植物生态学报 ›› 2014, Vol. 38 ›› Issue (4): 387-395.DOI: 10.3724/SP.J.1258.2014.00035
张超, 占东霞, 张鹏鹏, 张亚黎, 罗宏海, 张旺锋*()
收稿日期:
2013-10-08
接受日期:
2014-02-17
出版日期:
2014-10-08
发布日期:
2014-04-08
通讯作者:
张旺锋
作者简介:
*(E-mail:Zhwf_agr@shzu.edu.cn)基金资助:
ZHANG Chao, ZHAN Dong-Xia, ZHANG Peng-Peng, ZHANG Ya-Li, LUO Hong-Hai, ZHANG Wang-Feng*()
Received:
2013-10-08
Accepted:
2014-02-17
Online:
2014-10-08
Published:
2014-04-08
Contact:
ZHANG Wang-Feng
摘要:
在新疆气候生态条件下, 采用膜下滴灌植棉技术, 设置不同滴灌水分处理, 研究了不同滴灌量条件下棉花(Gossypium hirsutum)苞叶和叶片碳同化、光呼吸作用、光系统II (PSII)热耗散作用及其光破坏防御机制的差异, 以揭示滴灌节水条件下棉花苞叶缓解光抑制的机理及与棉花抗旱特性的关系。结果表明: 棉花开花后苞叶及叶片在高温强光下实际光化学效率(ΦPSII)显著降低, 发生明显的光抑制现象, 但苞叶的光抑制程度较叶片轻; 与正常滴灌量处理相比, 节水滴灌条件下棉花水分亏缺, 叶片净光合速率(Pn)、ΦPSII、光呼吸(Pr)、光化学猝灭系数(qP)降低, 非光化学猝灭系数(NPQ)升高, 叶片光抑制程度加重, 而苞叶Pn、ΦPSII、Pr、qP、NPQ变化不大, 与正常滴灌量处理相比, 光抑制程度无显著差异。苞叶光呼吸速率与光合速率的比值(Pr/Pn)显著高于叶片; 滴灌节水条件下棉花适度水分亏缺对苞叶光呼吸及Pr/Pn无显著影响。高温强光下, 棉花节水滴灌对叶片PSII量子产量的转化与分配影响显著, 但对苞叶的影响不显著; 苞叶非调节性能量耗散的量子产量(Y(NPQ))高于叶片, 因此能有效地将PSII的过剩光能以热的形式耗散。综上所述, 与叶片相比, 苞叶对轻度水分亏缺不敏感, 是棉花适应干旱逆境较强的器官, 苞叶光呼吸和热耗散作用对光破坏防御具有重要意义。
张超, 占东霞, 张鹏鹏, 张亚黎, 罗宏海, 张旺锋. 棉花苞叶光呼吸和PSII热耗散对土壤水分的响应. 植物生态学报, 2014, 38(4): 387-395. DOI: 10.3724/SP.J.1258.2014.00035
ZHANG Chao, ZHAN Dong-Xia, ZHANG Peng-Peng, ZHANG Ya-Li, LUO Hong-Hai, ZHANG Wang-Feng. Responses of photorespiration and thermal dissipation in PSII to soil water in cotton bracts. Chinese Journal of Plant Ecology, 2014, 38(4): 387-395. DOI: 10.3724/SP.J.1258.2014.00035
图1 棉花开花后常规滴灌和节水滴灌土壤相对含水量的变化(平均值±标准偏差)。 A-C, 常规灌溉。D-F, 节水灌溉。
Fig. 1 Changes of relative soil water content under normal drip irrigation and water-saving drip irrigation following anthesis of cotton plants (mean ± SD). A-C, Normal drip irrigation. D-F, Water-saving drip irrigation.
图2 开花后常规滴灌(●)和节水滴灌(○)棉花苞叶(左)与叶片(右)含水量的变化(平均值±标准偏差)。
Fig. 2 Changes of water content in bracts (left) and leaves (right) of cotton plants under normal drip irrigation (●) and water-saving drip irrigation (○) following anthesis (mean ± SD).
图3 开花后常规滴灌(●)和节水滴灌(○)棉花苞叶(左)与叶片(右)气体交换参数的变化(平均值±标准偏差)。 光合有效辐射= 1800 μmol·m-2·s-1。Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。
Fig. 3 Changes of gas exchange parameters in bracts (left) and leaves (right) of cotton plants under normal drip irrigation (●) and water-saving drip irrigation (○) following anthesis (mean ± SD). Photosynthetically active radiation = 1800 μmol·m-2·s-1. Ci, intercellular CO2 concentration; Gs, stomtal conductance; Pn, net photosynthetic rate; Tr, transpiration rate.
