植物生态学报 ›› 2022, Vol. 46 ›› Issue (9): 984-994.DOI: 10.17521/cjpe.2021.0409
收稿日期:
2021-11-12
接受日期:
2022-03-28
出版日期:
2022-09-20
发布日期:
2022-10-19
通讯作者:
张志强
作者简介:
张志强:ORCID:0000-0002-6907-3481(zq.zhang@ynu.edu.cn)基金资助:
ZOU Jin-Lian, ZHANG Zhi-Qiang()
Received:
2021-11-12
Accepted:
2022-03-28
Online:
2022-09-20
Published:
2022-10-19
Contact:
ZHANG Zhi-Qiang
Supported by:
摘要:
性选择与性冲突是植物繁殖性状多样性及性系统演化的重要动力, 二者密切相关却又有所区别, 理解它们的作用机制及其影响对于植物繁殖生态学的研究具有重要意义。当前, 性选择与性冲突理论在植物繁殖生态学中的运用已取得长足进展, 但国内相关研究较少, 对该领域关注不够。因此, 该文对该领域的基本理论和研究进展进行了综述。首先, 阐述性选择与性冲突理论在植物研究中的发展及其运用基础; 其次, 分别从授粉前和授粉后两个阶段详细介绍性选择与性冲突在有花植物繁殖过程中的作用机制及其影响, 并指出环境因素对它们所产生的影响; 最后, 对当前研究存在的不足及该领域未来的研究方向进行总结和展望。希望以此增强人们对性选择和性冲突理论的认识, 促进其在植物繁殖生态学中的运用与发展。
邹金莲, 张志强. 性选择与性冲突理论在植物繁殖生态学中的应用与进展. 植物生态学报, 2022, 46(9): 984-994. DOI: 10.17521/cjpe.2021.0409
ZOU Jin-Lian, ZHANG Zhi-Qiang. Application and progress of sexual selection and sexual conflict theory in plant reproductive evolutionary ecology. Chinese Journal of Plant Ecology, 2022, 46(9): 984-994. DOI: 10.17521/cjpe.2021.0409
[1] |
Adhikari PB, Liu XY, Wu XY, Zhu SW, Kasahara RD (2020). Fertilization in flowering plants: an odyssey of sperm cell delivery. Plant Molecular Biology, 103, 9-32.
DOI URL |
[2] |
Alonzo SH, Servedio MR (2019). Grey zones of sexual selection: Why is finding a modern definition so hard? Proceedings of the Royal Society B: Biological Sciences, 286, 20191325. DOI: 10.1098/rspb.2019.1325.
DOI |
[3] |
Althiab-Almasaud R, Chen Y, Maza E, Djari A, Frasse P, Mollet JC, Chervin C (2021). Ethylene signaling modulates tomato pollen tube growth through modifications of cell wall remodeling and calcium gradient. The Plant Journal, 107, 893-908.
DOI PMID |
[4] | Arnold SJ (1994). Is there a unifying concept of sexual selection that applies to both plants and animals? The American Naturalist, 144, S1-S12. |
[5] | Bai WN, Zhang DY (2005). Sexual interference in cosexual plants and its evolutionary implications. Acta Phytoecologica Sinica, 29, 672-679. |
[白伟宁, 张大勇 (2005). 雌雄同体植物的性别干扰及其进化意义. 植物生态学报, 29, 672-679.]
DOI |
|
[6] |
Barrett SCH (2002). The evolution of plant sexual diversity. Nature Reviews Genetics, 3, 274-284.
PMID |
[7] |
Barrett SCH, Harder LD (2017). The ecology of mating and its evolutionary consequences in seed plants. Annual Review of Ecology, Evolution, and Systematics, 48, 135-157.
DOI URL |
[8] | Bateman AJ (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349-368. |
[9] |
Beekman M, Nieuwenhuis B, Ortiz-Barrientos D, Evans JP (2016). Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150541. DOI: 10.1098/rstb.2015.0541.
