植物生态学报 ›› 2023, Vol. 47 ›› Issue (12): 1708-1717.DOI: 10.17521/cjpe.2022.0470
收稿日期:
2022-11-18
接受日期:
2023-04-06
出版日期:
2023-12-20
发布日期:
2023-04-20
通讯作者:
*(wangjuan@bjfu.edu.cn)
基金资助:
ZHANG Qi1, Yeerjiang BAIKETUERHAN2, WANG Juan1,*()
Received:
2022-11-18
Accepted:
2023-04-06
Online:
2023-12-20
Published:
2023-04-20
Contact:
*(wangjuan@bjfu.edu.cn)
Supported by:
摘要:
以雌雄异株植物东北鼠李(Rhamnus schneideri var. manshurica)为研究对象, 分析不同繁殖阶段雌雄植株叶片元素含量的性别差异和动态变化, 可为雌雄异株植物性别特异性资源需求及利用策略提供理论参考。该研究在吉林蛟河天然针阔混交林内建立1块23.76 hm2的永久性固定监测样地, 于2019-2021年花期和果期(共5个繁殖阶段)选择样地内一定数量的东北鼠李雌雄植株, 测定每株的叶片营养元素(氮、磷、钾、钙、镁、铁、硼)含量, 比较东北鼠李雌雄植株在不同繁殖阶段叶片各营养元素含量的差异及动态变化; 并计算各个繁殖阶段雌雄植株的花、果生物量, 利用方差分析方法检验雌雄植株各个繁殖阶段的花果生物量差异, 以分析雌雄植株叶片营养元素出现性别差异及动态变化的背后机制。结果表明: (1)东北鼠李雌雄植株的叶片营养元素含量具有显著的性别差异, 但这种性别差异仅在某些繁殖阶段存在。在2019年花期, 雌雄植株的各叶片元素含量均无显著差异, 2021年花期, 雌株叶片的磷含量显著小于雄株。在2019年果期, 雌株叶片的磷、钾含量显著小于雄株; 而在2020年果期, 雌株叶片的氮、磷、钾、钙、镁、铁、硼含量均显著大于雄株; 在2021年果期, 雌株叶片的磷、钾、镁含量均显著大于雄株。(2)无论2019年还是2021年花期, 雄株的花生物量及花数均显著大于雌株。(3)果期雌株果数和果生物量大小排序为: 2020年> 2021年> 2019年。对不同繁殖阶段叶片营养元素含量进行分析, 发现东北鼠李雌雄植株的叶片各营养元素含量存在性别差异, 然而这种性别差异在不同繁殖阶段表现不同。在花期, 雌雄植株叶片元素含量性别差异不明显, 表明雄株并不会因为大量开花造成的高繁殖投入增加叶片元素含量储存; 而在果期, 雌株的叶片营养元素含量受其繁殖活动影响, 在结实较为丰厚的年份增加元素储存, 雌雄植株叶片营养元素含量的性别差异会更为显著。表明东北鼠李雌雄植株营养元素含量的性别二态性表现程度可能受植物个体所处繁殖阶段的影响和限制, 并且雌性个体繁殖资源投入越大, 这种性别二态性的表现就会越明显。
张琦, 叶尔江·拜克吐尔汉, 王娟. 雌雄异株树种东北鼠李营养资源需求性别二态性. 植物生态学报, 2023, 47(12): 1708-1717. DOI: 10.17521/cjpe.2022.0470
ZHANG Qi, Yeerjiang BAIKETUERHAN, WANG Juan. Gender dimorphism in nutritional resource requirements of dioecious tree species Rhamnus schneideri var. manshurica. Chinese Journal of Plant Ecology, 2023, 47(12): 1708-1717. DOI: 10.17521/cjpe.2022.0470
性别 Sex | 2019年花期 Flower period in 2019 | 2019年果期 Fruit period in 2019 | 2020年果期 Fruit period in 2020 | 2021年花期 Flower period in 2021 | 2021年果期 Fruit period in 2021 |
---|---|---|---|---|---|
雌株 Female | 37 | 33 | 32 | 32 | 30 |
雄株 Male | 14 | 10 | 9 | 30 | 30 |
合计 Total | 51 | 43 | 41 | 62 | 60 |
表1 东北鼠李各繁殖阶段调查株数
Table 1 Individual number of Rhamnus schneideri var. manshurica surveyed in each stage of reproduction
性别 Sex | 2019年花期 Flower period in 2019 | 2019年果期 Fruit period in 2019 | 2020年果期 Fruit period in 2020 | 2021年花期 Flower period in 2021 | 2021年果期 Fruit period in 2021 |
---|---|---|---|---|---|
雌株 Female | 37 | 33 | 32 | 32 | 30 |
雄株 Male | 14 | 10 | 9 | 30 | 30 |
合计 Total | 51 | 43 | 41 | 62 | 60 |
变异来源 Source of variation | 氮 N | 磷 P | 钾 K | 钙 Ca | 镁 Mg | 铁 Fe | 硼 B | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
