植物生态学报 ›› 2017, Vol. 41 ›› Issue (4): 480-488.DOI: 10.17521/cjpe.2016.0210
陈良华, 赖娟, 胡相伟, 杨万勤, 张健*(), 王小军, 谭灵杰
收稿日期:
2016-06-27
接受日期:
2016-12-25
出版日期:
2017-04-10
发布日期:
2017-05-19
通讯作者:
张健
基金资助:
Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG*(), Xiao-Jun WANG, Ling-Jie TAN
Received:
2016-06-27
Accepted:
2016-12-25
Online:
2017-04-10
Published:
2017-05-19
Contact:
Jian ZHANG
摘要:
美洲黑杨(Populus deltoides)是长江中下游及江淮平原重要的造林树种, 目前广泛栽培的美洲黑杨既有雄株品系, 也有雌株品系。为了解镉(Cd)胁迫条件下美洲黑杨雌、雄株的耐受性差异, 采用盆栽实验, 研究Cd污染(10 mg·kg-1)条件下美洲黑杨雌、雄株气体交换速率、CO2响应曲线、叶绿素荧光参数、渗透调节能力、激素含量的响应特征, 以及接种丛枝菌根真菌(Rhizophagus intraradices)对受Cd胁迫美洲黑杨雌、雄株的生理效应。结果表明: (1) Cd胁迫下, 美洲黑杨雌、雄株净光合速率、气孔导度、胞间CO2浓度、蒸腾速率、光系统II (PSII)最大光化学量子产量、PSII有效光化学量子产量、光化学淬灭系数、最大羧化速率、最大电子传递速率、磷酸丙糖利用速率均不同程度降低, 雌株的下降幅度更大, 接种丛枝菌根真菌的雌株的以上参数有了不同程度的恢复, 但对雄株没有明显影响; (2) Cd胁迫下, 美洲黑杨雌雄株的脯氨酸含量均显著增加, 接种丛枝菌根真菌进一步提高了雌株的脯氨酸含量; (3) Cd胁迫下, 美洲黑杨雌、雄株叶片生长素含量下降, 脱落酸含量增加, 雌株的变化幅度更大, 接种丛枝菌根真菌有利于恢复雌株激素的平衡。由此可见, 与雄株相比, Cd胁迫对美洲黑杨雌株气体交换速率和碳固定能力的负面影响更大, 植株光合机构受损更严重, 激素平衡更易受到影响, 表现出更弱的胁迫耐受性; 接种丛枝菌根真菌有利于增强美洲黑杨雌株的渗透调节能力并在一定程度上恢复雌株的固碳能力和激素平衡, 但菌根对雄株的效应并不显著。
陈良华, 赖娟, 胡相伟, 杨万勤, 张健, 王小军, 谭灵杰. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响. 植物生态学报, 2017, 41(4): 480-488. DOI: 10.17521/cjpe.2016.0210
Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG, Xiao-Jun WANG, Ling-Jie TAN. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution. Chinese Journal of Plant Ecology, 2017, 41(4): 480-488. DOI: 10.17521/cjpe.2016.0210
处理 Treatment | 丛枝菌根 AM | 性别 Sex | 净光合速率 Pn (µmol·m-2·s-1) | 气孔导度 Gs (mol·m-2·s-1) | 胞间CO2浓度 Ci (µmol·mol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) |
---|---|---|---|---|---|---|
对照 | - | 雄株 Male | 11.91 ± 0.26b | 0.37 ± 0.04bcd | 318.40 ± 10.05a | 4.37 ± 0.27ab |
Control | - | 雌株 Female | 13.68 ± 0.79ab | 0.51 ± 0.02ab | 310.85 ± 7.71ab | 5.50 ± 0.27a |
+ | 雄株 Male | 12.34 ± 0.34b | 0.41 ± 0.03abc | 313.96 ± 7.72ab | 5.11 ± 0.20a | |
+ | 雌株 Female | 14.43 ± 0.42a | 0.52 ± 0.05a | 313.68 ± 10.97ab | 5.37 ± 0.44a | |
Cd污染 | - | 雄株 Male | 9.70 ± 0.46c | 0.25 ± 0.02de | 270.87 ± 6.51bc | 3.48 ± 0.26bc |
