植物生态学报 ›› 2020, Vol. 44 ›› Issue (9): 962-972.DOI: 10.17521/cjpe.2020.0083
所属专题: 生态化学计量
胡琪娟1,3, 盛茂银1,2,*(), 殷婕1,3, 白义鑫1,3
收稿日期:
2020-03-26
接受日期:
2020-06-18
出版日期:
2020-09-20
发布日期:
2020-08-27
通讯作者:
* 盛茂银(shmoy@163.com). ORCID: 盛茂银: 0000-0002-4973-2590基金资助:
HU Qi-Juan1,3, SHENG Mao-Yin1,2,*(), YIN Jie1,3, BAI Yi-Xin1,3
Received:
2020-03-26
Accepted:
2020-06-18
Online:
2020-09-20
Published:
2020-08-27
Contact:
SHENG Mao-Yin
Supported by:
摘要:
为了解西南喀斯特石漠化适生植物构树(Broussonetia papyrifera)对贫瘠土壤养分环境的适应策略, 及其细根、根际土壤的化学计量特征对石漠化等级的响应, 该研究以西南喀斯特石漠化环境适生植物构树为研究对象, 运用生态化学计量学方法, 开展不同等级石漠化环境构树细根、根际土壤有机碳(C)、全氮(N)、全磷(P)、全钾(K)、全钙(Ca)及全镁(Mg)养分含量特征及C、N、P化学计量特征研究。结果表明, 除Ca含量外, 喀斯特石漠化环境适生植物构树细根、根际土壤的养分含量均处于较低水平; 细根N:P为12.59, 表明构树生长受N和P共同限制; 随着石漠化等级的增加, 细根C、N含量和C:N、C:P呈先降后升的变化趋势, K、P含量是则表现为先升后降, Ca、Mg含量和N:P无明显变化规律; 不同等级石漠化环境中的构树根际土壤N、P、K、Ca含量呈不同的变化趋势, 而C、Mg含量及C、N、P化学计量特征的变化较不显著; 细根与根际土壤的化学计量特征之间存在显著的相关性, 二者的C、P、Ca、Mg含量、C:N、C:P分别对应呈显著正相关关系, 而N含量呈极显著负相关关系; 细根的K含量则较为稳定, 几乎不受根际土壤养分的影响。
胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征. 植物生态学报, 2020, 44(9): 962-972. DOI: 10.17521/cjpe.2020.0083
HU Qi-Juan, SHENG Mao-Yin, YIN Jie, BAI Yi-Xin. Stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera adapted to the karst rocky desertification environment in southwest China. Chinese Journal of Plant Ecology, 2020, 44(9): 962-972. DOI: 10.17521/cjpe.2020.0083
石漠化等级 Degree of rocky desertification | 样地号 Plot number | 样本数 Sample size | 林龄 Stand age (a) | 平均胸径 Mean diameter at breast height (cm) | 郁闭度 Canopy density |
---|---|---|---|---|---|
无 Nil | I-1-I-2 | 18 | 5 | 13.75 ± 0.18 | 0.43 ± 0.02 |
潜在 Potential | II-1-II-2 | 18 | 5 | 13.42 ± 0.20 | 0.51 ± 0.04 |
轻度 Slight | III-1-III-4 | 36 | 6 | 14.15 ± 0.15 | 0.41 ± 0.01 |
中度 Moderate | IV-1-IV-5 | 45 | 6 | 14.09 ± 0.28 | 0.35 ± 0.01 |
强度 Severe | V-1-V-4 | 36 | 5 | 14.36 ± 0.11 | 0.32 ± 0.01 |
表1 西南喀斯特石漠化环境构树样地设置及样地基本信息
Table 1 Descriptions of the sampling sites and the quadrat setting of Broussonetia papyrifera in karst rocky desertification environment of Southwest China
石漠化等级 Degree of rocky desertification | 样地号 Plot number | 样本数 Sample size | 林龄 Stand age (a) | 平均胸径 Mean diameter at breast height (cm) | 郁闭度 Canopy density |
---|---|---|---|---|---|
无 Nil | I-1-I-2 | 18 | 5 | 13.75 ± 0.18 | 0.43 ± 0.02 |
潜在 Potential | II-1-II-2 | 18 | 5 | 13.42 ± 0.20 | 0.51 ± 0.04 |
轻度 Slight | III-1-III-4 | 36 | 6 | 14.15 ± 0.15 | 0.41 ± 0.01 |
中度 Moderate | IV-1-IV-5 | 45 | 6 | 14.09 ± 0.28 | 0.35 ± 0.01 |
强度 Severe | V-1-V-4 | 36 | 5 | 14.36 ± 0.11 | 0.32 ± 0.01 |
石漠化等级 Degree of rocky desertification | 岩石裸露率 Percentage of bare rock (%) | 土层覆盖度 Soil coverage (%) | 植被和土层覆盖度之和 Coverage of vegetation and soil (%) | 坡度 Slope (°) | 平均土层厚度 Average of soil thickness (cm) |
