa | 不施肥 No fertilizer | 多年生 Perennial | - | 0.3 | 80% | - |
图1 不同处理下台湾桤木不同根序细根直径、比根长(平均值±标准偏差)。同级根序不同小写字母表示同一土层不同处理间差异显著(p < 0.05), 不同大写字母表示差异极显著(p < 0.01) (双侧检验)。
Fig. 1 Fine root diameter and specific root length (SRL) in different root order of Alnus formosana under different treatments (mean ± SD). Different small letters within the same root order indicate significant difference between treatments in same soil layer (p < 0.05); different capital letters within the same root order indicate highly significant difference (p < 0.01) (2-tailed).
土层 Soil layer (cm) | 样地 Sampling plot | 根序 Root order | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1-order | 2-order | 3-order | 4-order | 5-order | ||||||||
生物量Biomass (g·m-2) | 比例Percentage (%) | 生物量Biomass (g·m-2) | 比例Percentage (%) | 生物量Biomass (g·m-2) | 比例Percentage (%) | 生物量Biomass (g·m-2) | 比例Percentage (%) | 生物量Biomass (g·m-2) | 比例Percentage (%) | |||
0-10 | 不施肥 No fertilizing | 1.8 ± 0.070a | 5.13 | 2.2 ± 0.187a | 6.27 | 6.3 ± 0.027A | 17.95 | 11.5 ± 0.327A | 32.76 | 13.3 ± 0.323A | 37.89 | |
施肥 Fertilizing | 1.3 ± 0.234b | 2.67 | 1.9 ± 0.124a | 3.91 | 2.4 ± 0.144B | 4.94 | 16.0 ± 1.253B | 32.92 | 27.0 ± 1.588B | 55.56 | ||
10-20 | 不施肥 No fertilizing | 1.3 ± 0.353a | 4.92 | 1.6 ± 0.127a | 6.06 | 5.5 ± 0.247A | 20.83 | 7.2 ± 0.125A | 27.27 | 10.8 ± 0.536a | 40.91 | |
施肥 Fertilizing | 0.5 ± 0.065b | 1.91 | 1.0 ± 0.423a | 3.94 | 2.0 ± 0.531B | 7.87 | 10.7 ± 0.437B | 42.13 | 11.2 ± 1.120a | 44.09 |
表2 台湾桤木各级细根生物量及其在各根序中的分配
Table 2 Fine root biomass at all levels of Alnus formosana and its allocation in root sequence
土层 Soil layer (cm) | 样地 Sampling plot | 根序 Root order | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1-order | 2-order | 3-order | 4-order | 5-order | ||||||||
生物量Biomass (g·m-2) | 比例Percentage (%) | 生物量Biomass (g·m-2) | 比例Percentage (%) | 生物量Biomass (g·m-2) | 比例Percentage (%) | 生物量Biomass (g·m-2) | 比例Percentage (%) | 生物量Biomass (g·m-2) | 比例Percentage (%) | |||
0-10 | 不施肥 No fertilizing | 1.8 ± 0.070a | 5.13 | 2.2 ± 0.187a | 6.27 | 6.3 ± 0.027A | 17.95 | 11.5 ± 0.327A | 32.76 | 13.3 ± 0.323A | 37.89 | |
施肥 Fertilizing | 1.3 ± 0.234b | 2.67 | 1.9 ± 0.124a | 3.91 | 2.4 ± 0.144B | 4.94 | 16.0 ± 1.253B | 32.92 | 27.0 ± 1.588B | 55.56 | ||
10-20 | 不施肥 No fertilizing | 1.3 ± 0.353a | 4.92 | 1.6 ± 0.127a | 6.06 | 5.5 ± 0.247A | 20.83 | 7.2 ± 0.125A | 27.27 | 10.8 ± 0.536a | 40.91 | |
施肥 Fertilizing | 0.5 ± 0.065b | 1.91 | 1.0 ± 0.423a | 3.94 | 2.0 ± 0.531B | 7.87 | 10.7 ± 0.437B | 42.13 | 11.2 ± 1.120a | 44.09 |
图2 不同处理下台湾桤木不同根序细根C、N含量(平均值±标准偏差)。同级根序不同小写字母表示同一土层不同处理细根生物量差异显著(p < 0.05), 不同大写字母表示差异极显著(p < 0.01) (双侧检验)。
Fig. 2 Fine root C, N contents in different root order of Alnus formosana under different treatments (mean ± SD). Different small letters within the same root order indicate significant difference (p < 0.05); different capital letters within the same root order indicate highly significant difference (p < 0.01) (2-tailed).