性别 Sex | 0.42 | 0.517 | 1.22 | 0.271 | 0.27 | 0.606 | 0.57 | 0.450 | 0.30 | 0.584 | 0.45 | 0.502 | 0.51 | 0.476 |
繁殖阶段 Stages of reproduction | 83.92 | <0.001 | 32.44 | <0.001 | 74.03 | <0.001 | 87.42 | <0.001 | 77.31 | <0.001 | 89.52 | <0.001 | 86.47 | 0.000 |
性别×繁殖阶段 Sex × stages of reproduction | 2.47 | 0.045 | 7.41 | <0.001 | 4.28 | 0.002 | 2.16 | 0.074 | 4.3 | 0.002 | 3.27 | 0.012 | 2.70 | 0.031 |
表2 性别和繁殖阶段对东北鼠李叶片营养元素含量的影响
Table 2 Effects of gender and reproduction stage on nutrient contents in leaves of Rhamnus schneideri var. manshurica
变异来源 Source of variation | 氮 N | 磷 P | 钾 K | 钙 Ca | 镁 Mg | 铁 Fe | 硼 B | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
性别 Sex | 0.42 | 0.517 | 1.22 | 0.271 | 0.27 | 0.606 | 0.57 | 0.450 | 0.30 | 0.584 | 0.45 | 0.502 | 0.51 | 0.476 |
繁殖阶段 Stages of reproduction | 83.92 | <0.001 | 32.44 | <0.001 | 74.03 | <0.001 | 87.42 | <0.001 | 77.31 | <0.001 | 89.52 | <0.001 | 86.47 | 0.000 |
性别×繁殖阶段 Sex × stages of reproduction | 2.47 | 0.045 | 7.41 | <0.001 | 4.28 | 0.002 | 2.16 | 0.074 | 4.3 | 0.002 | 3.27 | 0.012 | 2.70 | 0.031 |
图1 东北鼠李雌雄植株花期叶片营养元素含量动态变化(平均值±标准差)。不同大写字母表示雌雄植株间差异显著(p < 0.05), 不同小写字母表示年份间差异显著(p < 0.05)。
Fig. 1 Dynamic changes of nutrient contents in leaves of male and female Rhamnus schneideri var. manshurica in flower periods (mean ± SD). Different uppercase letters indicate significant differences between male and female plants (p < 0.05), and different lowercase letters indicate significant differences between years (p < 0.05). B, boron; Ca, calcium; Fe, ferrum; K, potassium; Mg, magnesium; N, nitrogen; P, phosphorus.
图2 东北鼠李雌雄植株果期叶片营养元素含量动态变化(平均值±标准差)。不同大写字母表示雌雄植株间差异显著(p < 0.05), 不同小写字母表示年份间差异显著(p < 0.05)。
Fig. 2 Dynamic changes of nutrient contents in leaves of male and female Rhamnus schneideri var. manshurica in fruit periods (mean ± SD). Different uppercase letters indicate significant differences between male and female plants (p < 0.05), and different lowercase letters indicate significant differences between years (p < 0.05). B, boron; Ca, calcium; Fe, ferrum; K, potassium; Mg, magnesium; N, nitrogen; P, phosphorus.
图3 东北鼠李不同繁殖阶段雌雄植株花生物量及花数的差异。A、B, 2019年花期。C、D, 2021年花期。
Fig. 3 Differences in flower biomass and flower number between male and female Rhamnus schneideri var. manshurica at different stages of reproduction. A, B, Flower period in 2019. C, D, Flower period in 2021.
