植物生态学报 ›› 2020, Vol. 44 ›› Issue (11): 1184-1194.DOI: 10.17521/cjpe.2020.0159
• 研究论文 • 上一篇
陈禹含1, 罗亦夫1, 孙鑫晟1, 魏冠文1, 黄文军2, 罗芳丽1,*(), 于飞海3
收稿日期:
2020-05-18
接受日期:
2020-09-12
出版日期:
2020-11-20
发布日期:
2020-11-02
通讯作者:
罗芳丽
作者简介:
*ecoluofangli@163.com基金资助:
CHEN Yu-Han1, LUO Yi-Fu1, SUN Xin-Sheng1, WEI Guan-Wen1, HUANG Wen-Jun2, LUO Fang-Li1,*(), YU Fei-Hai3
Received:
2020-05-18
Accepted:
2020-09-12
Online:
2020-11-20
Published:
2020-11-02
Contact:
LUO Fang-Li
Supported by:
摘要:
水淹和土壤养分是影响三峡库区消落带植物生长的主要环境因子。消落带不同高程的植物长期经历不同的淹水强度和土壤养分条件。该研究假设同一物种来自于消落带不同高程的植株可能产生性状分化, 从而对根部淹水和土壤养分变化具有不同的生长和繁殖响应策略。为了验证以上假设, 选取在三峡库区消落带高低高程均广泛分布的物种水蓼(Polygonum hydropiper)为研究对象, 采集自然种群的种子。在温室同质园条件下, 研究了根部水淹和土壤养分提升对高低高程水蓼植株生长和繁殖特性的影响。研究结果表明根部水淹显著或趋于显著降低了水蓼植株功能叶的叶长、叶宽、总分枝数、叶生物量、花生物量和总生物量; 低养分处理显著或趋于显著降低了水蓼植株的总节数、总分枝数、根生物量、花生物量和总生物量, 表明根部水淹和低土壤养分对水蓼的生长和繁殖能力具有抑制作用。同时, 根部水淹和土壤养分的交互作用显著影响植株的根生物量, 表明根部水淹条件下高土壤养分更有利于植株根生物量的积累。高高程植株的根生物量和叶生物量显著或趋于显著高于低高程植株, 而低高程植株的始花时间早于高高程植株, 且繁殖分配也显著高于高高程植株, 表明高低高程水蓼植株对资源的分配策略不同。该研究结果表明水蓼的生长和繁殖特性受根部水淹和土壤养分共同限制, 但对根部水淹条件下高土壤养分生境具有较好的适应性; 同时, 低高程植株可以通过调整其生长和繁殖特性以提高对所处生境胁迫的适应性。
陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响. 植物生态学报, 2020, 44(11): 1184-1194. DOI: 10.17521/cjpe.2020.0159
CHEN Yu-Han, LUO Yi-Fu, SUN Xin-Sheng, WEI Guan-Wen, HUANG Wen-Jun, LUO Fang-Li, YU Fei-Hai. Effects of waterlogging and increased soil nutrients on growth and reproduction of Polygonum hydropiper in the hydro-fluctuation belt of the Three Gorges Reservoir Region. Chinese Journal of Plant Ecology, 2020, 44(11): 1184-1194. DOI: 10.17521/cjpe.2020.0159
图1 不同根部水淹(W)和土壤养分(N)处理下高低高程水蓼植株的功能叶叶长(A)、叶宽(B)、主茎长(C)?主茎节数(D)?总节数(E)和总分枝数(F)(平均值±标准误差)。**, p < 0.01; *, p < 0.05; #, 0.05 ≤ p < 0.1。
Fig. 1 Length (A) and width (B) of functional leaf, main stem length (C), node number of main stem (D), total node number (E), and total branch number (F) of Polygonum hydropiper from high and low elevations under different waterlogging (W) and soil nutrients (N) treatments (mean ± SE). **, p < 0.01; *, p < 0.05; #, 0.05 ≤ p < 0.1.
