植物生态学报 ›› 2013, Vol. 37 ›› Issue (3): 256-267.DOI: 10.3724/SP.J.1258.2013.00026
陶先萍, 罗宏海, 杨海, 丁全盛, 张亚黎, 张旺锋*()
发布日期:
2014-02-12
通讯作者:
张旺锋
作者简介:
E-mail: zhwf_agr@shzu.edu.cn基金资助:
TAO Xian-Ping, LUO Hong-Hai, YANG Hai, DING Quan-Sheng, ZHANG Ya-Li, ZHANG Wang-Feng*()
Published:
2014-02-12
Contact:
ZHANG Wang-Feng
摘要:
在新疆的气候生态条件下, 选用北疆2个棉花(Gossypium hirsutum)主栽品种‘新陆早13号’和‘新陆早33号’为供试材料, 设置限根(RR)与对照(CK)处理, 每个处理设置4个水氮水平: 水氮亏缺(W0N0)、水分亏缺(W0N1)、氮素亏缺(W1N0)与水氮适量(W1N1), 组成再裂区试验方案。采用管栽方法, 通过人工改变根系垂直生长深度和水氮供应, 在棉花产量形成期测定根系及叶片抗氧化保护酶系活性、生物量累积及分配等, 探讨根域限制及水氮供应对棉花根系生长及叶片衰老的影响机理。结果表明: 根域限制条件下, 棉花根系生物量、根系与叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)与过氧化氢酶(CAT)活性、棉株总生物量、根冠比均低于对照, 而地上部生物量与籽棉产量显著高于对照。水氮供应能有效地调节根系及叶片的生长, 不同水氮处理间棉花根系与叶片抗氧化保护酶系活性、叶绿素含量、地上部生物量及籽棉产量均表现为W1N1 > W0N1 > W1N0 > W0N0, 根冠比与根系生物量的表现与之相反。根域限制与水氮供应表现出互作优势, 根域限制下适量水氮供应处理的地上部生物量与籽棉产量均明显高于其他处理, 根冠比较低。因此, 在棉花根系生长受限的条件下, 优化生育期间水氮供应, 可以增强根系及叶片的抗氧化保护酶系活性、增加光合产物向地上部的分配比例、增加产量, 是进一步挖掘膜下滴灌棉花增产潜力的有效途径。
陶先萍, 罗宏海, 杨海, 丁全盛, 张亚黎, 张旺锋. 根域限制下水氮供应对膜下滴灌棉花根系及叶片衰老特性的影响. 植物生态学报, 2013, 37(3): 256-267. DOI: 10.3724/SP.J.1258.2013.00026
TAO Xian-Ping, LUO Hong-Hai, YANG Hai, DING Quan-Sheng, ZHANG Ya-Li, ZHANG Wang-Feng. Effects of water and nitrogen supply on parameters of root and leaf senescence in cotton plants grown under root restriction and with under-mulch drip irrigation. Chinese Journal of Plant Ecology, 2013, 37(3): 256-267. DOI: 10.3724/SP.J.1258.2013.00026
图2 水氮供应对根域限制棉花根系生物量的影响(平均值±标准偏差)。CK, 对照; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。不同小写字母表示各处理的差异显著(p < 0.05)。
Fig. 2 Effects of water and nitrogen application regimes on root biomass of cotton cultivated under root restriction (mean ± SD). CK, control; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen. Different small letters indicate significant difference (p < 0.05) among different treatments.
图3 水氮供应对根域限制棉花根系丙二醛(MDA)含量的影响(平均值±标准偏差)。CK, 对照; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。不同小写字母表示各处理的差异显著(p < 0.05)。
Fig. 3 Effects of water and nitrogen application regimes on malondialdehyde (MDA) content in root of cotton cultivated under root restriction (mean ± SD). CK, control; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen. Different small letters indicate significant difference (p < 0.05) among different treatments.
图4 水氮供应对根域限制棉花根系超氧化物歧化酶(SOD)活性的影响(平均值±标准偏差)。CK, 对照; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。不同小写字母表示各处理的差异显著(p < 0.05)。
Fig. 4 Effects of water and nitrogen application regimes on superoxide dismutase (SOD) activities in root of cotton cultivated under root restriction (mean ± SD). CK, control; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen. Different small letters indicate significant difference (p < 0.05) among different treatments.