DOI |
[10] | Bell JM, Karron JD, Mitchell RJ (2005). Interspecific competition for pollination lowers seed production and outcrossing in Mimulus ringens. Ecology, 86, 762-771. |
[11] |
Bernasconi G, Ashman TL, Birkhead TR, Bishop JDD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, Taylor D, Till-Bottraud I, Ward PI, Zeh DW, Hellriegel B (2004). Evolutionary ecology of the prezygotic stage. Science, 303, 971-975.
DOI URL |
[12] |
Camargo ID, Nattero J, Careaga SA, Núñez-Farfán J (2017). Flower-level developmental plasticity to nutrient availability in Datura stramonium: implications for the mating system. Annals of Botany, 120, 603-615.
DOI PMID |
[13] |
Christopher DA, Mitchell RJ, Karron JD (2020). Pollination intensity and paternity in flowering plants. Annals of Botany, 125, 1-9.
DOI PMID |
[14] | Cruzan MB (1990). Variation in pollen size, fertilization ability, and postfertilization siring ability in Erythronium grandiflorum. Evolution, 44, 843-856. |
[15] | Dai C, Galloway LF (2012). Male flowers are better fathers than hermaphroditic flowers in andromonoecious Passiflora incarnata. New Phytologist, 193, 787-796. |
[16] | Darwin C (1859). On the Origins of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. J Murray, London. |
[17] | Darwin C (1871). The Descent of Man and Selection in Relation to Sex. J Murray, London. |
[18] |
Delph LF, Ashman TL (2006). Trait selection in flowering plants: How does sexual selection contribute? Integrative and Comparative Biology, 46, 465-472.
DOI PMID |
[19] | Delph LF, Gehring JL, Arntz AM, Levri M, Frey FM (2005). Genetic correlations with floral display lead to sexual dimorphism in the cost of reproduction. The American Naturalist, 166, S31-S41. |
[20] |
Delph LF, Gehring JL, Frey FM, Arntz AM, Levri M (2004). Genetic constraints on floral evolution in a sexually dimorphic plant revealed by artificial selection. Evolution, 58, 1936-1946.
PMID |
[21] |
Duffy KJ, Mdlalose ZM, Johnson SD (2021). Sexual conflict in hermaphroditic flowers of an African Aloe. International Journal of Plant Sciences, 182, 238-243.
DOI URL |
[22] |
Fisher RA (1915). The evolution of sexual preference. The Eugenics Review, 7, 184-192.
PMID |
[23] | Goran A, Locke R (2005). Sexual Conflict. Princeton University Press, Princeton. |
[24] |
He YP, Duan YW, Liu JQ, Smith WK (2005). Floral closure in response to temperature and pollination in Gentiana straminea Maxim. (Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau. Plant Systematics and Evolution, 256, 17-33.
DOI URL |
[25] |
Huang SQ, Wang XP, Sun SG (2016). Are long corolla tubes in Pedicularis driven by pollinator selection? Journal of Integrative Plant Biology, 58, 698-700.
DOI URL |
[26] |
Kokko H, Jennions MD (2014). The relationship between sexual selection and sexual conflict. Cold Spring Harbor Perspectives in Biology, 6, a017517. DOI: 10.1101/cshperspect.a017517.
DOI |
[27] | Kraus E (2010). A Review of Sexual Conflict Theory: the Battle of the Sexes. Master degree dissertation, Kansas State University, Kansas. 1-19. |
[28] |
Kyogoku D, Kataoka Y, Kondoh M (2019). Who determines the timing of inflorescence closure of a sexual dandelion? Pollen donors versus recipients. Evolutionary Ecology, 33, 701-712.
DOI URL |
[29] |
Lankinen Å, Armbruster WS, Antonsen L (2007). Delayed stigma receptivity in Collinsia heterophylla (Plantaginaceae): genetic variation and adaptive significance in relation to pollen competition, delayed self-pollination, and mating-system evolution. American Journal of Botany, 94, 1183-1192.
DOI PMID |
[30] |
Lankinen Å, Hellriegel B, Bernasconi G (2006). Sexual conflict over floral receptivity. Evolution, 60, 2454-2465.