性状 Trait | 根部水淹 Waterlogging (W) | 养分 Nutrient (N) | 高程 Elevation (E) | E × W | E × N | W × N | W × N × E |
---|---|---|---|---|---|---|---|
形态性状 Morphological trait | |||||||
功能叶长 Length of functional leaf | 7.91** | 0.99 | 0.45 | 0.31 | 0.01 | 0.11 | 0.01 |
功能叶宽 Width of functional leaf | 3.97* | 0.01 | 0.80 | 0.02 | 0.07 | 0.21 | 0.00 |
主茎长 Main stem length | 0.07 | 1.45 | 1.98 | 0.39 | 0.38 | 0.16 | 0.05 |
主茎节数 Node number of main stem | 0.36 | 2.41 | 0.17 | 0.28 | 2.22 | 1.09 | 0.00 |
总节数 Total node number | 2.74 | 3.04# | 1.14 | 2.17 | 1.45 | 0.64 | 0.01 |
总分枝数 Total branch number | 2.97# | 3.87# | 0.55 | 2.18 | 0.55 | 0.55 | 0.06 |
生物量性状 Biomass trait | |||||||
根生物量 Root biomass | 2.58 | 5.08* | 3.03# | 0.84 | 0.20 | 4.28* | 0.71 |
茎生物量 Stem biomass | 1.88 | 0.86 | 1.27 | 2.71 | 0.34 | 2.26 | 0.05 |
叶生物量 Leaf biomass | 3.55# | 0.74 | 5.44* | 0.72 | 0.19 | 2.70 | 0.00 |
总生物量 Total biomass | 6.74* | 2.87# | 0.46 | 2.43 | 0.52 | 1.20 | 0.14 |
繁殖性状 Reproductive trait | |||||||
始花时间 First flowering time | 0.37 | 0.09 | 4.05* | 0.00 | 0.58 | 0.33 | 0.17 |
花生物量 Flower biomass | 10.44** | 2.98# | 2.59 | 0.14 | 1.57 | 1.47 | 0.16 |
繁殖分配 Reproduction allocation | 2.36 | 0.44 | 6.75* | 0.50 | 0.23 | 2.48 | 0.30 |
表1 根部水淹、土壤养分和高程对水蓼形态、生物量和繁殖性状的影响
Table 1 Effects of waterlogging, soil nutrients, and elevation on morphological, biomass, and reproductive traits of Polygonum hydropiper
性状 Trait | 根部水淹 Waterlogging (W) | 养分 Nutrient (N) | 高程 Elevation (E) | E × W | E × N | W × N | W × N × E |
---|---|---|---|---|---|---|---|
形态性状 Morphological trait | |||||||
功能叶长 Length of functional leaf | 7.91** | 0.99 | 0.45 | 0.31 | 0.01 | 0.11 | 0.01 |
功能叶宽 Width of functional leaf | 3.97* | 0.01 | 0.80 | 0.02 | 0.07 | 0.21 | 0.00 |
主茎长 Main stem length | 0.07 | 1.45 | 1.98 | 0.39 | 0.38 | 0.16 | 0.05 |
主茎节数 Node number of main stem | 0.36 | 2.41 | 0.17 | 0.28 | 2.22 | 1.09 | 0.00 |
总节数 Total node number | 2.74 | 3.04# | 1.14 | 2.17 | 1.45 | 0.64 | 0.01 |
总分枝数 Total branch number | 2.97# | 3.87# | 0.55 | 2.18 | 0.55 | 0.55 | 0.06 |
生物量性状 Biomass trait | |||||||
根生物量 Root biomass | 2.58 | 5.08* | 3.03# | 0.84 | 0.20 | 4.28* | 0.71 |
茎生物量 Stem biomass | 1.88 | 0.86 | 1.27 | 2.71 | 0.34 | 2.26 | 0.05 |
叶生物量 Leaf biomass | 3.55# | 0.74 | 5.44* | 0.72 | 0.19 | 2.70 | 0.00 |
总生物量 Total biomass | 6.74* | 2.87# | 0.46 | 2.43 | 0.52 | 1.20 | 0.14 |
繁殖性状 Reproductive trait | |||||||
始花时间 First flowering time | 0.37 | 0.09 | 4.05* | 0.00 | 0.58 | 0.33 | 0.17 |
花生物量 Flower biomass | 10.44** | 2.98# | 2.59 | 0.14 | 1.57 | 1.47 | 0.16 |
繁殖分配 Reproduction allocation | 2.36 | 0.44 | 6.75* | 0.50 | 0.23 | 2.48 | 0.30 |
图2 不同根部水淹(W)和土壤养分(N)处理下高低高程(E)水蓼植株的根生物量(A)?茎生物量(B)?叶生物量(C)和总生物量(D)(平均值±标准误差)。*, p < 0.05; #, 0.05 ≤ p < 0.1。
Fig. 2 Root biomass (A), stem biomass (B), leaf biomass (C), and total biomass (D) of Polygonum hydropiper from high and low elevations (E) under different waterlogging (W) and soil nutrients (N) treatments (mean ± SE). *, p < 0.05; #, 0.05 ≤ p < 0.1.