图5 水氮供应对根域限制棉花根系过氧化物酶(POD)活性的影响(平均值±标准偏差)。CK, 对照; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。不同小写字母表示各处理的差异显著(p < 0.05)。
Fig. 5 Effects of water and nitrogen application regimes on peroxidase (POD) activities in root of cotton cultivated under root restriction (mean ± SD). CK, control; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen. Different small letters indicate significant difference (p < 0.05) among different treatments.
图6 水氮供应对根域限制棉花根系过氧化氢酶(CAT)活性的影响(平均值±标准偏差)。CK, 对照; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。不同小写字母表示各处理的差异显著(p < 0.05)。
Fig. 6 Effects of water and nitrogen application regimes on catalase (CAT) activities in root of cotton cultivated under root restriction (mean ± SD). CK, control; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen. Different small letters indicate significant difference (p < 0.05) among different treatments.
图7 水氮供应对根域限制棉花叶片SPAD值的影响(平均值±标准偏差)。CK, 对照; BO, 吐絮期; F, 开花期; FBO, 盛絮期; FF, 盛花期; LFB, 盛铃后期; PFB, 盛铃前期; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。
Fig. 7 Effects of water and nitrogen application regimes on leaf SPAD value of cotton cultivated under root restriction (mean ± SD). CK, control; BO, boll opening stage; F, flowering stage; FBO, full boll opening stage; FF, full flowering stage; LFB, late full boll stage; PFB, prophase full boll stage; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen.
图8 水氮供应对根域限制棉花叶片丙二醛含量的影响(平均值±标准偏差)。CK, 对照; BO, 吐絮期; F, 开花期; FBO, 盛絮期; FF, 盛花期; LFB, 盛铃后期; PFB, 盛铃前期; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。
Fig. 8 Effects of water and nitrogen application regimes on malondialdehyde (MDA) content in leaf of cotton cultivated under root restriction (mean ± SD). CK, control; BO, boll opening stage; F, flowering stage; FBO, full boll opening stage; FF, full flowering stage; LFB, late full boll stage; PFB, prophase full boll stage; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen.
图9 水氮供应对根域限制棉花叶片超氧化物歧化酶(SOD)活性的影响(平均值±标准偏差)。CK, 对照; BO, 吐絮期; F, 开花期; FBO, 盛絮期; FF, 盛花期; LFB, 盛铃后期; PFB, 盛铃前期; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。
Fig. 9 Effects of water and nitrogen application regimes on superoxide dismutase (SOD) activities in leaf of cotton cultivated under root restriction (mean ± SD). CK, control; BO, boll opening stage; F, flowering stage; FBO, full boll opening stage; FF, full flowering stage; LFB, late full boll stage; PFB, prophase full boll stage; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen.
图10 水氮供应对根域限制棉花叶片过氧化物酶(POD)活性的影响(平均值±标准偏差)。CK, 对照; BO, 吐絮期; F, 开花期; FBO, 盛絮期; FF, 盛花期; LFB, 盛铃后期; PFB, 盛铃前期; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。
Fig. 10 Effects of water and nitrogen application regimes on peroxidase (POD) activities in leaf of cotton cultivated under root restriction (mean ± SD). CK, control; BO, boll opening stage; F, flowering stage; FBO, full boll opening stage; FF, full flowering stage; LFB, late full boll stage; PFB, prophase full boll stage; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen.
图11 水氮供应对根域限制棉花叶片过氧化氢酶(CAT)活性的影响(平均值±标准偏差)。CK, 对照; BO, 吐絮期; F, 开花期; FBO, 盛絮期; FF, 盛花期; LFB, 盛铃后期; PFB, 盛铃前期; RR, 限根; W0N0, 水氮亏缺; W0N1, 水分亏缺; W1N0, 氮素亏缺; W1N1, 水氮适量。
Fig. 11 Effects of water and nitrogen application regimes on catalase (CAT) activities in leaf of cotton cultivated under root restriction (mean ± SD). CK, control; BO, boll opening stage; F, flowering stage; FBO, full boll opening stage; FF, full flowering stage; LFB, late full boll stage; PFB, prophase full boll stage; RR, root restriction; W0N0, water and nitrogen deficiency; W0N1, water deficiency; W1N0, nitrogen deficiency; W1N1, moderate supply of water and nitrogen.