---|---|---|---|---|---|
无 Nil | <20 | >60 | >80 | <15 | >20 |
潜在 Potential | 20-30 | ≤60 | 70-80 | ≥15 | ≤20 |
轻度 Slight | 31-50 | ≤30 | 50-69 | ≥18 | ≤15 |
中度 Moderate | 51-70 | ≤20 | 30-49 | ≥22 | ≤10 |
强度 Severe | 71-90 | ≤10 | 10-29 | ≥25 | ≤5 |
表2 喀斯特石漠化强度分级标准
Table 2 Classification standard of karst rocky desertification
石漠化等级 Degree of rocky desertification | 岩石裸露率 Percentage of bare rock (%) | 土层覆盖度 Soil coverage (%) | 植被和土层覆盖度之和 Coverage of vegetation and soil (%) | 坡度 Slope (°) | 平均土层厚度 Average of soil thickness (cm) |
---|---|---|---|---|---|
无 Nil | <20 | >60 | >80 | <15 | >20 |
潜在 Potential | 20-30 | ≤60 | 70-80 | ≥15 | ≤20 |
轻度 Slight | 31-50 | ≤30 | 50-69 | ≥18 | ≤15 |
中度 Moderate | 51-70 | ≤20 | 30-49 | ≥22 | ≤10 |
强度 Severe | 71-90 | ≤10 | 10-29 | ≥25 | ≤5 |
项目 Item | 细根 Fine root | 根际土壤 Rhizosphere soil | ||||
---|---|---|---|---|---|---|
平均值 Mean (mg·g-1) | 标准偏差 Standard deviation (mg·g-1) | 变异系数 Coefficient of variation (%) | 平均值 Mean (mg·g-1) | 标准偏差 Standard deviation (mg·g-1) | 变异系数 Coefficient of variation (%) | |
C | 445.61 | 48.98 | 10.99 | 25.79 | 6.04 | 23.42 |
N | 5.98 | 1.08 | 18.06 | 2.15 | 0.26 | 12.09 |
P | 0.48 | 0.07 | 14.58 | 1.11 | 0.21 | 18.92 |
K | 2.71 | 0.84 | 31.00 | 1.88 | 0.52 | 27.66 |
Ca | 8.60 | 3.58 | 41.63 | 12.03 | 2.69 | 22.36 |
Mg | 0.77 | 0.27 | 35.32 | 1.56 | 0.55 | 35.26 |
C:N | 77.98 | 20.92 | 26.83 | 12.07 | 2.80 | 23.20 |
C:P | 962.06 | 222.19 | 23.10 | 23.93 | 6.46 | 27.00 |
N:P | 12.59 | 1.90 | 15.09 | 1.99 | 0.37 | 18.59 |
表3 西南喀斯特石漠化环境构树细根和根际土壤的养分含量及化学计量特征(n = 153)
Table 3 Nutrient contents and stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera in karst rocky desertification environment of Southwest China (n = 153)
项目 Item | 细根 Fine root | 根际土壤 Rhizosphere soil | ||||
---|---|---|---|---|---|---|
平均值 Mean (mg·g-1) | 标准偏差 Standard deviation (mg·g-1) | 变异系数 Coefficient of variation (%) | 平均值 Mean (mg·g-1) | 标准偏差 Standard deviation (mg·g-1) | 变异系数 Coefficient of variation (%) | |
C | 445.61 | 48.98 | 10.99 | 25.79 | 6.04 | 23.42 |
N | 5.98 | 1.08 | 18.06 | 2.15 | 0.26 | 12.09 |
P | 0.48 | 0.07 | 14.58 | 1.11 | 0.21 | 18.92 |
K | 2.71 | 0.84 | 31.00 | 1.88 | 0.52 | 27.66 |
Ca | 8.60 | 3.58 | 41.63 | 12.03 | 2.69 | 22.36 |
Mg | 0.77 | 0.27 | 35.32 | 1.56 | 0.55 | 35.26 |
C:N | 77.98 | 20.92 | 26.83 | 12.07 | 2.80 | 23.20 |
C:P | 962.06 | 222.19 | 23.10 | 23.93 | 6.46 | 27.00 |
N:P | 12.59 | 1.90 | 15.09 | 1.99 | 0.37 | 18.59 |
图1 不同等级石漠化环境构树细根C、N、P、K、Ca、Mg含量及C、N、P比值(平均值+标准偏差)。横坐标的1、2、3、4、5分别代表无、潜在、轻度、中度、强度等级石漠化。不同小写字母表示不同等级石漠化环境下细根的养分含量及化学计量比差异显著(p < 0.05)。
