植物生态学报 ›› 2010, Vol. 34 ›› Issue (10): 1204-1212.DOI: 10.3773/j.issn.1005-264x.2010.10.009
张亚黎*(), 罗毅, 姚贺盛, 田景山, 罗宏海, 张旺锋**()
收稿日期:
2009-12-09
接受日期:
2010-02-04
出版日期:
2010-12-09
发布日期:
2010-10-31
通讯作者:
张旺锋
作者简介:
** E-mail: zwf_shzu@163.com;ZHANG Ya-Li*(), LUO Yi, YAO He-Sheng, TIAN Jing-Shan, LUO Hong-Hai, ZHANG Wang-Feng**()
Received:
2009-12-09
Accepted:
2010-02-04
Online:
2010-12-09
Published:
2010-10-31
Contact:
ZHANG Wang-Feng
摘要:
研究海岛棉(Gossypium barbadense)和陆地棉(G. hirsutum)两个棉花栽培种的光合作用特性, 探讨两个栽培种光合机构的光抑制以及防御保护机制, 以期为新疆棉花高光效品种选育和高产高效栽培实践提供理论基础。在新疆生态气候条件下, 系统测定了海岛棉和陆地棉的叶片运动、叶片接受光量子通量密度(PFD)、叶片温度、叶绿素荧光参数、气体交换参数和光呼吸速率的日变化。研究结果表明: 陆地棉叶片的“横向日性”较强而海岛棉较弱, 导致海岛棉叶片接受PFD较低, 但其叶片温度较高。海岛棉叶片的光合速率和气孔导度均显著低于陆地棉。在8:00-10:00 (北京时间, 下同)海岛棉叶片的光呼吸速率略低于陆地棉, 其余时间段海岛棉和陆地棉叶片的光呼吸速率相似。不同栽培种间, 叶片的最大光化学效率和实际光化学效率的日变化均无明显差异。除14:00-16:00以外, 海岛棉叶片的表观电子传递速率和光化学猝灭系数均显著低于陆地棉。8:00以后, 海岛棉叶片的非光化学猝灭显著高于陆地棉。因此, 在新疆生态气候条件下, 海岛棉和陆地棉叶片“横向日性”运动能力和气孔导度的差异导致叶片所处的光温环境不同, 同时造成海岛棉叶片的碳同化能力较低。为阻止光合电子传递链的过度还原, 减轻光合机构的光抑制, 陆地棉叶片主要通过光合机构的电子流途径耗散激发能, 而海岛棉叶片通过热耗散途径和相对较高的光呼吸能力来耗散激发能。
张亚黎, 罗毅, 姚贺盛, 田景山, 罗宏海, 张旺锋. 田间条件下海岛棉和陆地棉花铃期叶片光保护的机制. 植物生态学报, 2010, 34(10): 1204-1212. DOI: 10.3773/j.issn.1005-264x.2010.10.009
ZHANG Ya-Li, LUO Yi, YAO He-Sheng, TIAN Jing-Shan, LUO Hong-Hai, ZHANG Wang-Feng. Mechanism for photoprotection of leaves at the bolling stage under field conditions in Gossypium barbadense and G. hirsutum. Chinese Journal of Plant Ecology, 2010, 34(10): 1204-1212. DOI: 10.3773/j.issn.1005-264x.2010.10.009
图1 垂直方向和水平方向上的光量子通量密度(A)、相对湿度和空气温度(B)的日变化。
Fig. 1 Diurnal time course of photon flux density (PFD) on a surface horizontal to the ground or perpendicular to the sun (A), air temperature and relative humidity (B).
图2 海岛棉和陆地棉叶片运动(A)、叶片接受光量子通量密度(B)和叶片温度(C)的日变化(平均值±标准误差)。
Fig. 2 Diurnal time course of leaf movement (A), leaf incident photon flux density (PFD) (B) and leaf temperature (C) of Gossypium barbadense and G. hirsutum (mean ± SE).
图3 海岛棉和陆地棉叶片净光合速率(A)、气孔导度(B)、光呼吸速率(C)和光呼吸占总光合比率(D)的日变化(平均值±标准误差)。
Fig. 3 Diurnal time course of net photosynthetic rate (Pn) (A), stomatal conductance (Gs) (B), photorespiration rate (Pr) (C) and ratio of photorepiration rate to gross photosynthetic rate (Pr / (Pr + Pn)) (D) in leaves of Gossypium barbadense and G. hirsutum (mean ± SE).
图4 海岛棉和陆地棉叶片最大光化学效率的日变化(平均值±标准误差)。
Fig. 4 Diurnal time course of maximal photochemical efficiency of PSII (Fv/Fm) in leaves of Gossypium barbadense and G. hirsutum (mean ± SE).
图5 海岛棉和陆地棉叶片实际光化学效率(A)、表观电子传递速率(B)、光化学猝灭系数(C)和非光化学猝灭(D)的日变化(平均值±标准误差)。
Fig. 5 Diurnal time course of PSII photochemical efficiency (ΦPSII) (A), electron transport rate (ETR) (B), photochemical quenching coefficient (qP) (C) and non-photochemical quenching (NPQ) (D) in leaves of Gossypium barbadense and G. hirsutum (mean ± SE).
[1] | Anderson JM, Park YI, Chow WS (1997). Photoinactivation and photoprotection of photosystem II in nature. Physiologia Plantarum, 100, 214-223. |
[2] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
URL PMID |
[3] |
Bilger W, Björkman O (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light- induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185.
DOI URL PMID |
[4] |
Björkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence at 77k among vascular plants of diverse origins. Planta, 170, 489-504.
DOI URL PMID |
[5] | Björkman O, Demmig-Adams B (1994). Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis Springer-Verlag, Berlin. 17-47. |
[6] |
Chen Z, Spreitzer (1992). How various factors influence the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynthesis Research, 31, 157-164.