PMID |
[31] |
Lankinen Å, Hydbom S, Strandh M (2017). Sexually antagonistic evolution caused by male-male competition in the pistil. Evolution, 71, 2359-2369.
DOI PMID |
[32] |
Lankinen Å,Karlsson Green K (2015). Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AoB PLANTS, 7, plv008. DOI: 10.1093/aobpla/plv008.
DOI |
[33] |
Lankinen A, Kiboi S (2007). Pollen donor identity affects timing of stigma receptivity in Collinsia heterophylla (Plantaginaceae): a sexual conflict during pollen competition? The American Naturalist, 170, 854-863.
DOI PMID |
[34] |
Lankinen Å, Maad J, Armbruster WS (2009). Pollen-tube growth rates in Collinsia heterophylla (Plantaginaceae): one-donor crosses reveal heritability but no effect on sporophytic-offspring fitness. Annals of Botany, 103, 941-950.
DOI PMID |
[35] |
Lankinen Å, Madjidian JA (2011). Enhancing pollen competition by delaying stigma receptivity: pollen deposition schedules affect siring ability, paternal diversity, and seed production in Collinsia heterophylla (Plantaginaceae). American Journal of Botany, 98, 1191-1200.
DOI PMID |
[36] |
Lankinen Å, Smith HG, Andersson S, Madjidian JA (2016). Selection on pollen and pistil traits during pollen competition is affected by both sexual conflict and mixed mating in a self-compatible herb. American Journal of Botany, 103, 541-552.
DOI PMID |
[37] |
Lankinen Å, Strandh M (2016). Differential selection on pollen and pistil traits in relation to pollen competition in the context of a sexual conflict over timing of stigma receptivity. AoB PLANTS, 8, plw061. DOI: 10.1093/aobpla/plw061.
DOI |
[38] |
Lankinen Å, Strandh M (2019). Can sexual selection cause divergence in mating system-related floral traits? International Journal of Plant Sciences, 180, 996-1003.
DOI URL |
[39] | Liao WJ, Zhang QG, Zhang DY (2003). A preliminary study on the reproductive features of Veratrum nigrum along an altitudinal gradient. Acta Phytoecologica Sinicae, 27, 240-248. |
[廖万金, 张全国, 张大勇 (2003). 不同海拔藜芦种群繁殖特征的初步研究. 植物生态学报, 27, 240-248.]
DOI |
|
[40] |
Lloyd DG, Yates JMA (1982). Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified by Wahlenbergia albomarginata (Campanulaceae). Evolution, 36, 903-913.
DOI URL |
[41] |
Lobaton J, Andrew R, Duitama J, Kirkland L, Macfadyen S, Rader R (2021). Using RNA-seq to characterize pollen-stigma interactions for pollination studies. Scientific Reports, 11, 6635. DOI: 10.1038/s41598-021-85887-y.
DOI |
[42] | Lynn A, Piotter E, Harrison E, Galen C (2020). Sexual and natural selection on pollen morphology in Taraxacum. American Journal of Botany, 107, 364-374. |
[43] |
Madjidian JA, Hydbom S, Lankinen Å (2012). Influence of number of pollinations and pollen load size on maternal fitness costs in Collinsia heterophylla: implications for existence of a sexual conflict over timing of stigma receptivity. Journal of Evolutionary Biology, 25, 1623-1635.
DOI PMID |
[44] |
Madjidian JA, Lankinen A (2009). Sexual conflict and sexually antagonistic coevolution in an annual plant. PLOS ONE, 4, e5477. DOI: 10.1371/journal.pone.0005477.
DOI |
[45] |
Marshall DL, Evans AS (2016). Can selection on a male mating character result in evolutionary change? A selection experiment on California wild radish, Raphanus sativus, American Journal of Botany, 103, 553-567.
DOI PMID |
[46] |
Mayfield JA, Fiebig A, Johnstone SE, Preuss D (2001). Gene families from the Arabidopsis thaliana pollen coat proteome. Science, 292, 2482-2485.