品种 Variety | 处理 Treatment | 地上部分生物量 Shoot biomass (g) | 总生物量 Total biomass (g) | 根冠比 Root/shoot | 籽棉产量 Seed cotton yield (g·m-2) |
---|---|---|---|---|---|
‘新陆早13号’ ‘Xinluzao 13’ | RRW0N0 | 59.41 ± 5.34e | 91.44 ± 6.24e | 0.54 ± 0.02b | 192.5 ± 1.1g |
RRW0N1 | 86.06 ± 7.86b | 104.77 ± 5.74c | 0.22 ± 0.01g | 354.1 ± 3.5c | |
RRW1N0 | 69.38 ± 6.39d | 101.84 ± 4.47d | 0.47 ± 0.01d | 299.4 ± 2.2e | |
RRW1N1 | 94.08 ± 8.04a | 113.96 ± 5.77b | 0.21 ± 0.00g | 453.9 ± 4.1a | |
CKW0N0 | 57.29 ± 4.79f | 92.69 ± 6.85e | 0.62 ± 0.03a | 141.8 ± 1.3h | |
CKW0N1 | 77.54 ± 6.47c | 105.66 ± 5.52c | 0.36 ± 0.01e | 330.0 ± 2.2d | |
CKW1N0 | 68.38 ± 5.83d | 102.30 ± 5.70d | 0.50 ± 0.02c | 276.2 ± 1.1f | |
CKW1N1 | 92.04 ± 9.03a | 115.71 ± 5.79a | 0.26 ± 0.01f | 411.8 ± 6.8b | |
‘新陆早33号’ ‘Xinluzao 33’ | RRW0N0 | 65.79 ± 5.96g | 100.36 ± 6.89e | 0.53 ± 0.02b | 205.5 ± 1.4g |
RRW0N1 | 96.18 ± 8.16c | 107.02 ± 5.10c | 0.11 ± 0.01f | 448.9 ± 1.1c | |
RRW1N0 | 84.06 ± 7.08d | 103.83 ± 5.15d | 0.24 ± 0.01e | 420.1 ± 6.4d | |
RRW1N1 | 115.45 ± 9.14a | 120.19 ± 6.77b | 0.04 ± 0.00h | 881.8 ± 21.6a | |
CKW0N0 | 60.30 ± 5.63h | 101.67 ± 6.81e | 0.69 ± 0.03a | 196.5 ± 1.8g | |
CKW0N1 | 79.72 ± 7.02e | 108.06 ± 5.24c | 0.36 ± 0.02d | 402.4 ± 2.4e | |
CKW1N0 | 73.38 ± 6.83f | 103.98 ± 5.94d | 0.42 ± 0.02c | 325.0 ± 7.8f | |
CKW1N1 | 113.77 ± 8.77b | 122.07 ± 6.60a | 0.07 ± 0.00g | 642.7 ± 13.5b |
表1 水氮供应对根域限制棉花生物量累积与分配的影响(平均值±标准偏差)
Table 1 Effects of water and nitrogen application regimes on accumulation and distribution of biomass of cotton cultivated under root restriction (mean ± SD)
品种 Variety | 处理 Treatment | 地上部分生物量 Shoot biomass (g) | 总生物量 Total biomass (g) | 根冠比 Root/shoot | 籽棉产量 Seed cotton yield (g·m-2) |
---|---|---|---|---|---|
‘新陆早13号’ ‘Xinluzao 13’ | RRW0N0 | 59.41 ± 5.34e | 91.44 ± 6.24e | 0.54 ± 0.02b | 192.5 ± 1.1g |
RRW0N1 | 86.06 ± 7.86b | 104.77 ± 5.74c | 0.22 ± 0.01g | 354.1 ± 3.5c | |
RRW1N0 | 69.38 ± 6.39d | 101.84 ± 4.47d | 0.47 ± 0.01d | 299.4 ± 2.2e | |
RRW1N1 | 94.08 ± 8.04a | 113.96 ± 5.77b | 0.21 ± 0.00g | 453.9 ± 4.1a | |
CKW0N0 | 57.29 ± 4.79f | 92.69 ± 6.85e | 0.62 ± 0.03a | 141.8 ± 1.3h | |
CKW0N1 | 77.54 ± 6.47c | 105.66 ± 5.52c | 0.36 ± 0.01e | 330.0 ± 2.2d | |
CKW1N0 | 68.38 ± 5.83d | 102.30 ± 5.70d | 0.50 ± 0.02c | 276.2 ± 1.1f | |
CKW1N1 | 92.04 ± 9.03a | 115.71 ± 5.79a | 0.26 ± 0.01f | 411.8 ± 6.8b | |