图3 不同根部水淹(W)和土壤养分(N)处理下高低高程(E)水蓼植株的始花时间(A)?花生物量(B)和繁殖分配(C)(平均值±标准误差)。**, p < 0.01; *, p < 0.05; #, 0.05 ≤ p < 0.1。
Fig. 3 First flowering time (A), flower biomass (B), and reproduction allocation (C) of Polygonum hydropiper from high and low elevation (E) under different waterlogging (W) and soil nutrients (N) treatments (mean ± SE). **, p < 0.01; *, p < 0.05; #, 0.05 ≤ p < 0.1.
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|
1.00 | 2.65 | 2.46 | 2.34 | 1.32 | 1.31 | 1.54 | 1.51 | 1.91 | 1.23 |
1.38 | 3.04 | 2.49 | 2.46 | 1.50 | 1.34 | 1.55 | 1.31 | 1.65 | 1.06 |
1.91 | 4.00 | 2.70 | 3.15 | 1.62 | 3.80 | 2.47 | 1.25 | 1.48 | 1.02 |
附录I 三峡水库2009-2018年蓄水期间高流量引起的水位上涨速率(m·d-1)
Supplement I Water-level rise rate caused by the high flow of the Three Gorges Reservoir from 2009 to 2018 (m·d-1)
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|
1.00 | 2.65 | 2.46 | 2.34 | 1.32 | 1.31 | 1.54 | 1.51 | 1.91 | 1.23 |
1.38 | 3.04 | 2.49 | 2.46 | 1.50 | 1.34 | 1.55 | 1.31 | 1.65 | 1.06 |
1.91 | 4.00 | 2.70 | 3.15 | 1.62 | 3.80 | 2.47 | 1.25 | 1.48 | 1.02 |
[1] |
Abbott JM, Stachowicz JJ (2016). The relative importance of trait vs. genetic differentiation for the outcome of interactions among plant genotypes. Ecology, 97, 84-94.
URL PMID |
[2] |
Ayi QL, Zeng B, Yang K, Lin F, Zhang XP, van Bodegom PM, Cornelissen JHC (2019). Similar growth performance but contrasting biomass allocation of root-flooded terrestrial plant Alternanthera philoxeroides (Mart.) Griseb. in response to nutrient versus dissolved oxygen stress. Frontiers in Plant Science, 10, 111. DOI: 10.3389/fpls.2019.00111.
URL PMID |
[3] | Barker HL, Holeski LM, Lindroth RL (2019). Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: a meta-analysis with Salicaceae. Functional Ecology, 33, 422-435. |
[4] | Chen FQ, Guan SP, Ma YR, Xie ZQ, Lü K, Huang YW, Jia GM (2019a). Impact of regulated water level fluctuations on the sexual reproduction of remnant Myricaria laxiflora populations. Global Ecology and Conservation, 18, e00628. DOI: 10.1016/j.gecco.2019.e00628. |
[5] | Chen FQ, Li Y, Qie GW, Xu WN (2008). The morphological responses and endurance of Polygonum hydropiper to flooding stress. Journal of Wuhan Botanical Research, 26, 142-146. |
[ 陈芳清, 李永, 郄光武, 许文年 (2008). 水蓼对水淹胁迫的耐受能力和形态学响应. 武汉植物学研究, 26, 142-146.] | |
[6] | Chen FQ, Xie ZQ (2007). Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecology, 191, 67-75. |
[7] | Chen FQ, Xie ZQ (2011). Ecophysiological Response of Two Herbaceous Species to Flooding Implication for Ecological Restoration of Vegetation on Water-level-fluctuating Zone. International Conference on Electronics, Communications and Control (ICECC). Ningbo, China. 4260-4263. |
[8] | Chen FQ, Zhang M, Wu Y, Huang YW (2020). Seed rain and seed bank of a draw-down zone and their similarities to vegetation under the regulated water-level fluctuation in Xiangxi River. Journal of Freshwater Ecology, 35, 57-71. |
[9] | Chen XS, Deng ZM, Xie YH, Li F, Li X (2014). Differential growth and vegetative reproduction by two co-occurring emergent macrophytes along a water table gradient. Pakistan Journal of Botany, 46, 881-886. |
[10] |
Chen XS, Li YF, Cai YH, Xie YH, Deng ZM, Li F, Hou ZY (2019b). Differential strategies to tolerate flooding in Polygonum hydropiper plants originating from low- and high-elevation habitats. Frontiers in Plant Science, 9, 1970. DOI: 10.3389/fpls.2018.01970.