Cd pollution | - | 雌株 Female | 6.58 ± 0.27d | 0.13 ± 0.02e | 243.14 ± 9.73c | 2.10 ± 0.33d |
+ | 雄株 Male | 8.86 ± 0.35c | 0.27 ± 0.02d | 273.86 ± 9.00bc | 2.95 ± 0.26cd | |
+ | 雌株 Female | 9.59 ± 0.28c | 0.30 ± 0.01cd | 288.10 ± 4.52ab | 3.26 ± 0.11bcd | |
Fs | ns | ns | ns | ns | ||
Fcd | *** | *** | *** | *** | ||
FAMF | * | ** | ns | ns | ||
Fs×cd | *** | *** | ns | ** | ||
Fs×AMF | ** | ns | * | ns | ||
Fcd×AMF | ns | ns | ns | ns | ||
Fs×cd×AMF | ** | * | ns | ** |
表1 丛枝菌根真菌对Cd胁迫下的雌、雄美洲黑杨植株气体交换速率的影响(平均值±标准误差)
Table 1 Effects of arbuscular mycorrhizae fungi (AMF) inoculation on gas exchange rate in females and males of Populus deltoides exposed to Cd pollution (mean ± SE)
处理 Treatment | 丛枝菌根 AM | 性别 Sex | 净光合速率 Pn (µmol·m-2·s-1) | 气孔导度 Gs (mol·m-2·s-1) | 胞间CO2浓度 Ci (µmol·mol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) |
---|---|---|---|---|---|---|
对照 | - | 雄株 Male | 11.91 ± 0.26b | 0.37 ± 0.04bcd | 318.40 ± 10.05a | 4.37 ± 0.27ab |
Control | - | 雌株 Female | 13.68 ± 0.79ab | 0.51 ± 0.02ab | 310.85 ± 7.71ab | 5.50 ± 0.27a |
+ | 雄株 Male | 12.34 ± 0.34b | 0.41 ± 0.03abc | 313.96 ± 7.72ab | 5.11 ± 0.20a | |
+ | 雌株 Female | 14.43 ± 0.42a | 0.52 ± 0.05a | 313.68 ± 10.97ab | 5.37 ± 0.44a | |
Cd污染 | - | 雄株 Male | 9.70 ± 0.46c | 0.25 ± 0.02de | 270.87 ± 6.51bc | 3.48 ± 0.26bc |
Cd pollution | - | 雌株 Female | 6.58 ± 0.27d | 0.13 ± 0.02e | 243.14 ± 9.73c | 2.10 ± 0.33d |
+ | 雄株 Male | 8.86 ± 0.35c | 0.27 ± 0.02d | 273.86 ± 9.00bc | 2.95 ± 0.26cd | |
+ | 雌株 Female | 9.59 ± 0.28c | 0.30 ± 0.01cd | 288.10 ± 4.52ab | 3.26 ± 0.11bcd | |
Fs | ns | ns | ns | ns | ||
Fcd | *** | *** | *** | *** | ||
FAMF | * | ** | ns | ns | ||
Fs×cd | *** | *** | ns | ** | ||
Fs×AMF | ** | ns | * | ns | ||
Fcd×AMF | ns | ns | ns | ns | ||
Fs×cd×AMF | ** | * | ns | ** |
图1 接种丛枝菌根真菌(AMF)对对照(A)和受Cd胁迫(B)美洲黑杨雌、雄株光合CO2响应曲线的影响
Fig. 1 Effects of arbuscular mycorrhizae fungi (AMF) inoculation on Pn-Ci curves of females and males of Populus deltoides under control (A) and Cd-stressed (B) conditions.