图4 开花后常规滴灌(●)和节水滴灌(○)棉花苞叶(左)与叶片(右)有效光化学效率(ΦPSII)和最大光化学效率(Fv/Fm)的变化(平均值±标准偏差)。 光合有效辐射= 1800 μmol·m-2·s-1。
Fig. 4 Changes of actual photochemical efficiency of PSII (ΦPSII) and maximum photochemical efficiency of PSII (Fv/Fm) in bracts (left) and leaves (right) of cotton plants under normal drip irrigation (●) and water-saving drip irrigation (○) following anthesis (mean ± SD). Photosynthetically active radiation = 1800 μmol·m-2·s-1.
图5 开花后常规滴灌(●)和节水滴灌(○)棉花苞叶(左)与叶片(右)光呼吸(Pr)及光呼吸与光合速率比值(Pr/Pn)的变化(平均值±标准偏差)。 光合有效辐射= 1800 μmol·m-2·s-1。
Fig. 5 Changes of photorespiration (Pr) and the photorespiration/photosynthesis ratio (Pr/Pn) in bracts (left) and leaves (right) of cotton plants under normal drip irrigation (● black) and water-saving drip irrigation (○ white) following anthesis (mean ± SD). Photosynthetically active radiation = 1800 μmol·m-2·s-1.
图6 开花后常规滴灌(●)和节水滴灌(○)棉花苞叶(左)与叶片(右)光化学猝灭系数(qP)与非光化学猝灭系数(NPQ)的变化(平均值±标准偏差)。 光合有效辐射= 1800 μmol·m-2·s-1。
Fig. 6 Changes of photochemical quenching (qP) and non-photochemical quenching (NPQ) in bracts (left) and leaves (right) of cotton plants under normal drip irrigation (●) and water-saving drip irrigation (○) following anthesis (mean ± SD). Photosynthetically active radiation = 1800 μmol·m-2·s-1.
图7 开花后常规滴灌和节水滴灌棉花苞叶与叶片中PSII量子产量的转化(平均值±标准偏差)。 Y(II),光系统II光化学量子产量; Y(NO), PSII中荧光和不依赖光的基础热耗散量子产量; Y(NPQ), PSII中ΔpH和叶黄素调节的热耗散量子产量。光合有效辐射= 1800 μmol·m-2·s-1。
Fig. 7 Conversion of quantum yields in PSII in bracts and leaves of cotton plants under normal drip irrigation and water-saving drip irrigation following anthesis (mean ± SD). Y(II), photochemical quantum yields in PSII; Y(NO), quantum yield of fluorescence and light-independent constitution thermal dissipation; Y(NPQ), quantum yield of ΔpH and xanthophylls regulated thermal dissipation. Photosynthetically active radiation = 1800 μmol·m-2·s-1.
[1] |
Asada K (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601-639.
URL PMID |
[2] | Bai J, Xu DH, Kang HM, Chen K, Wang G (2008). Photoprotective function of photorespiration in Reaumuria soongorica during different levels of drought stress in natural high irradiance. Photosynthetica, 46, 232-237. |
[3] |
Barber J, Andersson B (1992). Too much of a good thing: light can be bad for photosynthesis. Trends in Biochemical Sciences, 17, 61-66.
DOI URL PMID |
[4] | Bondada BR, Oosterhuis DM (2000). Comparative epidermal ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and capsule wall. Annals of Botany, 86, 1143-1152. |
[5] | Bondada BR, Oosterhuis DM (2003). Morphometric analysis of chloroplasts of cotton leaf and fruiting organs. Biologia Plantarum, 47, 281-284. |
[6] | Bondada BR, Oosterhuis DM, Wullschleger SD, Kim KS, Harris WM (1994). Anatomical considerations related to photosynthesis in cotton (Gossypium hirsutum L.) leaves, bracts, and the capsule wall. Journal of Experimental Botany, 45, 111-118. |
[7] | Bort I, Brown RH, Araus JL (1996). Refixation of respiratory CO2 in the ears of C3 cereals. Journal of Experimental Botany, 47, 1567-1575. |
[8] | Demmig-Adams B, Adams WW III (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599-626. |
[9] | Demmig-Adams B, Adams WW III (2006). Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist, 172, 11-21. |
[10] | Du MW, Feng GY, Yao YD, Luo HH, Zhang YL, Xia DL, Zhang WF (2009). Canopy characteristics and its correlation with photosynthesis of super high-yielding hybrid cotton Biaoza A1 and Shiza 2. Acta Agronomica Sinica, 35, 1068-1077. (in Chinese with English abstract) |
[ 杜明伟, 冯国艺, 姚炎帝, 罗宏海, 张亚黎, 罗宏海, 夏东利, 张旺锋 (2009). 杂交棉标杂A1和石杂2号超高产冠层特性及其与群体光合生产的关系. 作物学报, 35, 1068-1077.] | |
[11] |
Flexas J, Badger M, Chow WS, Medrano J, Osmond CB (1999). Analysis of the relative increase in photosynthetic O2 uptake when photosynthesis in grapevine leaves in inhibited following low night temperatures and/or water stress. Plant Physiology, 121, 675-684.