年份 year | 株数 Tree number | 果生物量 Fruit biomass (g) | 果数 Fruit number |
---|---|---|---|
2019 | 33 | 0.14 ± 0.04b | 9.08 ± 2.67b |
2020 | 32 | 0.71 ± 0.26a | 37.21 ± 13.73a |
2021 | 30 | 0.31 ± 0.11ab | 12.74 ± 4.76b |
总计 Total | 95 | 0.39 ± 0.10 | 19.71 ± 5.07 |
表3 东北鼠李雌株果期果生物量及果数的差异(平均值±标准误)
Table 3 Differences in fruit biomass and fruit number of female Rhamnus schneideri var. manshurica in fruit stage (mean ± SE)
年份 year | 株数 Tree number | 果生物量 Fruit biomass (g) | 果数 Fruit number |
---|---|---|---|
2019 | 33 | 0.14 ± 0.04b | 9.08 ± 2.67b |
2020 | 32 | 0.71 ± 0.26a | 37.21 ± 13.73a |
2021 | 30 | 0.31 ± 0.11ab | 12.74 ± 4.76b |
总计 Total | 95 | 0.39 ± 0.10 | 19.71 ± 5.07 |
性别 Sex | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) |
---|---|---|---|
雌株 Female | 1.97 ± 0.02 | 0.80 ± 0.01 | 1.41 ± 0.00 |
雄株 Male | 1.96 ± 0.02 | 0.80 ± 0.01 | 1.41 ± 0.00 |
p | 0.622 | 0.974 | 0.408 |
表4 东北鼠李雌雄植株土壤(0-10 cm)元素含量及差异(平均值±标准误)
Table 4 Soil (0-10 cm) element content and differences between male and female plants of Rhamnus schneideri var. manshurica (mean ± SE)
性别 Sex | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) |
---|---|---|---|
雌株 Female | 1.97 ± 0.02 | 0.80 ± 0.01 | 1.41 ± 0.00 |
雄株 Male | 1.96 ± 0.02 | 0.80 ± 0.01 | 1.41 ± 0.00 |
p | 0.622 | 0.974 | 0.408 |
[1] |
Ågren GI, Wetterstedt JÅM, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960.
DOI URL |
[2] | Ågren J, Danell K, Elmqvist T, Ericson L, Hjältén J (1999). Sexual dimorphism and biotic interactions//Geber MA, Dawson TE, Delph LF. Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin. 217-246. |
[3] |
Aschan G, Pfanz H (2003). Non-foliar photosynthesis—A strategy of additional carbon acquisition. Flora, 198, 81-97.
DOI URL |
[4] |
Ashman TL (1994). A dynamic perspective on the physiological cost of reproduction in plants. The American Naturalist, 144, 300-316.
DOI URL |
[5] |
Bullock SH (1984). Biomass and nutrient allocation in a neotropical dioecious palm. Oecologia, 63, 426-428.
DOI PMID |
[6] | Chen LH, Dong TF, Duan BL (2014). Sex-specific carbon and nitrogen partitioning under N deposition in Populus cathayana. Trees, 28, 793-806. |
[7] | Chen YL, Zhou BK (1982). Flora of China. Tomus 48(1). Rhamnaceae. Science Press, Beijing. |
[ 陈艺林, 周邦楷 (2004). 中国植物志. 第四十八卷(第一分册). 鼠李科. 科学出版社, 北京.] | |
[8] |
Cipollini ML, Stiles EW (1991). Costs of reproduction in Nyssa sylvatica: sexual dimorphism in reproductive frequency and nutrient flux. Oecologia, 86, 585-593.
DOI PMID |
[9] | Dawson TE, Geber MA (1999). Sexual dimorphism in physiology and morphology//Geber MA, Dawson TE, Delph LF. Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin. 175-215. |
[10] |
de Marco A, Vittozzi P, de Santo AV (2023). Elements dynamics, from leaf to stable leaf litter residue and soil, for two functional types of tree planted on volcanic deposits. Plant and Soil, 482, 127-140.
DOI |
[11] | Delph LF (1999). Sexual dimorphism in life history//Geber MA, Dawson TE, Delph LF. Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin. 149-173. |
[12] |
Ehlers BK, Thompson JD (2004). Temporal variation in sex allocation in hermaphrodites of gynodioecious Thymus vulgaris L. Journal of Ecology, 92, 15-23.
DOI URL |
[13] | Gao M, Chen YC, Wu LW, Wang YD (2019). Dynamic patterns of sex-specific difference of water and nitrogen use efficiency in Litsea cubeba. Scientia Silvae Sinicae, 55(4), 62-68. |
[ 高暝, 陈益存, 吴立文, 汪阳东 (2019). 山鸡椒水分及氮素利用效率性别特异性动态. 林业科学, 55(4), 62-68.] | |
[14] |
García MB, Antor RJ (1995). Sex ratio and sexual dimorphism in the dioecious Borderea pyrenaica (Dioscoreaceae). Oecologia, 101, 59-67.
DOI PMID |
[15] |
Hemborg ÅM (1999). Sexual differences in biomass and nutrient allocation of first-year Silene dioica plants. Oecologia, 118, 453-460.