[1] | Bao HL (2008). Dynamic of Fine Root Distribution of Artemisisa ordosica Krasch. Community and Its Relationship with the Soil Moisture in Mu Us Sand Land. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract) |
[ 包海龙 (2008). 毛乌素沙地油蒿群落细根分布动态及与土壤水分的关系. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[2] | Chang WJ, Guo DL (2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese Version), 32, 1248-1257. (in Chinese with English abstract) |
[ 常文静, 郭大立 (2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.] | |
[3] | Chen HB, Wei X, Wang J, Wang ZQ (2010). Morphological and anatomical responses of Fraxinus mandshurica seedling roots to different nitrogen concentrations. Scientia Silvae Sinicae, 46(2), 61-66. (in Chinese with English abstract) |
[ 陈海波, 卫星, 王婧, 王政权 (2010). 水曲柳苗木根系形态和解剖结构对不同氮浓度的反应. 林业科学, 46(2), 61-66.] | |
[4] | Cheng YH, Han YZ, Wang QC, Wang ZQ (2005). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelini plantation. Acta Phytoecologica Sinica, 29, 403-410. (in Chinese with English abstract) |
[ 程云环, 韩有志, 王庆成, 王政权 (2005). 落叶松人工林细根动态与土壤资源有效性关系研究. 植物生态学报, 29, 403-410.] | |
[5] | Curt T, Prévosto B (2003). Rooting strategy of naturally regenerated beech in silver birch and Scots pine woodlands. Plant and Soil, 255, 265-279. |
[6] | Ding GQ, Yu LZ, Wang ZQ, Hu WL, Zheng Y, Jin X, Ding L, Xu QX (2010). Effects of fertilization on fine root morphology of Larix kaempferi. Journal of Northeast Forestry University, 38, 16-19. (in Chinese with English abstract) |
[ 丁国泉, 于立忠, 王政权, 胡万良, 郑颖, 金鑫, 丁磊, 徐庆祥 (2010). 施肥对日本落叶松细根形态的影响. 东北林业大学学报, 38, 16-19.] | |
[7] | Dong HX, Li XW, Zhang J, Fan C (2007). Biomass of fine root and its relationship with water-stable aggregate in compound lands of triploid Populus tomentosa on lands converted from agricultural lands. Scientia Silvae Sinicae, 43(5), 24-29. (in Chinese with English abstract) |
[ 董慧霞, 李贤伟, 张健, 范川 (2007). 退耕地三倍体毛白杨林地细根生物量及其与土壤水稳性团聚体的关系. 林业科学, 43(5), 24-29.] | |
[8] | Eissenstat DM (1991). On the relationship between specific root length and the rate of proliferation: a field study using citrus rootstocks. New Phytologist, 118, 63-68. |
[9] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[10] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31. |
[11] |
Guo DL, Fan PP (2007). Four hypotheses about the effects of soil nitrogen availability on fine root production and turnover. Chinese Journal of Applied Ecology, 18, 2354-2360. (in Chinese with English abstract)
URL PMID |
[ 郭大立, 范萍萍 (2007). 关于氮有效性影响细根生产量和周转率的四个假说. 应用生态学报, 18, 2354-2360.]