DOI URL PMID |
[12] | Galmés J, Medrano H, Flexas J (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175, 81-93. |
[13] | Guan X, Gu S (2009). Photorespiration and photoprotection of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) under water stress. Photosynthetica, 47, 437-444. |
[14] |
Hu YY, Oguchi R, Yamori W, von Caemmerer S, Chow WS, Zhang WF (2013). Cotton bracts are adapted to a microenvironment of concentrated CO2 produced by rapid fruit respiration. Annals of Botany, 112, 31-40.
DOI URL PMID |
[15] |
Hu YY, Zhang YL, Luo HH, Li W, Oguchi R, Fan DY, Chow WS, Zhang WF (2012). Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 235, 325-336.
DOI URL PMID |
[16] | Jiang SK, Zhang XJ, Xu ZJ, Chen WF (2010). Comparison between QTLs for chlorophyll content and genes controlling chlorophyll biosynthesis and degradation in japonica rice (Oryza sativa L.). Acta Agronomica Sinica, 36, 376-384. (in Chinese with English abstract) |
[ 姜树坤, 张喜娟, 徐正进, 陈温福 (2010). 粳稻叶绿素含量QTL与其合成降解相关基因的比较分析. 作物学报, 36, 376-384.] | |
[17] |
Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003). The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant and Cell Physiology, 44, 318-325.
URL PMID |
[18] | Kozaki A, Takeka G (1996). Photorespiration protects C3 plants from photooxidation. Nature, 384, 557-560. |
[19] | Larcher W (1983). Physiological Plant Ecology. Springer- Verlag, Berlin. 252. |
[20] |
Miller AG, Espie GS, Canvin DT (1989). Use of carbon oxysulfide, a structural analog of CO2, to study active CO2 transport in the Cyanobacterium Synechococcus UTEX 6251. Plant Physiology, 90, 1221-1231.
DOI URL PMID |
[21] |
Miyake C, Miyata M, Shinzaki Y, Tomizawa KI (2005). CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—Relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant and Cell Physiology, 46, 629-637.
DOI URL PMID |
[22] |
Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002). Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Annals of Botany, 89, 841-850.
URL PMID |
[23] | Osmond CB, Grace SC (1995). Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? Journal of Experimental Botany, 46, 1351-1362. |
[24] |
Pascal AA, Liu ZF, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang WR, Ruban A (2005). Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature, 436, 134-137.
URL PMID |
[25] | Qin LQ, Zhang YL, Guo F, Wan SB, Meng QW, Li XG (2011). Damaging mechanisms of peanut (Arachis hypogaea L.) photosystems caused by high-temperature and drought under high irradiance. Acta Ecologica Sinica, 31, 1835-1842. (in Chinese with English abstract) |
[ 秦立琴, 张悦丽, 郭峰, 万书波, 孟庆伟, 李新国 (2011). 强光下高温与干旱胁迫对花生光系统的伤害机制. 生态学报, 31, 1835-1842.] | |
[26] |
Rivero RM, Shulaev V, Blumwald E (2009). Cytokinin- dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiology, 150, 1530-1540.
URL PMID |
[27] | Schreiber U (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee eds. Chlorophyll a Fluorescence. Springer, Heidelberg, Germany. 279-319. |
[28] | Schreiber U, Bilger W, Neubauer C (1994). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. 49-70. |
[29] | Somerville CR (1986). Analysis of photosynthesis with mutants of higher plants and algae. Annual Review of Plant Physiology, 37, 467-507. |
[30] |
Takahashi S, Murata N (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13, 178-182.