Fig. 1 Changes in C, N, P, K, Ca, Mg contents and C, N, P ratios of Broussonetia papyrifera fine roots with the degree of rocky desertification (mean + SD). 1, 2, 3, 4 and 5 in the abscissa axis represent nil, potential, slight, moderate and severe rocky desertification respectively. Different lowercase letters denote significant difference in nutrient contents and stoichiometric characteristics of fine roots among different degree of rocky desertification environment at p = 0.05 level.
图2 不同等级石漠化环境构树根际土壤C、N、P、K、Ca、Mg含量及C、N、P比值(平均值+标准偏差)。横坐标的1、2、3、4、5分别代表无、潜在、轻度、中度、强度等级石漠化。不同小写字母表示不同等级石漠化环境下根际土壤的养分含量及化学计量比差异显著(p < 0.05)。
Fig. 2 Changes in C, N, P, K, Ca, Mg contents and C, N, P ratios of Broussonetia papyrifera rhizosphere soil with the degree of rocky desertification (mean + SD). 1, 2, 3, 4 and 5 in the abscissa axis represent nil, potential, slight, moderate and severe rocky desertification respectively. Different lowercase letters denote significant difference in nutrient contents and stoichiometric characteristics of rhizosphere soil among different degree of rocky desertification environment at p = 0.05 level.
项目 Item | RS C | RS N | RS P | RS K | RS Ca | RS Mg | RS C:N | RS C:P | RS N:P |
---|---|---|---|---|---|---|---|---|---|
FR C | 0.542** | 0.295** | 0.039 | -0.153 | -0.313** | -0.510 | 0.480** | 0.467** | 0.148 |
FR N | -0.261** | -0.380** | -0.215* | -0.004 | -0.045 | -0.144 | -0.146 | -0.092 | 0.033 |
FR P | -0.231** | -0.176* | 0.198* | 0.181* | 0.142 | 0.018 | -0.191* | -0.438** | -0.399** |
FR K | -0.143 | -0.190 | 0.079 | 0.117 | 0.064 | -0.037 | -0.055 | -0.174* | -0.193* |
FR Ca | 0.080 | 0.133 | 0.208* | 0.150 | 0.207* | 0.356** | 0.037 | -0.154 | -0.190* |
FR Mg | -0.034 | 0.021 | 0.084 | -0.254** | 0.105 | 0.188* | -0.117 | -0.160* | -0.078 |
FR C:N | 0.467** | 0.373** | 0.122 | -0.132 | -0.142 | 0.001 | 0.368** | 0.342** | 0.081 |
FR C:P | 0.413** | 0.226** | -0.154 | -0.251* | -0.191* | -0.045 | 0.381** | 0.548** | 0.361** |
FR N:P | -0.051 | -0.231** | -0.448** | -0.155 | -0.136 | -0.145 | 0.048 | 0.346** | 0.459** |
表4 细根(FR)与根际土壤(RS)的养分含量及C、N、P计量特征的相关系数
Table 4 Correlation coefficient between C, N, P and their ratios in fine roots (FR) and their values in rhizosphere soil (RS)
项目 Item | RS C | RS N | RS P | RS K | RS Ca | RS Mg | RS C:N | RS C:P | RS N:P |
---|---|---|---|---|---|---|---|---|---|
FR C | 0.542** | 0.295** | 0.039 | -0.153 | -0.313** | -0.510 | 0.480** | 0.467** | 0.148 |
FR N | -0.261** | -0.380** | -0.215* | -0.004 | -0.045 | -0.144 | -0.146 | -0.092 | 0.033 |
FR P | -0.231** | -0.176* | 0.198* | 0.181* | 0.142 | 0.018 | -0.191* | -0.438** | -0.399** |