URL PMID |
|
[12] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
URL PMID |
[13] | Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008a). Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. Journal of Ecology, 96, 737-745. |
[14] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008b). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI URL PMID |
[15] | Hajiboland R, Yang XE, Römheld V (2005). Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany, 54, 163-173. |
[16] | He JS, Wang ZQ, Fang JY (2004). Issues and prospects of belowground ecology with special reference to global climate change. Chinese Science Bulletin, 49, 1891-1899. |
[17] | Hendricks JJ, Nadelhoffer KJ, Aber JD (1993). Assessing the role of fine roots in carbon and nutrient cycling. Trees, 8, 174-178. |
[18] |
Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[19] | Huang JX, Xiong DC, Yang ZJ, Chen GS (2010). The order characteristics of fine root morphology and fine root respiration of Ligustrum lucidum and Euscaphis japonica. Journal of Subtropical Resources and Environment, 5(4), 71-77. (in Chinese with English abstract) |
[ 黄锦学, 熊德成, 杨智杰, 陈光水 (2010). 女贞和野鸭椿幼苗细根形态和细根呼吸的序级特征. 亚热带资源与环境学报, 5(4), 71-77.] | |
[20] |
Kem CC, Friend AL, Johnson JMF (2004). Fine root dynamics in a developing Populus deltoides plantation. Tree Physiology, 24, 651-660.
DOI URL PMID |
[21] |
Li A, Guo DL, Wang ZQ, Liu HY (2010). Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Functional Ecology, 24, 224-232.
DOI URL |
[22] | Liu JL, Mei L, Gu JC, Quan XK, Wang ZQ (2009). Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii: a study with in-growth core approach. Chinese Journal of Ecology, 28, 1-6. (in Chinese with English abstract) |
[ 刘金梁, 梅莉, 谷加存, 全先奎, 王政权 (2009). 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响. 生态学杂志, 28, 1-6.] | |
[23] |
Liu YK, Fan C, Li XW, Ling YH, Zhou YG, Feng MS, Huang CD (2012). Effects of thinning on fine root biomass and carbon storage of subalpine Picea asperata plantation in Western Sichuan Province, China. Chinese Journal of Plant Ecology, 36, 645-654. (in Chinese with English abstract)
DOI URL |
[ 刘运科, 范川, 李贤伟, 凌银花, 周义贵, 冯茂松, 黄从德 (2012). 间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响. 植物生态学报, 36, 645-654.]
DOI URL |
|
[24] |
Majdi H (2001). Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in Northern Sweden. Tree Physiology, 21, 1057-1061.
DOI URL PMID |
[25] |
Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiology, 29, 579-585.
DOI URL PMID |
[26] | Mei L, Wang ZQ, Zhang XJ, Yu LZ, Du Y (2008). Effects of nitrogen fertilization on fine root biomass production and turnover of Fraxinus mandshurica plantation. Chinese Journal of Ecology, 27, 1663-1668. (in Chinese with English abstract) |
[ 梅莉, 王政权, 张秀娟, 于立忠, 杜英 (2008). 施氮肥对水曲柳人工林细根生产和周转的影响. 生态学杂志, 27, 1663-1668.] | |
[27] |
Meinen C, Hertel D, Leuschner C (2009). Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: Is there evidence of below-ground overyielding? Oecologia, 161, 99-111.
URL PMID |
[28] |
Mou P, Robert HJ, Tan ZQ, Bao Z, Chen HM (2013). Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous. Plant and Soil, 364, 373-384.
DOI URL |
[29] |
Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine root production in forest ecosystems. New Phytologist, 147, 131-139.
DOI URL |
[30] |
Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lhmus K, Majdi H, Metcalfe JD, Olsthoorn AFM, Pronk AA, Vanguelova E, Weih M, Brunner I (2007). Specific root length as an indicator of environmental change. Plant Biosystems, 2007, 141, 426-442.
DOI URL |
[31] |
Pei ZQ, Zhou Y, Zheng YR, Xiao CW (2011). Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous Region, China. Chinese Journal of Plant Ecology, 35, 1182-1191. (in Chinese with English abstract)
DOI URL |
[ 裴智琴, 周勇, 郑元润, 肖春旺 (2011). 干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献. 植物生态学报, 35, 1182-1191.]
