植物生态学报 ›› 2015, Vol. 39 ›› Issue (11): 1093-1100.DOI: 10.17521/cjpe.2015.0106
胡文海1,2,,A;*, 张斯斯2, 肖宜安1,2, 闫小红1,2
收稿日期:
2015-04-15
接受日期:
2015-09-30
出版日期:
2015-11-01
发布日期:
2015-12-02
通讯作者:
胡文海
作者简介:
# 共同第一作者
基金资助:
HU Wen-Hai1,2,*, ZHANG Si-Si2, XIAO Yi-An1,2, YAN Xiao-Hong1,2
Received:
2015-04-15
Accepted:
2015-09-30
Online:
2015-11-01
Published:
2015-12-02
Contact:
Wen-Hai HU
About author:
# Co-first authors
摘要:
植物通过提高光能利用能力和光保护途径以响应环境光强的增加, 但不同植物对环境光强增加的生理响应存在差异, 从而导致植物对光环境的适应性不一致。为探讨植物对光环境变化的生理响应及其适应机制, 该文以遮阴条件下培养1年的2种杜鹃属(Rhododendron)植物比利时杜鹃(R. hybrida)和杜鹃(R. simsii)为材料, 对其由遮阴后转入全光照下培养5天时的叶片叶绿素荧光参数及其快速光曲线变化进行了比较研究, 以期从叶片吸收光能分配和光保护机制的角度探讨这2种植物对光环境变化的适应机制。结果表明: 全光照降低了喜阴植物比利时杜鹃叶片的光化学反应和热耗散能力, 且其吸收光能分配于光化学反应和调节性能量耗散部分的比例减少, 导致光系统II反应中心过量激发能积累, 造成了叶片光抑制甚至光破坏。杜鹃作为耐阴喜光植物对光环境变化具有较强的适应性, 具有较高的光化学反应、热耗散和环式电子传递能力等内在生理特性; 在遮阴和全光照两种光环境下均能维持较高的吸收光能在光化学反应和调节性能量耗散部分的分配比例, 从而保护了光合机构的正常运行, 是其全光照强光未造成叶片光抑制的原因。
胡文海, 张斯斯, 肖宜安, 闫小红. 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制. 植物生态学报, 2015, 39(11): 1093-1100. DOI: 10.17521/cjpe.2015.0106
HU Wen-Hai,ZHANG Si-Si,XIAO Yi-An,YAN Xiao-Hong. Physiological responses and photo-protective mechanisms of two Rhododendron plants to natural sunlight after long term shading. Chinese Journal of Plant Ecology, 2015, 39(11): 1093-1100. DOI: 10.17521/cjpe.2015.0106
参数 Parameter | 比利时杜鹃 R. hybrida | 杜鹃 R. simsii | |||
---|---|---|---|---|---|
遮阴 Shade | 全光照 Sun | 遮阴 Shade | 全光照 Sun | ||
Fv/Fm | 0.793 ± 0.004a | 0.494 ± 0.029b | 0.817 ± 0.002a | 0.780 ± 0.002b | |
α | 0.392 ± 0.013a | 0.238 ± 0.018b | 0.333 ± 0.003a | 0.327 ± 0.007a | |
Jmax (μmol·m-2·s-1) | 64.9 ± 6.8a | 37.8 ± 5.3b | 63.1 ± 8.3a | 74.9 ± 4.4a | |
PARsat (μmol·m-2·s-1) | 808.8 ± 37.0a | 818.4 ± 21.2a | 849.4 ± 24.3b | 943.2 ± 17.2a |
表1 长期遮阴后全光照5天对比利时杜鹃和杜鹃叶片PSII最大光化学效率(Fv/Fm)、初始斜率(α)、最大光合电子传递速率(Jmax)和饱和光强(PARsat)的影响(平均值±标准误差, n = 5)
Table 1 Effects of natural sunlight exposure after long-term shading on the maximal quantum efficiency of PSII (Fv/Fm), initial slope (α), maximum photosynthetic electron flow (Jmax) and maximum irradiance (PARsat) in Rhododendron hybrida and R. simsii leaves (mean ± SE, n = 5)
参数 Parameter | 比利时杜鹃 R. hybrida | 杜鹃 R. simsii | |||
---|---|---|---|---|---|
遮阴 Shade | 全光照 Sun | 遮阴 Shade | 全光照 Sun | ||
Fv/Fm | 0.793 ± 0.004a | 0.494 ± 0.029b | 0.817 ± 0.002a | 0.780 ± 0.002b | |
α | 0.392 ± 0.013a | 0.238 ± 0.018b | 0.333 ± 0.003a | 0.327 ± 0.007a | |
Jmax (μmol·m-2·s-1) | 64.9 ± 6.8a | 37.8 ± 5.3b | 63.1 ± 8.3a | 74.9 ± 4.4a | |
PARsat (μmol·m-2·s-1) | 808.8 ± 37.0a | 818.4 ± 21.2a | 849.4 ± 24.3b | 943.2 ± 17.2a |
图1 长期遮阴后全光照5天比利时杜鹃和杜鹃叶片ETR (II)快速光曲线和ETR (I)/ETR (II) (平均值±标准误差, n = 5)。ETR (I)、ETR (II), 光系统I、光系统II电子传递速率; PAR, 光合有效辐射。
Fig. 1 Rapid light curves of ETR(II) and ETR(I)/ETR(II) in Rhododendron hybrida and R. simsii leaves during transition from long-term shading to 5 days of sun exposures (mean ± SE, n = 5). ETR(I), ETR(II), apparent electron transport rate at PSI and PSII; PAR, photosynthetic active radiation.