FR K | -0.143 | -0.190 | 0.079 | 0.117 | 0.064 | -0.037 | -0.055 | -0.174* | -0.193* |
FR Ca | 0.080 | 0.133 | 0.208* | 0.150 | 0.207* | 0.356** | 0.037 | -0.154 | -0.190* |
FR Mg | -0.034 | 0.021 | 0.084 | -0.254** | 0.105 | 0.188* | -0.117 | -0.160* | -0.078 |
FR C:N | 0.467** | 0.373** | 0.122 | -0.132 | -0.142 | 0.001 | 0.368** | 0.342** | 0.081 |
FR C:P | 0.413** | 0.226** | -0.154 | -0.251* | -0.191* | -0.045 | 0.381** | 0.548** | 0.361** |
FR N:P | -0.051 | -0.231** | -0.448** | -0.155 | -0.136 | -0.145 | 0.048 | 0.346** | 0.459** |
[1] | Bai YX, Sheng MY, Hu QJ, Zhao C, Wu J, Zhang MS ( 2020). Effects of land use change on soil organic carbon and its components in karst rocky desertification of southwest China. Chinese Journal of Applied Ecology, 31, 1607-1616. |
[ 白义鑫, 盛茂银, 胡琪娟, 赵楚, 吴静, 张茂莎 ( 2020). 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响. 应用生态学报, 31, 1607-1616.] | |
[2] | Bao SD (2008). Agrochemical Analysis of Soil. 3rd ed. China Agriculture Press, Beijing. 157-170. |
[ 鲍士旦 (2008). 土壤农化分析. 3版. 中国农业出版社, 北京. 157-170.] | |
[3] |
Casper BB, Jackson RB ( 1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570.
DOI URL |
[4] | Chapin III FS, Matson PA, Mooney HA ( 2011). Principles of Terrestrial Ecosystem Ecology. 2nd ed. Springer Verlag, Berlin. |
[5] |
Chen FS, Niklas KJ, Zeng DH ( 2011). Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant and Soil, 340, 337-345.
DOI URL |
[6] | Chen XP, Guo BQ, Zhong QL, Wang MT, Li M, Yang FC, Cheng DL ( 2018). Response of fine root carbon, nitrogen, and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi Mountains. Acta Ecologica Sinica, 38, 273-281. |
[ 陈晓萍, 郭炳桥, 钟全林, 王满堂, 李曼, 杨福春, 程栋梁 ( 2018). 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应. 生态学报, 38, 273-281.]
DOI URL |
|
[7] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW ( 2003). Growth rate stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[8] |
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW ( 2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
DOI URL |
[9] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA ( 2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI URL |
[10] | Gao SC, Tian DL, Yan WD, Fang X, Xiang WH, Liang XC ( 2010). Characteristics of soil physicochemical property and its carbon storage in urban forest plantation of Changsha City. Journal of Central South University of Forestry & Technology, 30, 16-22. |
[ 高述超, 田大伦, 闫文德, 方晰, 项文化, 梁小翠 ( 2010). 长沙城市森林土壤理化性质及碳贮量特征. 中南林业科技大学学报, 30, 16-22.] | |
[11] |
Gao YQ, Dai XQ, Wang JL, Fu XL, Kou L, Wang HM ( 2019). Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations. Chinese Journal of Plant Ecology, 43, 258-272.