DOI URL |
|
[32] |
Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[33] | Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008). Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in north eastern China. Journal of Plant Ecology (Chinese Version), 32, 1217-1226. (in Chinese with English abstract) |
[ 师伟, 王政权, 刘金梁, 谷加存, 郭大立 (2008). 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32, 1217-1226.] | |
[34] |
Son Y, Hwang JH (2003). Fine root biomass, production and turnover in a fertilized Larix leptolepis plantation in central Korea. Ecological Research, 18, 339-346.
DOI URL |
[35] |
Wang GL, Fahey TJ, Xue S, Liu F (2013). Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia, 171, 583-590.
DOI URL PMID |
[36] |
Wang P, Mou P, Li YB (2012). Review of root nutrient foraging plasticity and root competition of plants. Chinese Journal of Plant Ecology, 36, 1184-1196. (in Chinese with English abstract)
DOI URL |
[ 王鹏, 牟溥, 李云斌 (2012). 植物根系养分捕获塑性与根竞争. 植物生态学报, 36, 1184-1196.]
DOI URL |
|
[37] | Wang Q, Li XW, Yang M, Li DH, Rong L (2007). Biomass and spatial distribution of the fine root of the Betula lumi- nifera-Hemarthria compressa composite mode. Journal of Sichuan Agricultural University, 25, 430-435. (in Chinese with English abstract) |
[ 王巧, 李贤伟, 杨渺, 李德会, 荣丽 (2007). 光皮桦木-扁穗牛鞭草复合模式细根草根生物量及空间分布. 四川农业大学学报, 25, 430-435.] | |
[38] | Wang ZH, Li RX, Hao JP, Guan QW (2011). Effects of thinning on fine root morphology in Chinese Fir plantations. Journal of Northeast Forestry University, 39(6), 3-19. (in Chinese with English abstract) |
[ 王祖华, 李瑞霞, 郝俊鹏, 关庆伟 (2011). 间伐对杉木人工林不同根序细根形态的影响. 东北林业大学学报, 39(6), 3-19.] | |
[39] | Wang ZQ, Guo DL, Wang XR, Gu JC, Mei L (2006). Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant and Soil, 288, 151-171. |
[40] |
Xia MX, Guo DL, Pregitzer KS (2010). Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074.
URL PMID |
[41] |
Xu Y, Gu JC, Dong XY, Liu Y, Wang ZQ (2011). Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China. Chinese Journal of Plant Ecology, 35, 955-964. (in Chinese with English abstract)
DOI URL |
[ 许旸, 谷加存, 董雪云, 刘颖, 王政权 (2011). 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量. 植物生态学报, 35, 955-964.]
DOI URL |
|
[42] |
Yang XY, Han YZ, Wu XG (2012). Response of fine root biomass to changes in spatial heterogeneity of soil moisture and nitrogen in Larix principis-rupprechtii forest. Chinese Journal of Plant Ecology, 36, 965-972. (in Chinese with English abstract)
DOI URL |
[ 杨秀云, 韩有志, 武小钢 (2012). 华北落叶松林细根生物量对土壤水分、氮营养空间异质性改变的响应. 植物生态学报, 36, 965-972.]
DOI URL |
|
[43] |
Yu LZ, Ding GQ, Shi JW, Yu SQ, Zhu JJ, Zhao LF (2007). Effects of fertilization on fine root diameter, root length and specific root length in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 18, 957-962. (in Chinese with English abstract)
URL PMID |
[ 于立忠, 丁国泉, 史建伟, 于水强, 朱教君, 赵连富 (2007). 施肥对日本落叶松人工林细根直径、根长和比根长的影响. 应用生态学报, 18, 957-962.]
URL PMID |
|
[44] |
Yu LZ, Ding GQ, Zhu JJ, Zhang N, Zhang XM, Ying H (2009). Effects of fertilization on nutrient concentrations of different root orders’ fine roots in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 20, 747-753. (in Chinese with English abstract)
URL PMID |
[ 于立忠, 丁国泉, 朱教君, 张娜, 张小明, 英慧 (2009). 施肥对日本落叶松不同根序细根养分浓度的影响. 应用生态学报, 20, 747-753.]
URL PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[6] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[7] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[8] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[9] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[10] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[11] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[12] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[13] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[14] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[15] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19