植物生态学报 ›› 2011, Vol. 35 ›› Issue (6): 681-686.DOI: 10.3724/SP.J.1258.2011.00681
• 研究论文 • 上一篇
宋旭丽1,2,3,4, 胡春梅1,2, 孟静静3,4, 侯喜林1,2,*(), 何启伟3, 李新国3,4,*(
)
收稿日期:
2010-11-26
接受日期:
2010-01-28
出版日期:
2011-11-26
发布日期:
2011-06-30
通讯作者:
侯喜林,李新国
作者简介:
lixinguo@tom.com
SONG Xu-Li1,2,3,4, HU Chun-Mei1,2, MENG Jing-Jing3,4, HOU Xi-Lin1,2,*(), HE Qi-Wei3, LI Xin-Guo3,4,*(
)
Received:
2010-11-26
Accepted:
2010-01-28
Online:
2011-11-26
Published:
2011-06-30
Contact:
HOU Xi-Lin,LI Xin-Guo
摘要:
快速叶绿素荧光动力学可以在无损情况下探知叶片光合机构的损伤程度, 快速叶绿素荧光测定和分析技术(JIP-test)将测量值转化为多种具有生物学意义的参数, 因而被广泛应用于植物光合机构对环境的响应机制研究。该文研究了超大甜椒(Capsicum annuum)幼苗在强光及不同NaCl浓度胁迫下的荧光响应情况。与单纯强光胁迫相比, NaCl胁迫引起了叶绿素荧光诱导曲线的明显改变, 光系统II (PSII)光抑制加重, 同时PSII反应中心和受体侧受到明显影响, 而且高NaCl浓度胁迫下PSII供体侧受伤害明显, 同时PSI反应中心活性(P700+)在盐胁迫下明显降低。这些结果表明, NaCl胁迫会增强强光对超大甜椒光系统的光抑制, 并且浓度越高抑制越明显, 但对PSI的抑制作用低于PSII。高NaCl浓度胁迫易对PSII供体侧造成破坏, 且PSI光抑制严重。
宋旭丽, 胡春梅, 孟静静, 侯喜林, 何启伟, 李新国. NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统I的光抑制. 植物生态学报, 2011, 35(6): 681-686. DOI: 10.3724/SP.J.1258.2011.00681
SONG Xu-Li, HU Chun-Mei, MENG Jing-Jing, HOU Xi-Lin, HE Qi-Wei, LI Xin-Guo. NaCl stress aggravates photoinhibition of photosystem II and photosystem I in Capsicum annuum leaves under high irradiance stress. Chinese Journal of Plant Ecology, 2011, 35(6): 681-686. DOI: 10.3724/SP.J.1258.2011.00681
图1 强光下NaCl胁迫对超大甜椒叶片快速叶绿素荧光动力学曲线的影响。T250是第3天时的数据, 其他胁迫均为第7天的数据。T0、T50、T150、T250, NaCl浓度分别为0、50、150、250 mmol·L-1。
Fig. 1 Effects of NaCl stress on the chlorophyll a fluorescence transient curve in sweet pepper leaves under high irradiance. The data of T250 was on the 3rd day, and the data of the other stresses were on the 7th day. T0, T50, T150 and T250 represents the seedlings was treated with 0, 50, 150 and 250 mmol·L-1 NaCl, respectively.
图2 强光下NaCl胁迫对超大甜椒叶片PSII最大光化学效率(A)、300 μs时的相对荧光(B)、2 ms时的相对荧光(C)和反应中心捕获的激子能将电子通过QA传递到其他电子受体的概率(D)的影响(平均值±标准偏差)。T0、T50、T150、T250, NaCl浓度分别为0、50、150、250 mmol·L-1。
Fig. 2 Effects of NaCl stress on φP0 (A), VK (B), Vj (C) andΨ0 (D) in sweet pepper leaves under high irradiance (mean ± SD). φPo, maximum quantum yield for primary photochemistry; Ψ0, the efficiency by which a absorbed photon in the antennae moves an electron into the electron transport chain beyond QA-; Vj, relative variable fluorescence at the J-step; Vk, relative variable fluorescence intensity at 300 μs. T0, T50, T150 and T250 represents the seedlings was treated with 0, 50, 150 and 250 mmol·L-1 NaCl, respectively.