‘新陆早33号’ ‘Xinluzao 33’ | RRW0N0 | 65.79 ± 5.96g | 100.36 ± 6.89e | 0.53 ± 0.02b | 205.5 ± 1.4g |
RRW0N1 | 96.18 ± 8.16c | 107.02 ± 5.10c | 0.11 ± 0.01f | 448.9 ± 1.1c | |
RRW1N0 | 84.06 ± 7.08d | 103.83 ± 5.15d | 0.24 ± 0.01e | 420.1 ± 6.4d | |
RRW1N1 | 115.45 ± 9.14a | 120.19 ± 6.77b | 0.04 ± 0.00h | 881.8 ± 21.6a | |
CKW0N0 | 60.30 ± 5.63h | 101.67 ± 6.81e | 0.69 ± 0.03a | 196.5 ± 1.8g | |
CKW0N1 | 79.72 ± 7.02e | 108.06 ± 5.24c | 0.36 ± 0.02d | 402.4 ± 2.4e | |
CKW1N0 | 73.38 ± 6.83f | 103.98 ± 5.94d | 0.42 ± 0.02c | 325.0 ± 7.8f | |
CKW1N1 | 113.77 ± 8.77b | 122.07 ± 6.60a | 0.07 ± 0.00g | 642.7 ± 13.5b |
[1] | Bange MP, Milroy SP (2004). Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Research, 87, 73-87. |
[2] | Cai KZ, Luo SM, Duan SS (2003). The response of the rice root system to nitrogen conditions under-root confinement. Acta Ecologica Sinica, 23, 1109-1116. (in Chinese with English abstract) |
[ 蔡昆争, 骆世明, 段舜山 (2003). 水稻根系在根袋处理条件下对氮养分的反应. 生态学报, 23, 1109-1116.] | |
[3] | Casper BB, Jackson RB (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570. |
[4] | Dodd IC (2005). Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant and Soil, 274, 251-270. |
[5] |
Dong HZ, Niu YH, Li WJ, Zhang DM (2008). Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Journal of Experimental Botany, 59, 1295-1304.
DOI URL PMID |
[6] | Ferree DC, Myers SC, Schupp JR (1992). Root pruning and root restriction of fruit trees-current review. Acta Horticulturae, 322, 153-166. |
[7] | Guo WQ, Zhao XH, Chen BL, Liu RX, Zhou ZG (2009). Effects of nitrogen on cotton (Gossypium hirsutum L.) root growth under short-term waterlogging during flowering and boll-forming stage. Acta Agronomica Sinica, 35, 1078-1085. (in Chinese with English abstract) |
[ 郭文琦, 赵新华, 陈兵林, 刘瑞显, 周治国 (2009). 氮素对花铃期短期渍水棉花根系生长的影响. 作物学报, 35, 1078-1085.] | |
[8] | Hu ZZ (2007). Implementing actively the base construction of commodity cotton of high quality in Xinjiang production and construction group. Xinjiang Farmland Science & Technology, (6), 3-8. (in Chinese) |
[ 胡兆璋 (2007). 积极促进兵团优质商品棉基地建设. 新疆农垦科技, (6), 3-8.] | |
[9] | Kimura K, Kikuchi S, Yamasaki SI (1999). Accurate root length measurement by image analysis. Plant and Soil, 216, 117-127. |