处理 Treatment | 丛枝菌根 AM | 性别 Sex | 最大羧化速率 Vcmax (µmol·m-2·s-1) | 最大电子传递速率 Jmax (µmol·m-2·s-1) | 磷酸丙糖利用率 TPU (µmol·m-2·s-1) | CO2补偿点 Г (µmol·mol-1) |
---|---|---|---|---|---|---|
对照 | - | 雄株 Male | 34.17 ± 1.14bc | 88.20 ± 1.80bc | 6.26 ± 0.14abcd | 6.20 ± 0.36b |
Control | - | 雌株 Female | 37.80 ± 0.17b | 93.60 ± 3.38b | 7.91 ± 0.64abc | 6.10 ± 0.21b |
+ | 雄株 Male | 42.57 ± 1.34b | 117.33 ± 6.77a | 8.88 ± 0.95a | 5.57 ± 0.08b | |
+ | 雌株 Female | 52.30 ± 3.13a | 137.33 ± 5.78a | 8.24 ± 0.63ab | 5.34 ± 0.12b | |
Cd 污染 | - | 雄株 Male | 25.87 ± 2.39cd | 71.20 ± 2.72cd | 4.17 ± 0.27d | 6.87 ± 0.28b |
Cd pollution | - | 雌株 Female | 22.67 ± 1.36d | 59.50 ± 3.50d | 5.19 ± 0.41bcd | 9.91 ± 0.46a |
+ | 雄株 Male | 24.17 ± 2.81d | 68.97 ± 4.34cd | 4.68 ± 0.45cd | 6.08 ± 0.20b | |
+ | 雌株 Female | 25.30 ± 1.03cd | 73.23 ± 4.52bcd | 6.54 ± 1.22abcd | 7.02 ± 0.38b | |
Fs | ns | ns | ns | ns | ||
Fcd | *** | *** | *** | *** | ||
FAMF | *** | *** | * | ns | ||
Fs×cd | ** | * | * | ns | ||
Fs×AMF | ns | * | ns | ** | ||
Fcd×AMF | *** | *** | ns | ** | ||
Fs×cd×AMF | ns | ns | ns | ** |
表2 接种丛枝菌根真菌(AMF)对受Cd胁迫美洲黑杨雌、雄株Pn-Ci曲线拟合参数的影响(平均值±标准误差)
Table 2 Effects of arbuscular mycorrhizae fungi (AMF) inoculation on parameters derived from the fitted Pn-Ci curves in females and males of Populus deltoides exposed to Cd pollution (mean ± SE)
处理 Treatment | 丛枝菌根 AM | 性别 Sex | 最大羧化速率 Vcmax (µmol·m-2·s-1) | 最大电子传递速率 Jmax (µmol·m-2·s-1) | 磷酸丙糖利用率 TPU (µmol·m-2·s-1) | CO2补偿点 Г (µmol·mol-1) |
---|---|---|---|---|---|---|
对照 | - | 雄株 Male | 34.17 ± 1.14bc | 88.20 ± 1.80bc | 6.26 ± 0.14abcd | 6.20 ± 0.36b |
Control | - | 雌株 Female | 37.80 ± 0.17b | 93.60 ± 3.38b | 7.91 ± 0.64abc | 6.10 ± 0.21b |
+ | 雄株 Male | 42.57 ± 1.34b | 117.33 ± 6.77a | 8.88 ± 0.95a | 5.57 ± 0.08b | |
+ | 雌株 Female | 52.30 ± 3.13a | 137.33 ± 5.78a | 8.24 ± 0.63ab | 5.34 ± 0.12b | |
Cd 污染 | - | 雄株 Male | 25.87 ± 2.39cd | 71.20 ± 2.72cd | 4.17 ± 0.27d | 6.87 ± 0.28b |
Cd pollution | - | 雌株 Female | 22.67 ± 1.36d | 59.50 ± 3.50d | 5.19 ± 0.41bcd | 9.91 ± 0.46a |
+ | 雄株 Male | 24.17 ± 2.81d | 68.97 ± 4.34cd | 4.68 ± 0.45cd | 6.08 ± 0.20b | |
+ | 雌株 Female | 25.30 ± 1.03cd | 73.23 ± 4.52bcd | 6.54 ± 1.22abcd | 7.02 ± 0.38b | |
Fs | ns | ns | ns | ns | ||
Fcd | *** | *** | *** | *** | ||
FAMF | *** | *** | * | ns | ||
Fs×cd | ** | * | * | ns | ||
Fs×AMF | ns | * | ns | ** | ||
Fcd×AMF | *** | *** | ns | ** | ||
Fs×cd×AMF | ns | ns | ns | ** |
处理 Treatment | 丛枝菌根 AM | 性别 Sex | Fv/Fm | ΦPSII | qP | qN |
---|---|---|---|---|---|---|
对照 | - | 雄株 Male | 0.80 ± 0.01ab | 0.72 ± 0.01a | 0.94 ± 0.01a | 0.19 ± 0.01cd |
Control | - | 雌株 Female | 0.81 ± 0.01ab | 0.73 ± 0.00a | 0.96 ± 0.00a | 0.19 ± 0.01cd |
+ | 雄株 Male | 0.81 ± 0.00ab | 0.73 ± 0.00a | 0.94 ± 0.01a | 0.24 ± 0.01bc | |