URL PMID |
[11] | Cheng RM, Liu ZB, Xiao WF, Wang N, Wang XR, Shen YF (2017). Changes of soil chemical properties in typical hydro-fluctuation belt of Three Gorges Reservoir. Scientia Silvae Sinicae, 53(2), 19-25. |
[ 程瑞梅, 刘泽彬, 肖文发, 王娜, 王晓荣, 沈雅飞 (2017). 三峡库区典型消落带土壤化学性质变化. 林业科学, 53(2), 19-25.] | |
[12] |
Colmer TD, Voesenek LACJ (2009). Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology, 36, 665-681.
URL PMID |
[13] | Du H, Zhang XP, Zeng B (2016). Dissolved oxygen in water affects the tolerance of two terrestrial plants, Alternanthera philoxeroides and Hemarthria altissima, to complete submergence. Acta Ecologica Sinica, 36, 7562-7569. |
[ 杜珲, 张小萍, 曾波 (2016). 水体溶氧影响陆生植物喜旱莲子草(Alternanthera philoxeroides)和牛鞭草(Hemarthria altissima)对完全水淹的耐受力. 生态学报, 36, 7562-7569.] | |
[14] | Fan DY, Xiong GM, Zhang AY, Liu X, Xie ZQ, Li ZJ (2015). Effect of water-lever regulation on species selection for ecological restoration practice in the water-level fluctuation zone of Three Gorges Reservoir. Chinese Journal of Plant Ecology, 39, 416-432. |
[ 樊大勇, 熊高明, 张爱英, 刘曦, 谢宗强, 李兆佳 (2015). 三峡库区水位调度对消落带生态修复中物种筛选实践的影响. 植物生态学报, 39, 416-432.] | |
[15] | Fan SF, Yu HH, Liu CH, Yu D, Han YQ, Wang LG (2015). The effects of complete submergence on the morphological and biomass allocation response of the invasive plant Alternanthera philoxeroides. Hydrobiologia, 746, 159-169. |
[16] | Fan XL, Yang TH, Gao HY, Zhang ZS, Yang C, Liu MJ (2014). Effect of oxygen on the damage of photosynthetic apparatus in plant leaves induced by dark-submergence. Plant Physiology Journal, 50, 542-548. |
[ 樊杏利, 杨天慧, 高辉远, 张子山, 杨程, 刘美君 (2014). 氧气在黑暗-水淹诱导植物叶片光合机构损伤中的作用. 植物生理学报, 50, 542-548.] | |
[17] | Gu YB, Pan YW, Chen FY, Lou YJ, Tang ZH (2019). Effects of water level and nitrogen concentration on growth and biomass allocation of Scirpus nipponicus seedlings. Chinese Journal of Ecology, 38, 2302-2309. |
[ 古勇波, 潘艳文, 陈方圆, 娄彦景, 唐占辉 (2019). 水位和氮浓度对三江藨草幼苗生长和生物量分配的影响. 生态学杂志, 38, 2302-2309.] | |
[18] | Guo Y, Yang S, Shen YF, Xiao WF, Cheng RM (2019). Study on the natural distribution characteristics and community species diversity of existing plants in the Three Gorges Reservoir. Acta Ecologica Sinica, 39, 4255-4265. |
[ 郭燕, 杨邵, 沈雅飞, 肖文发, 程瑞梅 (2019). 三峡水库消落带现存植物自然分布特征与群落物种多样性研究. 生态学报, 39, 4255-4265.] | |
[19] | He RT, Yang K, Zeng B, Li R, Niu HG, Shi SH, Ayi QL, Su XL (2020). Distribution pattern of vegetation in water-level fluctuation zone of the Three Gorges Reservoir as affected by differential flooding regimes. Acta Ecologica Sinica, 40, 834-842. |
[ 何蕊廷, 杨康, 曾波, 李瑞, 牛汉刚, 史邵华, 阿依巧丽, 苏晓磊 (2020). 三峡水库消落区植被在差异性水淹环境中的分布格局. 生态学报, 40, 834-842.] | |
[20] | Heydel F, Engels JG, Feigs JT, Vásquez E, Rudolph B, Rohwer JG, Jensen K (2017). Adaptation to tidal flooding and rapid genetic divergence between a narrow endemic grass species and its widespread congener lead to an early stage of ecological speciation. Perspectives in Plant Ecology, Evolution and Systematics, 27, 57-67. |
[21] |
Hong M, Guo QS, Nie BH, Kang Y, Pei SX, Jin JQ, Wang XF (2011). Responses of Cynodon dactylon population in hydro-fluctuation belt of Three Gorges Reservoir area to flooding-drying habitat change. Chinese Journal of Applied Ecology, 22, 2829-2835.