[10] | Li H, Zhang DY (1999). Morphological characteristics and growth redundancy of spring wheat root system in semi-arid regions. Chinese Journal of Applied Ecology, 10, 26-30. (in Chinese with English abstract) |
[ 李话, 张大勇 (1999). 半干旱地区春小麦根系形态特征与生长冗余的初步研究. 应用生态学报, 10, 26-30.] | |
[11] | Li HS (2000). Principle and Technology of Plant Physiology and Biochemistry Experiment. Higher Education Press, Beijing. 169-172. (in Chinese) |
[ 李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京. 169-172.] | |
[12] | Li SK, Wang CT, Wang CY, Zhang WF (2000). A study on the distributing pattern and construction of high-yield cotton root system in north Xinjiang. Cotton Science, 12, 67-72. (in Chinese with English abstract) |
[ 李少昆, 王崇桃, 汪朝阳, 张旺锋 (2000). 北疆高产棉花根系构型与动态建成的研究. 棉花学报, 12, 67-72.] | |
[13] | Liu DY, Shi LY, Huang BR, Dong QY (1993). Research of cultivation methods on root system root vigor and plant characteristics in winter wheat. Scientia Agricultura Sinica, 26, 51-56. (in Chinese with English abstract) |
[ 刘殿英, 石立岩, 黄炳茹, 董庆裕 (1993). 栽培措施对冬小麦根系及其活力和植株性状的影响. 中国农业科学, 26, 51-56.] | |
[14] | Liu JJ, Chen YH, Li MS (2002). Relationship between soil moisture and cotton transpiration under mulchtrickle irrigation. Cotton Science, 14, 200-203. (in Chinese with English abstract) |
[ 刘建军, 陈燕华, 李明思 (2002). 膜下滴灌棉花植株耗水率与土壤水分的关系. 棉花学报, 14, 200-203.] | |
[15] | Liu RX, Chen BL, Wang YH, Guo WQ, Zhou ZG (2009). Effects of nitrogen on cotton root growth under drought stress and after watering during flowering and boll-forming stages. Chinese Journal of Plant Ecology, 33, 405-413. (in Chinese with English abstract) |
[ 刘瑞显, 陈兵林, 王友华, 郭文琦, 周治国 (2009). 氮素对花铃期干旱再复水后棉花根系生长的影. 植物生态学报, 33, 405-413.] | |
[16] | Liu RX, Guo WQ, Chen BL, Zhou ZG (2008). Effects of nitrogen on the antioxidant enzyme activities and endogenous hormone contents of cotton leaf under drought stress and after soil re-watering during the flowering and boll-forming stage. Acta Agronomica Sinica, 34, 1598-1607. (in Chinese with English abstract) |
[ 刘瑞显, 郭文琦, 陈兵林, 周治国 (2008). 氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响. 作物学报, 34, 1598-1607.] | |
[17] |
Liu RX, Zhou ZG, Guo WQ, Chen BL, Oosterhuis DM (2008). Effects of N fertilization on root development and activity of water-stressed cotton ( Gossypium hirsutum L.) plants. Agricultural Water Management, 95, 1261-1270.