DOI PMID |
[16] | Huang KS, Pan XF, Ou J, Zeng XY, Liao JM, Liang WH (2021). Variation of nutrient elements content in leaves of different varieties of Illicium verum at flowering and fruit-setting stage and regularity of flowers and fruits dropping. Journal of West China Forestry Science, 50(6), 1-7. |
[ 黄开顺, 潘晓芳, 欧军, 曾祥艳, 廖健明, 梁文汇 (2021). 不同品种八角开花坐果期叶片营养元素含量变化及落花落果规律. 西部林业科学, 50(6), 1-7.] | |
[17] |
Jiang H, Zhang S, Lei YB, Xu G, Zhang D (2016). Alternative growth and defensive strategies reveal potential and gender specific trade-offs in dioecious plants Salix paraplesia to nutrient availability. Frontiers in Plant Science, 7, 1064. DOI: 10.3389/fpls.2016.01064.
PMID |
[18] |
Kachi N, Hirose T (1983). Limiting nutrients for plant growth in coastal sand dune soils. Journal of Ecology, 71, 937-944.
DOI URL |
[19] | Li H, C Crabbe MJ, Xu F, Wang W, Ma L, Niu R, Gao X, Li X, Zhang P, Ma X, Chen H (2017). Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China. PLoS ONE, 12, e0185163. DOI: 10.1371/journal.pone.0185163. |
[20] | Li Z, Wu N, Liu T, Tang M, Chen H (2020). Gender-related responses of dioecious plant Populus cathayana to AMF, drought and planting pattern. Scientific Reports, 10, 11530. DOI: 10.1038/s41598-020-68112-0. |
[21] | Liu M, Ma ZG, Wang W, Zhang JL (2018). Dynamic variation and resorption efficiencies of foliar nutrients in Fraxinus pennysylvanica street tree. Tianjin Agricultural Sciences, 24(8), 74-76. |
[ 刘明, 马作国, 王武, 张金龙 (2018). 洋白蜡行道树叶片养分动态及再吸收特征. 天津农业科学, 24(8), 74-76.] | |
[22] |
Mahajan G, Chauhan BS, Timsina J, Singh PP, Singh K (2012). Crop performance and water- and nitrogen-use efficiencies in dry-seeded rice in response to irrigation and fertilizer amounts in northwest India. Field Crops Research, 134, 59-70.
DOI URL |
[23] |
McDowell SCL, McDowell NG, Marshall JD, Hultine K (2000). Carbon and nitrogen allocation to male and female reproduction in Rocky Mountain Douglas-fir (Pseudotsuga menziesii var. glauca, Pinaceae). American Journal of Botany, 87, 539-546.
PMID |
[24] |
Montesinos D, Villar-Salvador P, García-Fayos P, Verdú M (2012). Genders in Juniperus thurifera have different functional responses to variations in nutrient availability. New Phytologist, 193, 705-712.
DOI PMID |
[25] |
Ning P, Li S, Yu P, Zhang Y, Li CJ (2013). Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Research, 144, 19-27.
DOI URL |
[26] | Nowak-Dyjeta K, Giertych MJ, Thomas P, Iszkuło G (2017). Males and females of Juniperus communis L. and Taxus baccata L. show different seasonal patterns of nitrogen and carbon content in needles. Acta Physiologiae Plantarum, 39, 191. DOI: 10.1007/s11738-017-2489-3. |
[27] |
Obeso JR (2002). The costs of reproduction in plants. New Phytologist, 155, 321-348.
DOI PMID |
[28] |
Pearse IS, Koenig WD, Kelly D (2016). Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytologist, 212, 546-562.
DOI PMID |
[29] | Pers-Kamczyc E, Mąderek E, Kamczyc J (2022). Seed quantity or quality?—Reproductive responses of females of two dioecious woody species to long-term fertilisation. International Journal of Molecular Sciences, 23, 3187. DOI: 10.3390/ijms23063187. |
[30] |
Pickup M, Barrett SCH (2012). Reversal of height dimorphism promotes pollen and seed dispersal in a wind-pollinated dioecious plant. Biology Letters, 8, 245-248.
DOI PMID |
[31] | Rabska M, Pers-Kamczyc E, Żytkowiak R, Adamczyk D, Iszkuło G (2020). Sexual dimorphism in the chemical composition of male and female in the dioecious tree, Juniperus communis L., growing under different nutritional conditions. International Journal of Molecular Sciences, 21, 8094. DOI: 10.3390/ijms21218094. |
[32] | Rabska M, Warwick NWM, Iszkuło G, Gross CL (2021). Intersexual differences in leaf size and shape in dioecious Adriana tomentosa. Journal of Plant Ecology, 14, 67-83. |
[33] |
Robakowski P, Pers-Kamczyc E, Ratajczak E, Thomas PA, Ye ZP, Rabska M, Iszkuło G (2018). Photochemistry and antioxidative capacity of female and male Taxus baccata L. acclimated to different nutritional environments. Frontiers in Plant Science, 9, 742. DOI: 10.3389/fpls. 2018.00742.