+ | 雌株 Female | 0.81 ± 0.00ab | 0.73 ± 0.00a | 0.93 ± 0.01a | 0.17 ± 0.01d | |
Cd 污染 | - | 雄株 Male | 0.78 ± 0.00bc | 0.70 ± 0.01a | 0.93 ± 0.01a | 0.21 ± 0.01cd |
Cd pollution | - | 雌株 Female | 0.69 ± 0.01e | 0.60 ± 0.02b | 0.83 ± 0.01b | 0.33 ± 0.01a |
+ | 雄株 Male | 0.76 ± 0.00cd | 0.70 ± 0.01a | 0.92 ± 0.01a | 0.26 ± 0.01b | |
+ | 雌株 Female | 0.76 ± 0.01d | 0.70 ± 0.02a | 0.93 ± 0.02a | 0.26 ± 0.01b | |
Fs | *** | ** | ** | ns | ||
Fcd | *** | *** | *** | *** | ||
FAMF | *** | ** | ns | ns | ||
Fs×cd | *** | *** | ** | *** | ||
Fs×AMF | *** | * | ** | *** | ||
Fcd×AMF | ns | * | *** | ns | ||
Fs×cd×AMF | *** | ** | *** | ns |
表3 接种丛枝菌根真菌(AMF)对Cd胁迫下美洲黑杨雌、雄株叶绿素荧光参数的影响(平均值±标准误差)
Table 3 Effects of arbuscular mycorrhizae fungi (AMF) inoculation on chlorophyll a fluorescence parameters in females and males of Populus deltoides exposed to Cd pollution (mean ± SE)
处理 Treatment | 丛枝菌根 AM | 性别 Sex | Fv/Fm | ΦPSII | qP | qN |
---|---|---|---|---|---|---|
对照 | - | 雄株 Male | 0.80 ± 0.01ab | 0.72 ± 0.01a | 0.94 ± 0.01a | 0.19 ± 0.01cd |
Control | - | 雌株 Female | 0.81 ± 0.01ab | 0.73 ± 0.00a | 0.96 ± 0.00a | 0.19 ± 0.01cd |
+ | 雄株 Male | 0.81 ± 0.00ab | 0.73 ± 0.00a | 0.94 ± 0.01a | 0.24 ± 0.01bc | |
+ | 雌株 Female | 0.81 ± 0.00ab | 0.73 ± 0.00a | 0.93 ± 0.01a | 0.17 ± 0.01d | |
Cd 污染 | - | 雄株 Male | 0.78 ± 0.00bc | 0.70 ± 0.01a | 0.93 ± 0.01a | 0.21 ± 0.01cd |
Cd pollution | - | 雌株 Female | 0.69 ± 0.01e | 0.60 ± 0.02b | 0.83 ± 0.01b | 0.33 ± 0.01a |
+ | 雄株 Male | 0.76 ± 0.00cd | 0.70 ± 0.01a | 0.92 ± 0.01a | 0.26 ± 0.01b | |
+ | 雌株 Female | 0.76 ± 0.01d | 0.70 ± 0.02a | 0.93 ± 0.02a | 0.26 ± 0.01b | |
Fs | *** | ** | ** | ns | ||
Fcd | *** | *** | *** | *** | ||
FAMF | *** | ** | ns | ns | ||
Fs×cd | *** | *** | ** | *** | ||
Fs×AMF | *** | * | ** | *** | ||
Fcd×AMF | ns | * | *** | ns | ||
Fs×cd×AMF | *** | ** | *** | ns |
图2 接种丛枝菌根真菌(AMF)对受Cd胁迫美洲黑杨雌、雄株渗透调节物质和激素的影响(平均值±标准误)。根据Tukey检验, 不同字母表示处理间差异显著(p < 0.05)。
Fig. 2 Effects of arbuscular mycorrhizae fungi (AMF) inoculation on osmotic solutes and phytohormones in females and males of Populus deltoides exposed to Cd pollution (mean ± SE). Different letters indicate significant differences between treatments (p < 0.05) according to Tukey test.
参数 Parameter | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
Fs | Fcd | FAMF | Fs×cd | Fs×AMF | Fcd×AMF | Fs×cd×AMF | |
脯氨酸 Proline | ** | *** | *** | ** | * | ** | *** |
可溶性蛋白 Soluble protein | ns | ** | *** | * | ns | * | ns |
生长素 Auxin | *** | *** | *** | *** | *** | ** | *** |
脱落酸 Abscisic acid | *** | *** | *** | *** | *** | * | *** |
表4 性别、Cd、菌根及其交互效应对渗透调节物质和激素影响的显著性检验
Table 4 Statistical significance of the single and interactive effects of sex, Cd and arbuscular mycorrhizae fungi (AMF) on osmotic solutes and phytohormones based on univariate analyses of variance.