图2 长期遮阴后全光照5天比利时杜鹃和杜鹃叶片光化学猝灭(qP)和非光化学猝灭(NPQ)的快速光曲线(平均值±标准误差, n = 5)。PAR, 光合有效辐射。
Fig. 2 Rapid light curves of photochemical quenching (qP) and non-photochemical quenching (NPQ) in Rhododendron hybrida and R. simsii leaves during transition from long-term shading to 5 days of sunlight exposures (mean ± SE, n = 5). PAR, photosynthetic active radiation.
图3 长期遮阴后全光照5天比利时杜鹃和杜鹃叶片PSII光化学反应所利用的能量(Y(II))、PSII调节性能量耗散(Y(NPQ))和PSII非调节性能量耗散(Y(NO))的快速光曲线(平均值±标准误差, n = 5)。PAR, 光合有效辐射。
Fig. 3 Rapid light curves of effective PSII quantum (Y(II)), quantum yield of regulated energy dissipation (Y(NPQ)) and quantum yield of nonregulated energy dissipation (Y(NO)) in Rhododendron hybrida and R. simsii leaves during transition from long-term shading to 5 days of sunlight exposures (mean ± SE, n = 5). PAR, photosynthetic active radiation.
26 | (in Chinese with English abstract) [王博轶, 马洪军, 苏腾伟, 刘涛, 王齐 (2012). 两种热带雨林树苗对环境光强变化的生理响应和适应机制. 植物生理学报, 48, 232-240.] |
27 | Wang ML, Wei X, Tang H, Liang HL, Zhou R (2015). Effects of light intensity on growth and photosynthesis of three karst plant seedlings.Chinese Journal of Ecology, 34, 604-610. |
(in Chinese with English abstract) [王满莲, 韦霄, 唐辉, 梁惠凌, 邹蓉 (2015). 光强对三种喀斯特植物幼苗生长和光合特性的影响. 生态学杂志, 34, 604-610.] | |
28 | Way DA, Pearcy RW (2012). Sunflecks in trees and forests: From photosynthetic physiology to global change biology.Tree Physiology, 32, 1066-1081. |
29 | Wyka T, Robakowski P, Zytkowiak R (2007). Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance.Tree Physiology, 27, 1293-1306. |
30 | Xiang F, Zhou Q, Tian XR, Chen GX, Xiao Y (2014). Leaf morphology and PS II chlorophyll fluorescence parameters in leaves of Sinosenecio jishouensis in different habitats.Acta Ecologica Sinica, 34, 337-344. |
(in Chinese with English abstract) [向芬, 周强, 田向荣, 陈功锡, 肖艳 (2014). 不同生境吉首蒲儿根叶片形态和叶绿素荧光特征的比较. 生态学报, 34, 337-344.] | |
31 | Xue W, Li XY, Zhu JT, Lin LS, Wang YJ (2011). Effects of shading on leaf morphology and response characteristics of photosynthesis in Alhagi sparsifolia.Chinese Journal of Plant Ecology, 35, 82-90. |
(in Chinese with English abstract) [薛伟, 李向义, 朱军涛, 林丽莎, 王迎菊 (2011). 遮阴对疏叶骆驼刺叶形态和光合参数的影响. 植物生态学报, 35, 82-90.] | |
32 | Ye ZP, Robakowski P, Suggett DJ (2013). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules.Planta, 237, 837-847. |
1 | Aleric KM, Kirkman LK (2005). Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments.American Journal of Botany, 92, 682-689. |
2 | Baker NR (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo.Annual Review of Plant Biology, 59, 89-113. |
3 | Chen DR (2008). Rhododendron simsii., Rh. pulchrum, Rh. mucronatum, Rh. indicum.Guangdong Landscape Architecture, 30, 77-78. |
(in Chinese with English abstract) [陈定如 (2008). 映山红、锦绣杜鹃、白花杜鹃、皋月杜鹃. 广东园林, 30(2), 77-78.] | |
4 | Chen J, Mao ZJ, Ma LX, Xia YY (2008). Response of photosynthetic capacity and chlorophyll fluorescence in Quercus mongolica and Tilia amurensis seedlings after light intensity transfer.Bulletin of Botanical Research, 28, 471-476. |
(in Chinese with English abstract) [陈婕, 毛子军, 马立祥, 夏莹莹 (2008). 蒙古栎和紫椴幼苗对光环境转变的光合作用响应. 植物研究, 28, 471-476.] | |
5 | Demmig-Adams B (1998). Survey of thermal energy dissipation and pigment composition in sun and shade leaves.Plant and Cell Physiology, 39, 474-482. |