PMID |
[34] |
Sánchez Vilas J, Pannell JR (2011). Sexual dimorphism in resource acquisition and deployment: both size and timing matter. Annals of Botany, 107, 119-126.
DOI PMID |
[35] | Sánchez Vilas J, Retuerto R (2017). Sexual dimorphism in water and nitrogen use strategies in Honckenya peploides: timing matters. Journal of Plant Ecology, 10, 702-712. |
[36] | Song AY, Dong LS, Chen JX, Peng L, Liu JT, Xia JB, Chen YP (2019). Comparation of seasonal dynamics of mineral elements contents in different organs of male and female plants of Fraxinus velutina. Scientia Silvae Sinicae, 55(10), 162-170. |
[ 宋爱云, 董林水, 陈纪香, 彭玲, 刘京涛, 夏江宝, 陈印平 (2019). 绒毛白蜡雌雄株不同器官矿质元素季节动态的比较. 林业科学, 55(10), 162-170.] | |
[37] |
Song HF, Cai ZY, Liao J, Tang DT, Zhang S (2019). Sexually differential gene expressions in poplar roots in response to nitrogen deficiency. Tree Physiology, 39, 1614-1629.
DOI PMID |
[38] |
Teitel Z, Pickup M, Field DL, Barrett SCH (2016). The dynamics of resource allocation and costs of reproduction in a sexually dimorphic, wind-pollinated dioecious plant. Plant Biology, 18, 98-103.
DOI PMID |
[39] |
Wang J, Zhang C, Zhao X,von Gadow K (2014). Reproductive allocation of two dioecious Rhamnus species in temperate forests of northeast China. Iforest - Biogeosciences and Forestry, 7, 25-32.
DOI URL |
[40] | Wang LB, Huang YH, Fan CY, Zhang XN, Wang J (2020). Study on gender differentiation of reproduction cost in Rhamnus schneideri var. manshurica. Journal of Central South University of Forestry & Technology, 40(12), 69-74. |
[ 王俪玢, 黄云浩, 范春雨, 张新娜, 王娟 (2020). 东北鼠李生殖耗费的性别分异研究. 中南林业科技大学学报, 40(12), 69-74.] | |
[41] |
Xia Z, He Y, Yu L, Lv R, Korpelainen H, Li C (2020). Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution. New Phytologist, 225, 782-792.
DOI URL |
[42] |
Yu K, Fan QL, Wang Y, Wei JR, Ma Q, Yu D, Li JR (2013). Function of leafy sepals in Paris polyphylla: photosynthate allocation and partitioning to the fruit and rhizome. Functional Plant Biology, 40, 393-399.
DOI URL |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[3] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[4] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[5] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[6] | 邹金莲, 张志强. 性选择与性冲突理论在植物繁殖生态学中的应用与进展[J]. 植物生态学报, 2022, 46(9): 984-994. |
[7] | 王玉贤, 侯盟, 谢言言, 刘左军, 赵志刚, 路宁娜. 青藏高原高寒草甸植物花寿命与花吸引特征的关系及其对雌性繁殖成功的影响[J]. 植物生态学报, 2020, 44(9): 905-915. |
[8] | 李蕾, 王一峰, 苟文霞, 马文梅, 蒋春玲. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11): 1164-1171. |
[9] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[10] | 张亚洲, 王淞伟, 何小芳, 杨扬, 陈建国, 孙航. 高山垫状植物团状福禄草开花面积与方位随海拔的变化及其适应性[J]. 植物生态学报, 2020, 44(11): 1154-1163. |
[11] | 张婵, 安宇梦, Yun JÄSCHKE, 王林林, 周知里, 王力平, 杨永平, 段元文. 青藏高原及周边高山地区的植物繁殖生态学研究进展[J]. 植物生态学报, 2020, 44(1): 1-21. |
[12] | 陈林, 王磊, 杨新国, 宋乃平, 李月飞, 苏莹, 卞莹莹, 祝忠有, 孟文婷. 荒漠草原猪毛蒿种群繁殖特征的土壤驱动因子分析[J]. 植物生态学报, 2019, 43(1): 65-76. |
[13] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[14] | 郭瑞, 周际, 刘琪, 顾峰雪. 松嫩退化草地芦苇不同叶位叶片营养元素代谢特征[J]. 植物生态学报, 2018, 42(7): 734-740. |
[15] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19