DOI URL |
[47] |
Mays HL Jr, Hill GE (2004). Choosing mates: good genes versus genes that are a good fit. Trends in Ecology & Evolution, 19, 554-559.
DOI URL |
[48] |
Mazer SJ, Hendrickson BT, Chellew JP, Kim LJ, Liu JW, Shu J, Sharma MV (2018). Divergence in pollen performance between Clarkia sister species with contrasting mating systems supports predictions of sexual selection. Evolution, 72, 453-472.
DOI URL |
[49] | McCallum B, Chang SM (2016). Pollen competition in style: effects of pollen size on siring success in the hermaphroditic common morning glory, Ipomoea purpurea. American Journal of Botany, 103, 460-470. |
[50] | Moore JC, Pannell JR (2011). Sexual selection in plants. Current Biology, 21, R176-R182. |
[51] |
Murphy CG (1998). Interaction-independent sexual selection and the mechanisms of sexual selection. Evolution, 52, 8-18.
DOI PMID |
[52] |
Niu Y, Yang Y, Zhang ZQ, Li ZM, Sun H (2011). Floral closure induced by pollination in gynodioecious Cyananthus delavayi (Campanulaceae): effects of pollen load and type, floral morph and fitness consequences. Annals of Botany, 108, 1257-1268.
DOI PMID |
[53] |
Olito C, Connallon T (2019). Sexually antagonistic variation and the evolution of dimorphic sexual systems. The American Naturalist, 193, 688-701.
DOI PMID |
[54] |
Pannell JR, Labouche AM (2013). The incidence and selection of multiple mating in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120051. DOI: 10.1098/rstb.2012.0051.
DOI |
[55] | Parker GA (1979). Sexual selection and sexual conflict//Blum MS, Blum NA. Sexual Selection Reproductive Competition in Insects. Academic Press, London. 123-166. |
[56] | Paterno GB, Silveira CL, Kollmann J, Westoby M, Fonseca CR (2020). The maleness of larger angiosperm flowers. Proceedings of the National Academy of Sciences of the United States of America, 117, 10921-10926. |
[57] |
Prasad NG, Bedhomme S (2006). Sexual conflict in plants. Journal of Genetics, 85, 161-164.
DOI PMID |
[58] | Prum RO (2017). The Evolution of Beauty: How Darwin’s Forgotten Theory of Mate Choice Shapes the Animal World and Us. Doubleday Press, New York. |
[59] |
Rowe M, Veerus L, Trosvik P, Buckling A, Pizzari T (2020). The reproductive microbiome: an emerging driver of sexual selection, sexual conflict, mating systems, and reproductive isolation. Trends in Ecology & Evolution, 35, 220-234.
DOI URL |
[60] |
Schärer L, Janicke T, Ramm SA (2015). Sexual conflict in hermaphrodites. Cold Spring Harbor Perspectives in Biology, 7, a017673. DOI: 10.1101/cshperspect.a017673.
DOI |
[61] | Somoza SC, Sede AR, Boccardo NA, Muschietti JP (2021). Keeping up with the RALFs: How these small peptides control pollen-pistil interactions in Arabidopsis. New Phytologist, 229, 14-18. |
[62] | Spigler RB, Kalisz S (2013). Phenotypic plasticity in mating-system traits in the annual Collinsia verna. Botany, 91, 597-604. |
[63] |
Teixido AL, Barrio M, Valladares F (2016). Size matters: understanding the conflict faced by large flowers in Mediterranean environments. The Botanical Review, 82, 204-228.
DOI URL |
[64] |
Thomson JD, Barrett SCH (1981). Selection for outcrossing, sexual selection, and the evolution of dioecy in plants. The American Naturalist, 118, 443-449.
DOI URL |
[65] |
Tonnabel J (2021). Digest: sexual conflict as a novel hypothesis for the evolution of gynodioecy. Evolution, 75, 557-558.
DOI PMID |
[66] |
Tonnabel J, David P, Janicke T, Lehner A, Mollet JC, Pannell JR, Dufay M (2021). The scope for postmating sexual selection in plants. Trends in Ecology & Evolution, 36, 556-567.