图3 强光下NaCl胁迫对超大甜椒叶片单位面积有活性的PSII反应中心的数量(RC/CSm) (A)、单位面积吸收的光能(ABS/CSm) (B)、单位面积捕获的光能(TR/CSm) (C)和单位面积用于电子传递的能量(ET/CSm) (D)的影响(平均值±标准偏差)。T0、T50、T150、T250, NaCl浓度分别为0、50、150、250 mmol·L-1。
Fig. 3 Effects of NaCl stress on RC/CSm (A), ABS/CSm (B), TR/CSm (C) and ET/CSm (D) in sweet pepper leaves under high irradiance (mean ± SD). ABS/CSm, absorption flux per excited cross section; ET/CSm, electron transport flux per cross section; RC/CSm, density of PSII active reaction centers per excited cross-section; TR/CSm, trapped energy flux per cross section. T0, T50, T150 and T250 represents the seedlings was treated with 0, 50, 150 and 250 mmol·L-1 NaCl, respectively.
图4 强光下NaCl胁迫对超大甜椒叶片PSI反应中心活性(P700+)的影响(平均值±标准偏差)。T0、T50、T150、T250, NaCl浓度分别为0、50、150、250 mmol·L-1。
Fig. 4 Effects of NaCl stress on the activity of PSI (P700+) in sweet pepper leaves under high irradiance (mean ± SD). T0, T50, T150 and T250 represents the seedlings was treated with 0, 50, 150 and 250 mmol·L-1 NaCl, respectively.
[1] |
Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002). Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiology, 130, 1443-1453.
DOI URL PMID |
[2] |
Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007). A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiology, 145, 258-265.
URL PMID |
[3] |
Bagchi SN, Bitz T, Pistorius EK, Michel KP (2007). A Synechococcus elongatus PCC 7942 mutant with a higher tolerance toward the berbicide bentazone also confers resistance to sodium chloride stress. Photosynthesis Research, 92, 87-101.
URL PMID |
[4] |
Henmi T, Miyao M, Yamamoto Y (2004). Release and reactive-oxygen-mediated damage of the oxygen-evolving complex subunits of PSII during photoinhibition. Plant Cell and Physiology, 45, 243-250.
DOI URL |
[5] | Li PM (李鹏民), Gao HY (高辉远), Strasser RJ (2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 31, 559-566. (in Chinese with English abstract) |
[6] | Li XG (李新国), Bi YP (毕玉平), Zhao SJ (赵世杰), Meng QW (孟庆伟), He QW (何启伟), Zou Q (邹琦) (2005). Effects of short-term chilling stress on the photosystem and chloroplast ultrastructure in sweet pepper. Scientia Agricultura Sinica (中国农业科学), 38, 1226-1231. (in Chinese with English abstract) |
[7] |
Li XG, Bi YP, Zhao SJ, Meng QW, Zou Q, He QW (2005). Cooperation of xanthophyll cycle with water-water cycle in the protection of photosystems 1 and 2 against inactivation during chilling stress under low irradiance. Photosynthetica, 43, 261-266.
DOI URL |
[8] |
Li XG, Li JY, Zhao JP, Xu PL, He QW (2007). Xanthophyll cycle and inactivation of photosystem II reaction centers alleviating reducing pressure to photosystem I in morning glory leaves upon exposure to a short-term high irradiance. Journal of Integrative Plant Biology, 49, 1047-1053.
DOI URL |
[9] |
Lu CM, Qiu NW, Lu QT, Wang BS, Kuang TY (2002). Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science, 163, 1063-1068.
DOI URL |
[10] |
Lu CM, Qiu NW, Wang BS, Zhang JH (2003). Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. Journal of Experimental Botany, 54, 851-860.
DOI URL PMID |
[11] |
Lu CM, Zhang JH (2000). Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensiesis. Journal of Experimental Botany, 51, 911-917.
URL PMID |
[12] |
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta, 1767, 414-421.
DOI URL PMID |
[13] |
Qin LQ, Li L, Zhang YL, Wan SB, Meng JJ, Meng QW, Li XG (2011). Damaging mechanisms of chilling- and salt-stress to Arachis hypogaea L. leaves. Photosynthetica, 49, 37-42.
DOI URL |
[14] | Ren LL (任丽丽), Gao HY (高辉远) (2007). Effects of chilling stress under weak light on functions of photosystems in leaves of wild soybean and cultivatar soybean. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 33, 333-340. (in Chinese with English abstract) |
[15] |
Sayed OH (2003). Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41, 321-330.
DOI URL |
[16] |
Schansker G, Srivastava A, Govindjee, Strasser RJ (2003). Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 30, 785-796.