DOI URL |
[ 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民 ( 2019). 亚热带人工林下植被根际土壤酶化学计量特征. 植物生态学报, 43, 258-272.] | |
[12] |
Gu JC, Wang DN, Xia XX, Wang SZ ( 2016). Applications of functional classification methods for tree fine root biomass estimation: advancements and synthesis. Chinese Journal of Plant Ecology, 40, 1344-1351.
DOI URL |
[ 谷加存, 王东男, 夏秀雪, 王韶仲 ( 2016). 功能划分方法在树木细根生物量研究中的应用: 进展与评述. 植物生态学报, 40, 1344-1351.]
DOI URL |
|
[13] |
Guo DL, Mitchell RJ, Hendricks JJ ( 2004). Fine root branch orders respond differentially to carbon source sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
DOI URL |
[14] |
Han W, Fang J, Guo D, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[15] | He GX, Wen SZ, Yang LL, Hu KF, Wen J ( 2008). Seasonal dynamic variation of nutrient elements from the roots and soil of Alnus cremastogyme Burk plantations. Journal of Central South University of Forestry & Technology, 28, 61-65. |
[ 何功秀, 文仕知, 杨丽丽, 胡孔飞, 文娟 ( 2008). 桤木人工林细根与土壤养分含量季节动态变化. 中南林业科技大学学报, 28, 61-65.] | |
[16] | He JS, Han XG ( 2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[ 贺金生, 韩兴国 ( 2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
DOI URL |
|
[17] |
Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD ( 2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3, 57-69.
DOI URL |
[18] | Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA ( 2011). Species and community level patterns in fine root traits along a 120000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99, 954-963. |
[19] | Hu QJ, Wang LJ, Sheng MY ( 2019). The research progress of plant fine root production and turnover. World Forestry Research, 32, 29-34. |
[ 胡琪娟, 王霖娇, 盛茂银 ( 2019). 植物细根生产和周转研究进展. 世界林业研究, 32, 29-34.] | |
[20] | Huang YM, Lu SF, Xu AC, Dai YH, Lang P, Qin ZQ, Tian R ( 2019). Research progress on response mechanisms of Broussonetia papyrifera to environmental stresses. Hubei Agricultural Sciences, 58(21), 5-10. |
[ 黄咏明, 卢素芳, 徐爱春, 戴永红, 郎鹏, 秦仲麒, 田瑞 ( 2019). 构树对环境胁迫的响应机制研究进展. 湖北农业科学, 58(21), 5-10.] | |
[21] | Ji FT, Li N, Deng X ( 2009). Calcium contents and high calcium adaptation plants in karst areas of China. Chinese Journal of Plant Ecology, 33, 926-935. |
[ 姬飞腾, 李楠, 邓馨 ( 2009). 喀斯特地区植物钙含量特征与高钙适应方式分析. 植物生态学报, 33, 926-935.]