DOI URL |
[67] | Tonnabel J, David P, Klein EK, Pannell JR (2019). Sex-specific selection on plant architecture through “budget” and “direct” effects in experimental populations of the wind-pollinated herb, Mercurialis annua. Evolution, 73, 897-912. |
[68] | Vassiliadis C, Saumitou-Laprade P, Lepart J, Viard F (2002). High male reproductive success of hermaphrodites in the androdioecious Phillyrea angustifolia. Evolution, 56, 1362-1373. |
[69] |
Waelti MO, Page PA, Widmer A, Schiestl FP (2009). How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant. BMC Evolutionary Biology, 9, 190. DOI: 10.1186/1471-2148-9-190.
DOI |
[70] |
Wang H, Barrett SCH, Li XY, Niu Y, Duan YW, Zhang ZQ, Li QJ (2021). Sexual conflict in protandrous flowers and the evolution of gynodioecy. Evolution, 75, 278-293.
DOI PMID |
[71] |
Wang XY, Tang J, Wu T, Wu D, Huang SQ (2019). Bumblebee rejection of toxic pollen facilitates pollen transfer. Current Biology, 29, 1401-1406.
DOI URL |
[72] | Zhang DY (2004). Plant Life History Evolution and Reproductive Ecology. Science Press, Beijing. 107-291. |
[张大勇 (2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京. 107-291.] | |
[73] |
Zhang ZQ, Li QJ (2008). Autonomous selfing provides reproductive assurance in an alpine ginger Roscoea schneideriana (Zingiberaceae). Annals of Botany, 102, 531-538.
DOI URL |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[3] | 张琦, 叶尔江·拜克吐尔汉, 王娟. 雌雄异株树种东北鼠李营养资源需求性别二态性[J]. 植物生态学报, 2023, 47(12): 1708-1717. |
[4] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[5] | 王玉贤, 侯盟, 谢言言, 刘左军, 赵志刚, 路宁娜. 青藏高原高寒草甸植物花寿命与花吸引特征的关系及其对雌性繁殖成功的影响[J]. 植物生态学报, 2020, 44(9): 905-915. |
[6] | 李蕾, 王一峰, 苟文霞, 马文梅, 蒋春玲. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11): 1164-1171. |
[7] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[8] | 张亚洲, 王淞伟, 何小芳, 杨扬, 陈建国, 孙航. 高山垫状植物团状福禄草开花面积与方位随海拔的变化及其适应性[J]. 植物生态学报, 2020, 44(11): 1154-1163. |
[9] | 张婵, 安宇梦, Yun JÄSCHKE, 王林林, 周知里, 王力平, 杨永平, 段元文. 青藏高原及周边高山地区的植物繁殖生态学研究进展[J]. 植物生态学报, 2020, 44(1): 1-21. |
[10] | 陈林, 王磊, 杨新国, 宋乃平, 李月飞, 苏莹, 卞莹莹, 祝忠有, 孟文婷. 荒漠草原猪毛蒿种群繁殖特征的土壤驱动因子分析[J]. 植物生态学报, 2019, 43(1): 65-76. |
[11] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[12] | 张莉, 王根绪, 冉飞, 彭阿辉, 肖瑶, 杨阳, 杨燕. 模拟增温改变川西高山草甸优势植物繁殖物候序列特征[J]. 植物生态学报, 2018, 42(1): 20-27. |
[13] | 朱军涛. 实验增温对藏北高寒草甸植物繁殖物候的影响[J]. 植物生态学报, 2016, 40(10): 1028-1036. |
[14] | 王一峰, 靳洁, 侯宏红, 赵博, 曹家豪, 李筱姣. 川西风毛菊花期资源分配随海拔的变化[J]. 植物生态学报, 2015, 39(9): 901-908. |
[15] | 黄艳波, 魏宇昆, 王琦, 肖月娥, 叶喜阳. 舌瓣鼠尾草退化杠杆雄蕊的相关花部特征及传粉机制[J]. 植物生态学报, 2015, 39(7): 753-761. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19