DOI URL PMID |
[17] |
Strasser BJ (1997). Donor side capacity of photosystem II probed by chlorophyll a fluorescence transient. Photosynthesis Research, 52, 147-155.
DOI URL |
[18] |
Subramanyam R, Jolley C, Thangaraj B, Nellaepalli S, Webber AN, Fromme P (2010). Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhar- dtii cells grown under high salt conditions. Planta, 231, 913-922.
DOI URL |
[19] |
Sudhir PR, Pogoryelov D, Kovács L, Garab G, Murthy SDS (2005). The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. Journal of Biochemistry and Molecular Biology, 38, 481-485.
URL PMID |
[20] | Sui XL (眭晓蕾), Mao SL (毛胜利), Wang LH (王立浩), Li W (李伟), Zhang BX (张宝玺), Zhang ZX (张振贤) (2008). Effects of low temperature on photosynthesis of sweet pepper under low light. Journal of Nuclear Agricultural Sciences (核农学报), 22, 880-886. (in Chinese with English abstract) |
[21] | Sun S (孙山), Zhang LT (张立涛), Wang JX (王家喜), Wang SM (王少敏), Gao HJ (高华君), Gao HY (高辉远) (2008). Effects of low temperature and weak light on the functions of photosystem in Prunus armeniaca L. leaves in solar greenhouse. Chinese Journal of Applied Ecology (应用生态学报), 19, 512-516. (in Chinese with English abstract) |
[22] |
Wen XG, Qiu NW, Lu QT, Lu CM (2005). Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta, 220, 486-497.
URL PMID |
[23] | Wu HY (吴韩英), Shou SY (寿森炎), Zhu ZJ (朱祝军), Yang XY (杨信廷) (200l). Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicum fructescens L.). Acta Horticulturae Sinica (园艺学报), 28, 517-521. (in Chinese with English abstract) |
[24] | Xue YF (薛延丰), Liu ZP (刘兆普) (2008). Effects of NaCl and Na2CO3 stresses on photosynthesis and parameters of chlorophyll fluorescence in Helianthus tuberosus seedlings. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 161-167. (in Chinese with English abstract) |
[25] | Yao G (姚广), Wang X (王鑫), Gao HY (高辉远), Zhang LT (张立涛), Bu JW (部建雯) (2009). Effects of salt-stress on photochemical activity in leaves of Festuca arundinacea. Chinese Journal of Grassland (中国草地学报), 31, 46-52. (in Chinese with English abstract) |
[26] |
Zhang T, Gong HM, Wen XG, Lu CM (2010). Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. Journal of Plant Physiology, 167, 951-958.
DOI URL PMID |
[1] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[2] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[3] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[4] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[5] | 樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏. 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定[J]. 植物生态学报, 2016, 40(9): 942-951. |
[6] | 孔庆仙, 夏江宝, 赵自国, 屈凡柱. 不同地下水矿化度对柽柳光合特征及树干液流的影响[J]. 植物生态学报, 2016, 40(12): 1298-1309. |
[7] | 叶子飘, 胡文海, 闫小红. 光系统II实际光化学量子效率对光的响应模型的比较[J]. 植物生态学报, 2016, 40(11): 1208-1217. |
[8] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[9] | 孟德云, 侯林琳, 杨莎, 孟静静, 郭峰, 李新国, 万书波. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015, 39(12): 1209-1215. |
[10] | 胡文海, 张斯斯, 肖宜安, 闫小红. 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制[J]. 植物生态学报, 2015, 39(11): 1093-1100. |
[11] | 胡楚琦, 刘金珂, 王天弘, 王文琳, 卢山, 周长芳. 三种盐胁迫对互花米草和芦苇光合作用的影响[J]. 植物生态学报, 2015, 39(1): 92-103. |
[12] | 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制[J]. 植物生态学报, 2014, 38(7): 720-728. |
[13] | 张超, 占东霞, 张鹏鹏, 张亚黎, 罗宏海, 张旺锋. 棉花苞叶光呼吸和PSII热耗散对土壤水分的响应[J]. 植物生态学报, 2014, 38(4): 387-395. |
[14] | 师生波, 张怀刚, 师瑞, 李妙, 陈文杰, 孙亚男. 青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J]. 植物生态学报, 2014, 38(4): 375-386. |
[15] | 陈坚,李妮亚,刘强,钟才荣,黄敏,曾佳. NaCl处理下两种引进红树的光合及抗氧化防御能力[J]. 植物生态学报, 2013, 37(5): 443-453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19