DOI URL PMID |
[31] | Valladares F, Pearcy RW (2002). Drought can be more critical in the shade than in the sun: a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Niño year. Plant, Cell & Environment, 25, 749-759. |
[32] | Wang ZH, Wu XS, Chang XP (2010). Chlorophyll content and chlorophyll fluorescence kinetics parameters of flag leaf and their gray relational grade with yield in wheat. Acta Agronomica Sinica, 36, 217-227. (in Chinese with English abstract) |
[ 王正航, 武仙山, 昌小平 (2010). 小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析. 作物学报, 36, 217-227.] | |
[33] | Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, Lee-good RC (1999). The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant, Cell & Environment, 22, 361-373. |
[34] | Wullschleger SD, Oosterhuis DM (1991). Photosynthesis, transpiration, and water-use efficiency of cotton leaves and fruit. Photosynthetica, 25, 505-515. |
[35] | Zelitch I (1992). Control of plant productivity by regulation of photorespiration. BioScience, 42, 510-516. |
[36] | Zhang YL, Feng GY, Hu YY, Yao YD, Zhang WF (2010). Photosynthetic activity and its correlation with matter production in non-foliar green organs of cotton. Acta Agronomica Sinica, 36, 701-708. (in Chinese with English abstract) |
[ 张亚黎, 冯国艺, 胡渊渊, 姚炎帝, 张旺锋 (2010). 棉花非叶绿色器官光合能力的差异及与物质生产的关系. 作物学报, 36, 701-708.] | |
[37] | Zhang YL, Luo HH, Zhang WF, Fan DY, He ZJ, Bai HD (2008). Effects of water deficit on photochemical activity and excitation energy dissipation of photosynthetic apparatus in cotton leaves during flowering and boll-setting stages. Journal of Plant Ecology (Chinese Version), 32, 681-689. (in Chinese with English abstract) |
[ 张亚黎, 罗宏海, 张旺锋, 樊大勇, 何在菊, 白慧东 (2008). 土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响. 植物生态学报, 32, 681-689.] | |
[38] | Zhang YP, Wang ZM, Wu YC, Zhang X (2006). Stomatal characteristics of different green organs in wheat under different irrigation regimes. Acta Agronomica Sinica, 11, 170-175. (in Chinese with English abstract) |
[ 张永平, 王志敏, 吴永成, 张霞 (2006). 不同供水条件下小麦不同绿色器官的气孔特性研究. 作物学报, 32, 70-75.] |
[1] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[2] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[3] | 樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏. 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定[J]. 植物生态学报, 2016, 40(9): 942-951. |
[4] | 胡文海, 张斯斯, 肖宜安, 闫小红. 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制[J]. 植物生态学报, 2015, 39(11): 1093-1100. |
[5] | 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制[J]. 植物生态学报, 2014, 38(7): 720-728. |
[6] | 雒珺瑜, 刘传亮, 张帅, 王春义, 吕丽敏, 李春花, 李付广, 崔金杰. 转RRM2基因棉生长势和产量及对棉田节肢动物群落的影响[J]. 植物生态学报, 2014, 38(7): 785-794. |
[7] | 师生波, 张怀刚, 师瑞, 李妙, 陈文杰, 孙亚男. 青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J]. 植物生态学报, 2014, 38(4): 375-386. |
[8] | 康华靖, 陶月良, 权伟, 王伟, 欧阳竹. 植物光合CO2响应模型对光下(暗)呼吸速率拟合的探讨[J]. 植物生态学报, 2014, 38(12): 1356-1363. |
[9] | 康华靖, 李红, 权伟, 欧阳竹. 四种作物光下暗呼吸速率降低的原因[J]. 植物生态学报, 2014, 38(10): 1110-1116. |
[10] | 武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超, 阿丽艳·肉孜. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应[J]. 植物生态学报, 2014, 38(10): 1124-1134. |
[11] | 陶先萍, 罗宏海, 杨海, 丁全盛, 张亚黎, 张旺锋. 根域限制下水氮供应对膜下滴灌棉花根系及叶片衰老特性的影响[J]. 植物生态学报, 2013, 37(3): 256-267. |
[12] | 李维, 张亚黎, 胡渊渊, 杨美森, 吴洁, 张旺锋. 田间条件下棉花幼叶光合特性及光保护机制[J]. 植物生态学报, 2012, 36(7): 662-670. |
[13] | 刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10): 1062-1074. |
[14] | 宋旭丽, 胡春梅, 孟静静, 侯喜林, 何启伟, 李新国. NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统I的光抑制[J]. 植物生态学报, 2011, 35(6): 681-686. |
[15] | 张亚黎, 罗毅, 姚贺盛, 田景山, 罗宏海, 张旺锋. 田间条件下海岛棉和陆地棉花铃期叶片光保护的机制[J]. 植物生态学报, 2010, 34(10): 1204-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19