URL PMID |
[ 洪明, 郭泉水, 聂必红, 康义, 裴顺祥, 金江群, 王祥福 (2011). 三峡库区消落带狗牙根种群对水陆生境变化的响应. 应用生态学报, 22, 2829-2835.]
PMID |
|
[22] | Hua JF, Han LW, Wang ZQ, Gu CS, Yin YL (2017). Morpho-anatomical and photosynthetic responses of Taxodium hybrid ‘Zhongshanshan’ 406 to prolonged flooding. Flora, 231, 29-37. |
[23] | Lei B, Wang YC, You YF, Zhang S, Yang CH (2014). Diversity and structure of herbaceous plant community in typical water-level-fluctuation zone with different spacing elevations in Three Gorges Reservior. Journal of Lake Sciences, 26, 600-606. |
[ 雷波, 王业春, 由永飞, 张晟, 杨春华 (2014). 三峡水库不同间距高程消落带草本植物群落物种多样性与结构特征. 湖泊科学, 26, 600-606.] | |
[24] | Lenssen JPM, van Kleunen M, Fischer M, de Kroon H (2004). Local adaptation of the clonal plant Ranunculus reptans to flooding along a small-scale gradient. Journal of Ecology, 92, 696-706. |
[25] | Li AR (1998). Flora of China: Volume 25th, 1st Fascicle. Science Press, Beijing. 27. |
[ 李安仁 (1998). 中国植物志: 第25卷第1分册. 科学出版社, 北京. 27.] | |
[26] | Li QH, Liu SP, Zhi CY, Li XF, Chen FF, Zeng QK (2013). Adaptation mechanism of three herbs in the water-level- fluctuation-zone of reservoir to complete submergence. Journal of Tropical and Subtropical Botany, 21, 459-465. |
[ 李秋华, 刘送平, 支崇远, 李小峰, 陈峰峰, 曾庆凯 (2013). 三种水库消落带草本植物对完全水淹的适应机制研究. 热带亚热带植物学报, 21, 459-465.] | |
[27] | Li XX, Li CX, Song H, Yuan ZX (2019). Effects of flooding and planting density on the photosynthesis of Hemarthria compressa and Cynodon dactylon cottage seedlings. Acta Prataculturae Sinica, 28, 197-206. |
[ 李晓雪, 李昌晓, 宋虹, 袁中勋 (2019). 水淹和密度配置对牛鞭草与狗牙根扦插苗光合作用的影响. 草业学报, 28, 197-206.] | |
[28] | Li YF, Chen XS, Xiang WH, Xie YH (2016). Effects of water levels on the growth and reproductive characteristics of Carex brevicuspis growing on sites with different elevations. Acta Ecologica Sinica, 36, 1959-1966. |
[ 李亚芳, 陈心胜, 项文化, 谢永宏 (2016). 不同高程短尖苔草对水位变化的生长及繁殖响应. 生态学报, 36, 1959-1966.] | |
[29] | Liu WW, Wang J, Wang Y, Yang F (2012). The differences of plant community diversity among the different altitudes in the water-level-fluctuating zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 32, 5454-5466. |
[ 刘维暐, 王杰, 王勇, 杨帆 (2012). 三峡水库消落区不同海拔高度的植物群落多样性差异. 生态学报, 32, 5454-5466.] | |
[30] | Liu ZB, Cheng RM, Xiao WF, Wang RL, Feng XH, Wang XR (2013). Effect of waterlogging on photosynthetic and physioecological characteristics of plants. World Forestry Research, 26, 33-38. |
[ 刘泽彬, 程瑞梅, 肖文发, 王瑞丽, 封晓辉, 王晓荣 (2013). 水淹胁迫对植物光合生理生态的影响. 世界林业研究, 26, 33-38.] | |
[31] | Luo MJ, Zhang SG, Cui LJ, Tan FL, Huang YR (2012). Response of growth and biomass allocation of Aegiceras corniculatum to waterlogging stress. Journal of Zhejiang Forestry Science and Technology, 32, 15-19. |
[ 罗美娟, 张守攻, 崔丽娟, 谭芳林, 黄雍容 (2012). 桐花树幼苗生长与生物量分配对淹水胁迫的响应. 浙江林业科技, 32, 15-19.] | |
[32] | Mony C, Mercier E, Bonis A, Bouzillé JB (2010). Reproductive strategies may explain plant tolerance to inundation: a mesocosm experiment using six marsh species. Aquatic Botany, 92, 99-104. |
[33] | Nam JM, Kim JH, Kim JG (2017). Effects of light intensity and plant density on growth and reproduction of the amphicarpic annual Persicaria thunbergii. Aquatic Botany, 142, 119-122. |
[34] |
Pan Y, Xie YH, Deng ZM, Tang Y, Pan DD (2014). High water level impedes the adaptation of Polygonum hydropiper to deep burial: responses of biomass allocation and root morphology. Scientific Reports, 4, 5612. DOI: 10.1038/srep05612.