6 | Demmig-Adams B, Adams III WW (1992). Photoprotection and other responses of plants to high light stress.Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599-626. |
7 | Du N, Zhang XR, Wang W, Chen H, Tian XF, Wang RQ, Guo WH (2011). Foliar phenotypic plasticity of a warm- temperate shrub, Vitex negundo var. heterophylla, to different light environments in the field.Acta Ecologica Sinica, 31, 6049-6059. |
(in Chinese with English abstract) [杜宁, 张秀茹, 王炜, 陈华, 谭向峰, 王仁卿, 郭卫华 (2011). 荆条叶性状对野外不同光环境的表型可塑性. 生态学报, 31, 6049-6059.] | |
8 | Duan BL, Lü YW, Yin CY, Li CY (2005). Morphological and physiological plasticity of woody plant in response to high light and low light.Chinese Journal of Applied & Environmental Biology, 11, 238-245. |
(in Chinese with English abstract) [段宝利, 吕艳伟, 尹春英, 李春阳 (2005). 高光和低光下木本植物形态和生理可塑性响应. 应用与环境生物学报, 11, 238-245.] | |
9 | Feng YL, Cao KF, Feng ZL, Ma L (2002). Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species.Acta Ecologica Sinica, 22, 901-910. |
(in Chinese with English abstract) [冯玉龙, 曹坤芳, 冯志立, 马玲 (2002). 四种热带雨林树种幼苗比叶重, 光合特性和暗呼吸对生长光环境的适应. 生态学报, 22, 901-910.] | |
10 | Guan M, Jin ZX, Wang Q, Li YL, Zuo W (2014). Response of photosynthesis traits of dominant plant species to different light regimes in the secondary forest in the area of Qiandao Lake, Zhejiang, China.Chinese Journal of Applied Ecology, 25, 1615-1622. |
(in Chinese with English abstract) [管铭, 金则新, 王强, 李月灵, 左威 (2014). 千岛湖次生林优势种植物光合特性对不同光环境的响应. 应用生态学报, 25, 1615-1622.] | |
11 | Heraud P, Beardall J (2000). Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes.Photosynthesis Research, 63, 123-134. |
12 | Hu QP, Guo ZH, Li CY, Ma LY (2008). Leaf morphology and photosynthetic characteristics of seedlings of a deciduous and an evergreen broad-leaved species under different light regimes in subtropical forests.Acta Ecologica Sinica, 28, 3262-3270. |
(in Chinese with English abstract) [胡启鹏, 郭志华, 李春燕, 马履一 (2008). 不同光环境下亚热带常绿阔叶树种和落叶阔叶树种幼苗的叶形态和光合生理特征. 生态学报, 28, 3262-3270.] | |
13 | Hu WH, Zhang SS, Yan XH, Xiao YA (2014). Effects of natural sunlight on photoinhibition and photoprotection mechanisms in Rhododendron molle leaves from long term shading to sunny days. Journal of Jinggangshan University (Natural Science), 35(5), 42-46. |
(in Chinese with English abstract) [胡文海, 张斯斯, 闫小红, 肖宜安 (2014). 长期遮荫后全光照对羊踯躅叶片光抑制及光保护机制的影响. 井冈山大学学报(自然科学版),35(5), 42-46.] | |
14 | Huang W, Zhang SB, Cao KF (2010). Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII.Plant and Cell Physiology, 51, 1922-1928. |
15 | Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.Photosynthesis Research, 79, 209-218. |
16 | Li W, Zhang YL, Hu YY, Yang MS, Wu J, Zhang WF (2012). Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions.Chinese Journal of Plant Ecology, 36, 662-670. |
(in Chinese with English abstract) [李维, 张亚黎, 胡渊渊, 杨美森, 吴洁, 张旺锋 (2012). 田间条件下棉花幼叶光合特性及光保护机制. 植物生态学报, 36, 662-670.] | |
17 | Li ZZ, Liu DH, Zhao SW, Jiang CD, Shi L (2014). Mechanisms of photoinhibition induced by high light in Hosta grown outdoors.Chinese Journal of Plant Ecology, 38, 720-728. |
(in Chinese with English abstract) [李志真, 刘东焕, 赵世伟, 姜闯道, 石雷 (2014). 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 38, 720-728.] | |
18 | Miyake C, Miyata M, Shinzaki Y, Tomizawa KI (2005). CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves-relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence.Plant and Cell Physiology, 46, 629-637. |