DOI URL |
|
[22] | Jing YR ( 2017). Common Plants and Their High Calcium Adaptation in Rocky Desertification Area in Southwestern Hunan. Master degree dissertation, Central South University of Forestry Science and Technology, Changsha. |
[ 景宜然 ( 2017). 湘西南石漠化地区常见植物及其对土壤高钙适应方式分析. 硕士学位论文, 中南林业科技大学, 长沙.] | |
[23] | Ladanai S, Agren GI, Olsson BA ( 2010). Relationships between Tree and Soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems, 13, 302-316. |
[24] | Li T, Deng Q, Yuan ZY, Jiao F ( 2015). Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau. Environmental Science, 36, 2988-2996. |
[ 李婷, 邓强, 袁志友, 焦峰 ( 2015). 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征. 环境科学, 36, 2988-2996.] | |
[25] | Li YB. Wang SJ, Rong L ( 2004). Discuss on concepts of rock desertification and rock desert in karst region. Journal of Desert Research, 6, 29-35. |
[ 李阳兵, 王世杰, 容丽 ( 2004). 关于喀斯特石漠和石漠化概念的讨论. 中国沙漠, 6, 29-35.] | |
[26] | Liu LB, Zhong QL, Ni J ( 2019). Ecosystem C:N:P stoichiometry and storages of a secondary plateau surface karst forest in Guizhou Province, southwestern China. Acta Ecologica Sinica, 39, 8606-8614. |
[ 刘立斌, 钟巧连, 倪健 ( 2019). 贵州高原型喀斯特次生林 C、N、P 生态化学计量特征与储量. 生态学报, 39, 8606-8614.] | |
[27] | Liu N, Yu LF, Zhao Q, Wu YN, Yan LB ( 2020). C:N:P stoichiometry of leaf-litter-soil continuum in secondary forests in the karst plateau rocky desertification regions. Chinese Journal of Applied and Environmental Biology, 26, 681-688. |
[ 刘娜, 喻理飞, 赵庆, 武亚楠, 严令斌 ( 2020). 喀斯特高原石漠化区次生林叶片-枯落物-土壤连续体碳氮磷生态化学计量特征. 应用与环境生物学报, 26, 681-688.] | |
[28] | Luo Y, Fan WG ( 2014). Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four citrus rootstocks under different phosphorus levels. Scientia Agricultura Sinica, 47, 955-967. |
[ 罗燕, 樊卫国 ( 2014). 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性. 中国农业科学, 47, 955-967.]
DOI URL |
|
[29] |
Ma YZ, Zhong QL, Jin BJ, Lu HD, Guo BQ, Zheng Y, Li M, Cheng DL ( 2015). Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chinese Journal of Plant Ecology, 39, 159-166.
DOI URL |
[ 马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁 ( 2015). 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 39, 159-166.]
DOI URL |
|
[30] |
Ostonen I, Truu M, Helmisaari HS, Lukac M, Borken W, Vanguelova E, Godbold DL, Lõhmus K, Zang U, Tedersoo L, Preem JK, Rosenvald K, Aosaar J, Armolaitis K, Frey J, Kabral N, Kukumägi M, Leppälammi-Kujansuu J, Lindroos AJ, Merilä P, Napa Ü, Nöjd P, Parts K, Uri V, Varik M, Truu J ( 2017). Adaptive root foraging strategies along a boreal temperate forest gradient. New Phytologist, 215, 977-991.
DOI URL |
[31] | Pan RC, Dong YD ( 2001). Plant Physiology. 3rd ed. Higher Education Press, Beijing. 110-114. |
[ 潘瑞炽, 董愚得 ( 2001). 植物生理学. 3版. 高等教育出版社, 北京. 110-114.] | |
[32] | Pi FJ, Shu LX, Yu LF, Yan LB, Zhou C, Wu ZH, Yuan CJ ( 2017). Study on ecological stoichiometry characteristics and correlation of plants within different organs of 10 dominant tree species in karst region of Central Guizhou. Ecology and Environmental Sciences, 26, 628-634. |
[ 皮发剑, 舒利贤, 喻理飞, 严令斌, 周晨, 吴正花, 袁丛军 ( 2017). 黔中喀斯特10种优势树种根茎叶化学计量特征及其关联性. 生态环境学报, 26, 628-634.] | |
[33] |
Reiners WA ( 1986). Complementary models for ecosystems. The American Naturalist, 127, 59-73.
DOI URL |
[34] |
Sheng MY, Liu Y, Xiong KN ( 2013). Response of soil physical-chemical properties to rocky desertification succession in South China Karst. Acta Ecologica Sinica, 33, 6303-6313.
DOI URL |
[ 盛茂银, 刘洋, 熊康宁 ( 2013). 中国南方喀斯特石漠化演替过程中土壤理化性质的响应. 生态学报, 33, 6303-6313.]
DOI URL |
|
[35] |
Sheng MY, Xiong KN, Wang LJ, Li XN, Tian XJ ( 2018). Response of soil physical and chemical properties to rocky desertification succession in South China Karst. Carbonates and Evaporites, 33, 15-28.
DOI URL |
[36] |
Springob G, Holger K ( 2003). Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology & Biochemistry, 35, 629-632.