DOI URL |
[18] | Pan QM, Yu ZW, Wang YF, Wang RY (1999). Changes of two senescence index and iPAs and ABA contents in wheat root at different soil layer after anthesis. Plant Physiology Communication, 35, 449-451. (in Chinese with English abstract) |
[ 潘庆民, 于振文, 王月福, 王瑞英 (1999). 小麦开花后不同土层根系的两种衰老指标与iPAs及ABA含量的变化. 植物生理学通讯, 35, 449-451.] | |
[19] | Schurr U (1998). Xylem sap sampling-new approaches to an old topic. Trends in Plant Science, 3, 293-298. |
[20] | Song HX, Li SX (2003). Effects of root growing space of on maize its absorbing characteristics. Scientia Agricultura Sinica, 36, 899-904. (in Chinese with English abstract) |
[ 宋海星, 李生秀 (2003). 玉米生长空间对根系吸收特性的影响. 中国农业科学, 36, 899-904.] | |
[21] | Thomas RB, Strain BR (1991). Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiology, 96, 627-634. |
[22] | Wang Z (2000). Plant Physiology. China Agriculture Press, Beijing. 422-423. (in Chinese) |
[ 王忠 (2000). 植物生理学, 中国农业出版社, 北京. 422-423.] | |
[23] | Wei CZ, Ma FY, Lei YW, Li JH, Ye J, Zhang FS (2002). Study on cotton root development and spatial distribution under film mulch and drip irrigation. Cotton Science, 14, 209-214. (in Chinese with English abstract) |
[ 危常州, 马富裕, 雷咏雯, 李俊华, 冶军, 张福锁 (2002). 棉花膜下滴灌根系发育规律的研究. 棉花学报, 14, 209-214.] | |
[24] |
Wei DZ, Ning SJ, Lin WX (2004). Relationship between wheat root activity and leaf senescence. Chinese Journal of Applied Ecology, 15, 1565-1569. (in Chinese with English abstract)
URL PMID |
[ 魏道智, 宁书菊, 林文雄 (2004). 小麦根系活力变化与叶片衰老的研究. 应用生态学报, 15, 1565-1569. ]
PMID |
|
[25] | Xie ZL, Tian CY, Bian WG (2009). Effects of water and nitrogen on cotton root architecture under film drip irrigation. Cotton Science, 21, 508-514. (in Chinese with English abstract) |
[ 谢志良, 田长彦, 卞卫国 (2009). 膜下滴灌水氮对棉花根系构型的影响. 棉花学报, 21, 508-514. ] | |
[26] | Xu M, Jia DT, Ma DR, Wang JY, Miao W, Chen WF (2010). Correlation of root physiology and leaf photosynthesis characteristics in northern Chinese japonica super rice. Acta Agronomica Sinica, 36, 1030-1036. (in Chinese with English abstract) |
[ 许明, 贾德涛, 马殿荣, 王嘉宇, 苗微, 陈温福 (2010). 北方超级粳稻根系生理、叶片光合性能特点及其相互关系. 作物学报, 36, 1030-1036.] | |
[27] | Yang HQ, Li LG, Jie YL (2001). Root restriction of horticultural plant and its application. Acta Horticulturae Sinica, 28, 705-710. (in Chinese with English abstract) |
[ 杨洪强, 李林光, 接玉玲 (2001). 园艺植物的根系限制及其应用. 园艺学报, 28, 705-710.] | |
[28] |
Yang JC, Zhang JH, Wang Z, Zhu Q, Liu L (2002). Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta, 215, 645-652.
DOI URL PMID |
[29] | Yong JWH, Stuart LD, Chin WS, Farquhar GD (2010). Effects of root restriction on growth and associated cytokinin levels in cotton ( Gossypium hirsutum). Functional Plant Biology, 37, 974-984. |
[30] | Zhang DY, Jiang XH, Zhao SL (1995). Further thoughts on growth redundancy. Acta Pratacultural Science, (3), 17-22. (in Chinese with English abstract) |
[ 张大勇, 姜新华, 赵松龄 (1995). 再论生长的冗余. 草业学报, (3), 17-22.] | |
[31] | Zhang HZ, Gan XX, Hu XB, Li SL, Luo HH, Zhang WF (2010). Effects of irrigation and nitrogen application regimes on leaf senescence and yield and fiber quality of cotton in plastic mulched/drip irrigated systems. Journal of Shihezi University Natural Science, 28, 661-668. (in Chinese with English abstract) |
[ 张宏芝, 干秀霞, 虎晓兵, 李善龙, 罗宏海, 张旺锋 (2010). 膜下滴灌水氮运筹方式对棉花叶片衰老及产量和品质的影响. 石河子大学学报(自然科学版), 28, 661-668.] | |
[32] |
Zhang YQ, Miao GY (2006). Effects of soil root-growing space on root physiological characteristics and grain yield of sorghum. Chinese Journal of Applied Ecology, 17, 635-639. (in Chinese with English abstract)
URL PMID |
[ 张永清, 苗果园 (2006). 根土空间对高粱根系生理特性及产量的影响. 应用生态学报, 17, 635-639.]
PMID |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[9] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[10] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[11] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[12] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[13] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[14] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[15] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19