参数 Parameter | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
Fs | Fcd | FAMF | Fs×cd | Fs×AMF | Fcd×AMF | Fs×cd×AMF | |
脯氨酸 Proline | ** | *** | *** | ** | * | ** | *** |
可溶性蛋白 Soluble protein | ns | ** | *** | * | ns | * | ns |
生长素 Auxin | *** | *** | *** | *** | *** | ** | *** |
脱落酸 Abscisic acid | *** | *** | *** | *** | *** | * | *** |
[1] | Ali B, Qian P, Jin R, Ali S, Khan M, Aziz R, Tian T, Zhou W (2014). Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biologia Plantarum, 58, 131-138. |
[2] | Benavides MP, Gallego SM, Tomaro ML (2005). Cadmium toxicity in plants.Brazilian Journal of Plant Physiology, 17, 21-34. |
[3] | Björkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.Planta, 170, 489-504. |
[4] | Burzyński M, Kłobus G (2004). Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress.Photosynthetica, 42, 505-510. |
[5] | Cao L, Wang QC, Cui DH (2006). Impact of soil cadmium contamination on chlorophyll fluorescence characters and biomass accumulation of four broad-leaved tree species seedlings.Chinese Journal of Applied Ecology, 17, 769-772. (in Chinese with English abstract)[曹玲, 王庆成, 崔东海 (2006). 土壤镉污染对四种阔叶树苗木叶绿素荧光特性和生长的影响. 应用生态学报, 17, 769-772.] |
[6] | Chen LH, Han Y, Jiang H, Korpelainen H, Li CY (2011). Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. Journal of Experimental Botany, 62, 5037-5050. |
[7] | Chen LH, Hu XW, Yang WQ, Xu ZF, Zhang DJ, Gao S (2015). The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana. Ecotoxicology and Environmental Safety, 113, 460-468. |
[8] | Chen LH, Zhang DJ, Yang WQ, Liu Y, Zhang L, Gao S (2016). Sex-specific responses of Populus deltoides to Glomus intraradices colonization and Cd pollution. Chemosphere, 155, 196-206. |
[9] | Chen LH, Zhang L, Tu LH, Xu ZF, Zhang J, Gao S (2014). Sex-related differences in physiological and ultrastructural responses of Populus cathayana to Ni toxicity. Acta Physiologiae Plantarum, 36, 1937-1946. |
[10] | Cocozza C, Trupiano D, Lustrato G, Alfano G, Vitullo D, Falasca A, Lomaglio T, de Felice V, Lima G, Ranalli G, Scippa S, Tognetti R (2015). Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization.Environmental Science and Pollution Research, 22, 19546-19561. |
[11] | DalCorso G, Farinati S, Maistri S, Furini A (2008). How plants cope with cadmium: Staking all on metabolism and gene expression.Journal of Integrative Plant Biology, 50, 1268-1280. |
[12] | Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton.Ecotoxicology and Environmental Safety, 96, 242-249. |
[13] | Farquhar GD, Von SV, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.Planta, 149, 78-90. |
[14] | Gómez-Cadenas A, Vives V, Zandalinas SI, Manzi M, Sánchez-Pérez AM, Pérez-Clemente RM, Arbona V (2015). Abscisic acid: A versatile phytohormone in plant signaling and beyond.Current Protein and Peptide Science, 16, 413-434. |
[15] | Hayward AR, Coates KE, Galer AL, Hutchinson TC, Emery RN (2013). Chelator profiling in Deschampsia cespitosa(L.) Beauv. reveals a Ni reaction, which is distinct from the ABA and cytokinin associated response to Cd. Plant Physiology and Biochemistry, 64, 84-91. |
[16] | Huang J, Ling WT, Sun YD, Liu J (2012). Impacts of arbuscular mycorrhizal fungi inoculation on the uptake of cadmium and zinc by Alfalfa in contaminated soil. Journal of Agro-Environment Science, 31, 99-105. (in Chinese with English abstract)[黄晶, 凌婉婷, 孙艳娣, 刘娟 (2012). 丛枝菌根真菌对紫花苜蓿吸收土壤中镉和锌的影响. 农业环境科学学报, 31, 99-105.] |
[17] | Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytologist, 175, 655-674. |
[18] | Li DJ, Mo JM, Fang YT, Jiang YQ (2004). Ecophysiological responses of woody plants to elevated nitrogen deposition.Journal of Tropical and Subtropical Botany, 12, 482-488. (in Chinese with English abstract)[李德军, 莫江明, 方运霆, 江远清 (2004). 木本植物对高氮沉降的生理生态响应. 热带亚热带植物学报, 12, 482-488.] |