URL PMID |
[35] | Park H, Kim JG (2020). Temporal and spatial variations of vegetation in a riparian zone of South Korea. Journal of Ecology and Environment, 44, 9. DOI: 10.1186/s41610-020-00152-z. |
[36] |
Phukan UJ, Mishra S, Shukla RK (2016). Waterlogging and submergence stress: affects and acclimation. Critical Reviews in Biotechnology, 36, 956-966.
URL PMID |
[37] | Qin HW, Gao F, Liu ZX, Li HL, Zheng LD, Su HY, Meng JM (2017). Effects of light intensity on the growth and physiology of Cynodon dactylon seedlings under water submerged environment. Acta Agrestia Sinica, 25, 675-679. |
[ 秦洪文, 高芳, 刘正学, 李洪林, 郑丽丹, 苏华英, 孟佳媚 (2017). 水淹环境下光强对狗牙根幼苗生长及生理的影响. 草地学报, 25, 675-679.] | |
[38] |
Schaff SD, Pezeshki SR, Shields FD (2003). Effects of soil conditions on survival and growth of black willow cuttings. Environmental Management, 31, 748-763.
URL PMID |
[39] |
Soininen EM, Bråthen KA, Jusdado JGH, Reidinger S, Hartley SE (2013). More than herbivory: levels of silica-based defences in grasses vary with plant species, genotype and location. Oikos, 122, 30-41.
DOI URL |
[40] | Striker GG, Manzur ME, Grimoldi AA (2011). Increasing defoliation frequency constrains regrowth of the forage legume Lotus tenuis under flooding. The role of crown reserves. Plant and Soil, 343, 261-272. |
[41] | Su XL, Nilsson C, Pilotto F, Liu SP, Shi SH, Zeng B (2017). Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir. Science of the Total Environment, 599-600, 1485-1492. |
[42] | Su XL, Zeng B, Huang WJ, Xu SJ, Lei ST (2012). Effects of the Three Gorges Dam on preupland and preriparian drawdown zones vegetation in the upper watershed of the Yangtze River, P. R. China. Ecological Engineering, 44, 123-127. |
[43] | Su XL, Zeng B, Lin F, Qiao P, Ayi QL, Huang WJ (2016). How does long-term complete submergence influence sex ratio and resource allocation of a dioecious shrub, Salix variegata Franch.? Ecological Engineering, 87, 218-223. |
[44] | Su XL, Zeng B, Qiao P, Ayi QL, Huang WJ (2010). The effects of winter water submergence on flowering phenology and reproductive allocation of Salix variegata Franch. in Three Gorges reservoir region. Acta Ecologica Sinica, 30, 2585-2592. |
[ 苏晓磊, 曾波, 乔普, 阿依巧丽, 黄文军 (2010). 冬季水淹对秋华柳的开花物候及繁殖分配的影响. 生态学报, 30, 2585-2592.] | |
[45] | Tao M, Bao DC, Jiang MX (2011). Effects of submergence on seed germination of nine annual plant species in the Three Gorges Reservoir region and their implication to vegetation restoration. Acta Ecologica Sinica, 31, 906-913. |
[ 陶敏, 鲍大川, 江明喜 (2011). 三峡库区9种植物种子萌发特性及其在植被恢复中的意义. 生态学报, 31, 906-913.] | |
[46] |
Villellas J, García MB (2018). Life-history trade-offs vary with resource availability across the geographic range of a widespread plant. Plant Biology, 20, 483-489.