DOI URL |
[37] | Sun T, Hobbie SE, Berg B, Zhang HG, Wang QK, Wang ZW, Hättenschwiler S ( 2018). Contrasting dynamics and trait controls in firstorder root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of Ameriaca, 115, 10392-10397. |
[38] |
Sun T, Mao ZJ, Han YY ( 2013). Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species. Plant and Soil, 372, 445-458.
DOI URL |
[39] | Tan HW, Zhou LQ, Xie RL, Huang MF ( 2011). Potassium uptake and its utilization in sugarcane under the different fertilization levels. Journal of Southern Agriculture, 42, 295-298. |
[ 谭宏伟, 周柳强, 谢如林, 黄美福 ( 2011). 不同施肥条件下甘蔗对钾的吸收利用研究. 南方农业学报, 42, 295-298.] | |
[40] | Wang L, Yu YH, Xing RR, Qin SY ( 2018). Ecological stoichiometry characteristics of carbon, nitrogen, phosphorus, and potassium of different economic tree species in the karst frigid and arid area. Acta Ecologica Sinica, 38, 5393-5403. |
[ 王璐, 喻阳华, 邢容容, 秦仕忆 ( 2018). 喀斯特高寒干旱区不同经济树种的碳氮磷钾生态化学计量特征. 生态学报, 38, 5393-5403.]
DOI URL |
|
[41] | Wang N ( 2016). Study of the Stoichiometric Characteristics and Turnover of Fine Root of Pinus Massoniana in Three Gorges Reservior Area. Master degree dissertation, China Academy of Forestry Sciences, Beijing. |
[ 王娜 ( 2016). 三峡库区马尾松细根化学计量特征和周转研究. 硕士学位论文, 中国林业科学研究院, 北京.] | |
[42] | Wang SQ, Yu GR ( 2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. |
[ 王绍强, 于贵瑞 ( 2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
[43] | Xiang ZY, Deng XW, Tian DL, Zhou X, Liu HJ, Tang LQ ( 2010). Effects of 5 patterns vegetation restoration on soil physical-chemical properties in rocky desertification area in Shaoyang County. Journal of Central South University of Forestry & Technology, 30, 23-28. |
[ 向志勇, 邓湘雯, 田大伦, 周雄, 刘豪健, 唐林琴 ( 2010). 五种植被恢复模式对邵阳县石漠化土壤理化性质的影响. 中南林业科技大学学报, 30, 23-28.] | |
[44] | Xiong KN, Li P, Zhou ZF, An YL, Lü T, Lan AJ (2002). A Typical Study of Remote Sensing GIS on Karst Rocky Desertification: Guizhou Province. Geological Press, Beijing. 134-137. |
[ 熊康宁, 黎平, 周忠发, 安裕伦, 吕涛, 蓝安军 (2002). 喀斯特石漠化的遥感—GIS典型研究: 以贵州省为例. 地质出版社, 北京. 134-137.] | |
[45] | Yan DL, Huang YJ, Jin SH, Huang JQ ( 2013). Temporal variation of C, N, P stoichiometric in functional organs rootlets, leaves of Carya cathayensis and forest soil. Journal of Soil and Water Conservation, 27, 255-259. |
[ 闫道良, 黄有军, 金水虎, 黄坚钦 ( 2013). 山核桃功能器官细根、叶和林地土壤C、N、P化学计量时间变异特征. 水土保持学报, 27, 255-259.] | |
[46] | Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H ( 2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 39, 683-693. |
[ 曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 ( 2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 683-693.] | |
[47] | Zheng DH, Chen GS ( 2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologia Sinica, 6, 141-153. |
[ 曾德慧, 陈广生 ( 2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 6, 141-153.] |
[1] | 祝维 周欧 孙一鸣 古丽米热·依力哈木 王亚飞 杨红青 贾黎明 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[3] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[4] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
[5] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[6] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[7] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[8] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[9] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[10] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[11] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[12] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[13] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[14] | 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响[J]. 植物生态学报, 2019, 43(5): 427-436. |
[15] | 周慧敏, 李品, 冯兆忠, 张殷波. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 2019, 43(4): 296-304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19