19 | Murchie EH, Horton P (1998). Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality.Plant, Cell & Environment, 21, 139-148. |
20 | Nikiforou C, Nikolopoulos D, Manetas Y (2011). The winter- red-leaf syndrome in Pistacia lentiscus: Evidence that the anthocyanic phenotype suffers from nitrogen deficiency, low carboxylation efficiency and high risk of photoinhibition.Journal of Plant Physiology, 168, 2184-2187. |
21 | Qi X, Cao KF, Feng YL (2004). Photosynthetic acclimation to different growth light environments in seedlings of three tropical rainforest Syzygium species.Acta Phytoecologica Sinica, 28, 31-38. |
(in Chinese with English abstract) [齐欣, 曹坤芳, 冯玉龙 (2004). 热带雨林蒲桃属3个树种的幼苗光合作用对生长光强的适应. 植物生态学报, 28, 31-38.] | |
22 | Ralph PJ, Gademann R (2005). Rapid light curves: A powerful tool to assess photosynthetic activity.Aquatic Botany, 82, 222-237. |
23 | Shang B (2000). Rhobdendron hybridn’s ecological features and cultivated technigues. Journal of Fuyang Teachers College (Natural Science), 17(3), 26-28. |
(in Chinese with English abstract) [尚冰 (2000). 比利时杜鹃的生态特性与栽培技术. 阜阳师范学院学报(自然科学版), 17(3), 26-28.] | |
24 | Tang H, Wang ML, Wei JQ, Wei X, Jiang YS, Chai SF (2010). Comparison on leaf morphological and photosynthetic characteristics of Illicicum difengpi K. I. B. et K. I. M grown in full light and under canopy.Plant Physiology Communications, 46, 949-952. |
(in Chinese with English abstract) [唐辉, 王满莲, 韦记青, 韦霄, 蒋运生, 柴胜丰 (2010). 林下与全光下地枫皮叶片形态和光合特性的比较. 植物生理学通讯, 46, 949-952.] | |
25 | Urban O, Košvancová M, Marek MV, Lichtenthaler HK (2007). Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone.Tree Physiology, 27, 1207-1215. |
26 | Wang BY, Ma HJ, Su TW, Liu T, Wang Q (2012). Physiological response and acclimation to changes in light regimes in two tropical rainforest species.Plant Physiology Journal, 48, 232-240. |
[1] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[2] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[3] | 樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏. 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定[J]. 植物生态学报, 2016, 40(9): 942-951. |
[4] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[5] | 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制[J]. 植物生态学报, 2014, 38(7): 720-728. |
[6] | 张超, 占东霞, 张鹏鹏, 张亚黎, 罗宏海, 张旺锋. 棉花苞叶光呼吸和PSII热耗散对土壤水分的响应[J]. 植物生态学报, 2014, 38(4): 387-395. |
[7] | 师生波, 张怀刚, 师瑞, 李妙, 陈文杰, 孙亚男. 青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J]. 植物生态学报, 2014, 38(4): 375-386. |
[8] | 唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣. 骆驼刺在不同遮阴下的水分状况变化及其生理响应[J]. 植物生态学报, 2013, 37(4): 354-364. |
[9] | 李维, 张亚黎, 胡渊渊, 杨美森, 吴洁, 张旺锋. 田间条件下棉花幼叶光合特性及光保护机制[J]. 植物生态学报, 2012, 36(7): 662-670. |
[10] | 覃凤飞,李强,崔棹茗,李洪萍,杨智然. 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性[J]. 植物生态学报, 2012, 36(4): 333-345. |
[11] | 刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10): 1062-1074. |
[12] | 宋旭丽, 胡春梅, 孟静静, 侯喜林, 何启伟, 李新国. NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统I的光抑制[J]. 植物生态学报, 2011, 35(6): 681-686. |
[13] | 薛伟, 李向义, 朱军涛, 林丽莎, 王迎菊. 遮阴对疏叶骆驼刺叶形态和光合参数的影响[J]. 植物生态学报, 2011, 35(1): 82-90. |
[14] | 孙小玲, 许岳飞, 马鲁沂, 周禾. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报, 2010, 34(8): 989-999. |
[15] | 张亚黎, 罗毅, 姚贺盛, 田景山, 罗宏海, 张旺锋. 田间条件下海岛棉和陆地棉花铃期叶片光保护的机制[J]. 植物生态学报, 2010, 34(10): 1204-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19