URL PMID |
[47] | Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006). How plants cope with complete submergence. New Phytologist, 170, 213-226. |
[48] | Wang C, Fang F, Yuan ZY, Zhang R, Zhang W, Guo JS (2020). Spatial variations of soil phosphorus forms and the risks of phosphorus release in the water-level fluctuation zone in a tributary of the Three Gorges Reservoir. Science of the Total Environment, 699, 134124. DOI: 10.1016/j.scitotenv. 2019.134124. |
[49] | Wang P, Zhang Q, Xu YS, Yu FH (2016). Effects of water level fluctuation on the growth of submerged macrophyte communities. Flora, 223, 83-89. |
[50] | Wang YC, Lei B, Zhang S (2012). Differences in vegetation and soil characteristics at different water-level altitudes in the drawdown areas of Three Gorges Reservoir area. Journal of Lake Sciences, 24, 206-212. |
[ 王业春, 雷波, 张晟 (2012). 三峡库区消落带不同水位高程植被和土壤特征差异. 湖泊科学, 24, 206-212.] | |
[51] | Wang YJ, Chen FQ, Zhang M, Chen SH (2016a). Response of soil nutrient levels and spatial distribution to water-level fluctuation on the shanmu riverbanks in the Three Gorges Reservoir area. Journal of Hydroecology, 37, 56-61. |
[ 王娅儆, 陈芳清, 张淼, 陈韶华 (2016a). 三峡库区水位消涨对杉木溪消落带土壤性质的影响. 水生态学杂志, 37, 56-61.] | |
[52] | Wang YJ, Chen FQ, Zhang M, Wu Y, Chen SH (2016b). Characteristics of soil nutrient and spatial distribution on riparian zone restored by different vegetation restoration methods at Wanzhou section in the Three Gorges Reservoir area, China. Journal of Agricultural Resources and Environment, 33, 127-133. |
[ 王娅儆, 陈芳清, 张淼, 吴阳, 陈韶华 (2016b). 不同植被恢复模式下三峡库区万州段消落带土壤养分及其空间分布特征. 农业资源与环境学报, 33, 127-133.] | |
[53] |
Wei GW, Sun XS, Chen YH, Luo FL, Yu FH (2020). Growth and reproductive responses of Polygonum hydropiper populations to elevational difference associated with flooding. Global Ecology and Conservation, 23, e01156. DOI: 10.1016/j.gecco.2020.e01156.
URL PMID |
[54] | Wu JG, Huang JH, Han XG, Gao XM, He FL, Jiang MX, Jiang ZG, Primack RB, Shen ZH (2004). The Three Gorges Dam: an ecological perspective. Frontiers in Ecology and the Environment, 2, 241-248. |
[55] | Xing W, Yin M, Lü Q, Hu Y, Liu CP, Zhang JJ (2014). Oxygen solubility, diffusion coefficient, and solution viscosity// Xing W, Yin GP, Zhang JJ. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Elsevier, Amsterdam. 1-31. |
[56] | Xu JP, Zhang XP, Zeng B, Yuan SH, Liu JH, Liu MZ (2014). Effects of light and dissolved oxygen on the phenotypic plasticity of Alternanthera philoxeroides in submergence conditions. Acta Ecologica Sinica, 34, 258-268. |
[ 许建平, 张小萍, 曾波, 袁慎鸿, 刘建辉, 刘明智 (2014). 完全水淹环境中光照和溶氧对喜旱莲子草表型可塑性的影响. 生态学报, 34, 258-268.] | |
[57] | Xu JY, Chen HM, Wang XL (2016). A review on water depth effect on the growth and reproduction of plants in the wetlands. Wetland Science, 14, 725-732. |
[ 徐金英, 陈海梅, 王晓龙 (2016). 水深对湿地植物生长和繁殖影响研究进展. 湿地科学, 14, 725-732.] | |
[58] |
Yan H, Liu RQ, Liu ZN, Wang X, Luo WB, Sheng LX (2015). Growth and physiological responses to water depths in Carex schmidtii meinsh. PLOS ONE, 10, e0128176. DOI: 10.1371/journal.pone.0128176.
URL PMID |
[59] | Ye C, Chen CR, Butler OM, Rashti MR, Esfandbod M, Du M, Zhang QF (2019). Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Science of the Total Environment, 664, 841-850. |
[60] |
Ye XQ, Zeng B, Meng JL, Wu M, Zhang XP (2018). Responses in shoot elongation, carbohydrate utilization and growth recovery of an invasive species to submergence at different water temperatures. Scientific Reports, 8, 306. DOI: 10.1038/s41598-017-18735-7.