URL PMID |
[7] |
Cornic G, Fresneau C (2002). Photosynthetic carbon reduction and carbon oxidation cycle are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany, 89, 887-894.
URL PMID |
[8] |
Demmig-Adams B, Adams WW III, Baker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264.
DOI URL |
[9] |
Ehleringer J, Forseth I (1980). Solar tracking by plants. Science, 210, 1094-1098.
DOI URL PMID |
[10] | Ehleringer JR, Hammond SD (1987). Solar tracking and photosynthesis in cotton leaves. Agricultural and Forest Meteorology, 39, 25-35. |
[11] |
Farage PK, Long SP (1991). The occurrence of photoinhibition in over-wintering crop of oil-seed rape (Brassica napus L.) and its correlation with changes in crop growth. Planta, 185, 279-286.
URL PMID |
[12] |
Foyer CH, Bloom AJ, Queval G, Noctor G (2009). Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annual Review of Plant Biology, 60, 455-484.
DOI URL PMID |
[13] | Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Biology, 33, 317-345. |
[14] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta, 990, 87-92. |
[15] | Guo LW (郭连旺), Xu DQ (许大全), Shen YG (沈允钢) (1995). The relationship between photoinhibition and photorespiration of leaves in cotton. Chinese Science Bulletin (科学通报), 40, 1885-1888. (in Chinese) |
[16] |
Kitao M, Lei TT (2007). Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought. Plant Biology, 9, 69-76.
DOI URL PMID |
[17] | Kornyeyev D, Logan BA, Allen RD, Holaday AS (2005). Field-grown cotton plants with elevated activity of chloroplastic glutathione reductase exhibit no significant alteration of diurnal or seasonal patterns of excitation energy partitioning and CO2 fixation. Field Crops Research, 94, 165-175. |
[18] |
Kozaki A, Takeba G (1996). Photorespiration protects C3 plants from photooxidation. Nature, 384, 557-560.
DOI URL |
[19] | Krause GH, Weis E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Biology, 42, 301-313. |
[20] | Long SP, Humphries S, Falkowski PG (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Biology, 45, 633-662. |
[21] |
Lu ZM, Chen JW, Percy RG, Zeiger E (1997). Photosynthetic rate, stomatal conductance and leaf area in two cotton species (Gossypium barbadense and Gossypium hirsutum) and their relation with heat resistance and yield. Functional Plant Biology, 24, 693-700.
DOI URL |
[22] | Lu ZM, Radin JW, Turcotte EL, Percy RG, Zeiger E (1994). High yields in advanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiologia Plantarum, 92, 266-272. |
[23] |
Mozzo M, Passarini F, Bassi R, van Amerongen H, Croce R (2008). Photoprotection in higher plants: the putative quenching site is conserved in all outer light-harvesting complexes of photosystem II. Biochimica et Biophysica Acta, 1777, 1263-1267.
URL PMID |
[24] |
Müller P, Li XP, Niyogi KK (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558-1566.
URL PMID |
[25] | Osmond CB, Grace SC (1995). Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis. Journal of Experimental Botany, 46, 1351-1362. |
[26] |
Öquist G, Chow WS, Anderson JM (1992). Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta, 186, 450-460.
URL PMID |
[27] | Oxborough K, Baker NR (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynthesis Research, 54, 135-142. |
[28] |
Park YI, Chow WS, Osmond CB, Anderson JM (1996). Electron transport to oxygen mitigates against the photoinactivation of photosystem II in vivo. Photosynthesis Research, 50, 23-32.
DOI URL PMID |
[29] |
Perry SW, Krieg DR, Hutmacher RB (1983). Photosynthetic rate control in cotton. Plant Physiology, 73, 662-665.
DOI URL PMID |
[30] | Sassenrath-Cole GF (1995). Dependence of canopy light distribution on leaf and canopy structure for two cotton (Gossypium) species. Agricultural and Forest Meteorology, 77, 55-72. |
[31] |
Scheuermann R, Biehler K, Stuhlfauth T, Fock HP (1991). Simultaneous gas exchange and fluorescence measurements indicate differences in response of sunflower, bean and maize to water stress. Photosynthesis Research, 27, 189-197.
DOI URL PMID |
[32] | Schreiber U, Bilger W, Neubauer C (1994). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin |
[33] | Thanisawanyangkura S, Sinoquet H, Rivet P, Cretenet M, Jallas E (1997). Leaf orientation and sunlit leaf area distribution in cotton. Agricultural and Forest Meteorology, 86, 1-15. |
[34] | Wingler A, Lea PJ, Quick WP, Leegood RC (2000). Photorespiration: metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 1517-1529. |
[35] | Wise RR, Sassenrath-Cole GF, Percy RG (2000). Comparison of leaf anatomy in field-grown Gossypium hirsutum and G. barbadense. Annals of Botany, 86, 731-738. |
[36] | Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004). Electron transport is the functional limitation of photosynthesis in the field-grown Pima cotton plants at high temperature. Plant, Cell & Environment, 27, 717-724. |
[37] | Zhang SR (张守仁), Gao RF (高荣孚) (2001). Light induces leaf orientation and chloroplast movements of hybrid poplar clones. Acta Ecologica Sinica (生态学报), 21, 68-74. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[4] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[5] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[6] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[7] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[8] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[9] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[10] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[11] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[12] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[13] | 韩吉梅, 张旺锋, 熊栋梁, 张亚黎. 植物光合作用叶肉导度及主要限制因素研究进展[J]. 植物生态学报, 2017, 41(8): 914-924. |
[14] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[15] | 陈良华, 赖娟, 胡相伟, 杨万勤, 张健, 王小军, 谭灵杰. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19