[19] | Li YL, Jin ZX, Li JM, Guo SM, Guan M (2015). Effects of soil microbe inoculation on the growth and photosynthetic physiology of Elsholtzia splendens under copper stress. Acta Ecologica Sinica, 35, 3926-3937. (in Chinese with English abstract)[李月灵, 金则新, 李钧敏, 郭素民, 管铭 (2015). 接种土壤微生物对铜胁迫下海州香薷生长及光合生理的影响. 生态学报, 35, 3926-3937.] |
[20] | Loth-Pereda V, Orsini E, Courty PE, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F (2011). Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiology, 156, 2141-2154. |
[21] | Ma HY (2007). Changes of Endogenous Hormones in Grapevine During Its Development. Master degree dissertation, Northwest Agriculture and Forestry University, Yangling, Shaanxi. (in Chinese with English abstract)[马海燕 (2007). 葡萄生长过程中内源激素含量变化的研究. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] |
[22] | Pallara G, Todeschini V, Lingua G, Camussi A, Racchi ML (2013). Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and grown on a polluted soil. Plant Physiology and Biochemistry, 63, 131-139. |
[23] | Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, Muller B, Simonneau T, Genty B (2013). The dual effect of abscisic acid on stomata.New Phytologist, 197, 65-72. |
[24] | Pereira MP, de Almeida Rodrigues LC, Corrêa FF, de Castro EM, Ribeiro VE, Pereira FJ (2016). Cadmium tolerance in Schinus molle trees is modulated by enhanced leaf anatomy and photosynthesis. Trees, 30, 807-814. |
[25] | Prusty R, Grisafi P, Fink GR (2004). The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 101, 4153-4157. |
[26] | Ran Q, Zhong ZC (2015). Effect of AMF on the photosynthetic characteristics and growth of maize seedlings under the stress of drought, high calcium and their combination in karst area.Acta Ecologica Sinica, 35, 460-467. (in Chinese with English abstract)[冉琼, 钟章成 (2015). 模拟岩溶旱钙土壤基质中AM真菌对玉米幼苗光合生长的影响. 生态学报, 35, 460-467.] |
[27] | Rozpądek P, Wężowicz K, Nosek M, Ważny R, Tokarz K, Lembicz M, Miszalski Z, Turnau K (2015). The fungal endophyteEpichloë typhina improves photosynthesis efficiency of its host orchard grass(Dactylis glomerata). Planta, 242, 1025-1035. |
[28] | Sanità di Toppi L, Gabbrielli R (1999). Response to cadmium in higher plants.Environmental and Experimental Botany, 41, 105-130. |
[29] | Smirnoff N, Cumbes QJ (1989). Hydroxyl radical scavenging activity of compatible solutes.Phytochemistry, 28, 1057-1060. |
[30] | Stroiński A, Giżewska K, Zielezińska M (2013). Abscisic acid is required in transduction of cadmium signal to potato roots.Biologia Plantarum, 57, 121-127. |
[31] | Wang SZ, Jin ZX, Li YL, Gu YF (2015). Effects of arbuscular mycorrhizal fungi inoculation on the photosynthetic pigment contents, anti-oxidation capacity and membrane lipid peroxidation of Elsholtzia splendens leaves under copper stress. Acta Ecologica Sinica, 35, 7699-7708. (in Chinese with English abstract)[王穗子, 金则新, 李月灵, 谷银芳 (2015). 铜胁迫条件下AMF对海州香薷光合色素含量、抗氧化能力和膜脂过氧化的影响. 生态学报, 35, 7699-7708.] |
[32] | Xu X, Peng GQ, Wu CC, Korpelainen H, Li CY (2008). Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana. Tree Physiology, 28, 1751-1759. |
[33] | Zhao HX, Li Y, Duan BL, Korpelainen H, Li CY (2009). Sex-related adaptive responses of Populus cathayana to photoperiod transitions. Plant, Cell & Environment, 32, 1401-1411. |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[5] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[6] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[7] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[8] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[9] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[10] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[11] | 张琦, 叶尔江·拜克吐尔汉, 王娟. 雌雄异株树种东北鼠李营养资源需求性别二态性[J]. 植物生态学报, 2023, 47(12): 1708-1717. |
[12] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[13] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[14] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[15] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19