URL PMID |
[61] | You YF, Yang CH, Lei B, Zhang S, Wang YC, Liu JH (2017). Effect of water level regulation on vegetation characteristics in the water-level-fluctuation zone of the Three Gorges Reservoir. Chinese Journal of Applied and Environmental Biology, 23, 1103-1109. |
[ 由永飞, 杨春华, 雷波, 张晟, 王业春, 刘建辉 (2017). 水位调节对三峡水库消落带植被群落特征的影响. 应用与环境生物学报, 23, 1103-1109.] | |
[62] | Yuan SH, Zeng B, Su XL, Xu JP (2014). Effect of water-level fluctuation discrepancy on the composition of different annuals in Three Gorges Reservoir drawdown zone. Acta Ecologica Sinica, 34, 6481-6488. |
[ 袁慎鸿, 曾波, 苏晓磊, 许建平 (2014). 水位节律差异对三峡水库消落区不同物候类型1年生植物物种构成的影响. 生态学报, 34, 6481-6488.] | |
[63] | Zhang AY, Xiong GM, Fan DY, Yang D, Xie ZQ (2018). Effects of Three Gorges Dam on riparian vascular plants of the main stream of Yangtze River. Resources and Environment in the Yangtze Basin, 27, 145-156. |
[ 张爱英, 熊高明, 樊大勇, 杨丹, 谢宗强 (2018). 三峡水库蓄水对长江干流河岸植物组成的影响. 长江流域资源与环境, 27, 145-156.] | |
[64] | Zhang Q, Peters JL, Visser EJW, de Kroon H, Huber H (2016). Hydrologically contrasting environments induce genetic but not phenotypic differentiation in Solanum dulcamara. Journal of Ecology, 104, 1649-1661. |
[65] | Zhang Y, Cai JG, Sun OW, Shi JJ (2019). Research on photosynthetic responses mechanisms of Hydrangea macrophylla under waterlogging stress. Journal of Nuclear Agricultural Sciences, 33, 808-815. |
[ 章毅, 蔡建国, 孙欧文, 施健健 (2019). 水淹胁迫下绣球光合响应机制的研究. 核农学报, 33, 808-815.] | |
[66] | Zhang ZY, Cheng YC, Cheng L, Wan CY, Li JB (2016). Characteristics of vegetation and soil in the water level fluctuation zone of the Wanzhou region of Three Gorges Reservoir. Journal of Hydroecology, 37, 24-33. |
[ 张志永, 程郁春, 程丽, 万成炎, 李金波 (2016). 三峡库区万州段消落带植被及土壤理化特征分析. 水生态学杂志, 37, 24-33.] | |
[67] | Zhao Q, Chen JB (2018). Study and practice on ecological restoration strategy of the hydro-fluctuation belt in the Three Gorges Reservoir area. Journal of Anhui Agricultural Sciences, 46, 5-7. |
[ 赵琴, 陈教斌 (2018). 三峡库区消落带生态修复策略研究与实践. 安徽农业科学, 46, 5-7.] | |
[68] |
Zhou WG, Chen F, Meng YJ, Chandrasekaran U, Luo XF, Yang WY, Shu K (2020). Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiology and Biochemistry, 148, 228-236.
DOI URL PMID |
[69] | Zhu Q, Zhang ZY, Hu HQ, Wan CY, Hu L, Liu H (2014). Soil property changes under drain-flooding condition in Xiaojiang water-level-fluctuating belt of the Three-Gorge- Reservoir region. Soils, 46, 927-932. |
[ 朱强, 张志永, 胡红青, 万成炎, 胡莲, 刘晖 (2014). 淹没-出露条件下三峡水库小江消落带土壤性质变化研究. 土壤, 46, 927-932.] |
[1] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[2] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[3] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[4] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[5] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[6] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[7] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[8] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[9] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[10] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[11] | 李蕾, 王一峰, 苟文霞, 马文梅, 蒋春玲. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11): 1164-1171. |
[12] | 张亚洲, 王淞伟, 何小芳, 杨扬, 陈建国, 孙航. 高山垫状植物团状福禄草开花面积与方位随海拔的变化及其适应性[J]. 植物生态学报, 2020, 44(11): 1154-1163. |
[13] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[14] | 张婵, 安宇梦, Yun JÄSCHKE, 王林林, 周知里, 王力平, 杨永平, 段元文. 青藏高原及周边高山地区的植物繁殖生态学研究进展[J]. 植物生态学报, 2020, 44(1): 1-21. |
[15] | 苟小林, 周青平, 陈有军, 魏小星, 涂卫国. 青藏高原不同气候区高寒沙地两种优势植物及其根际土壤的养分特征[J]. 植物生态学报, 2018, 42(1): 133-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19