植物生态学报 ›› 2013, Vol. 37 ›› Issue (3): 248-255.DOI: 10.3724/SP.J.1258.2013.00025
发布日期:
2014-02-12
通讯作者:
万贤崇
作者简介:
E-mail: wxc@caf.ac.cn基金资助:
WANG Lin, FENG Jin-Xia, WAN Xian-Chong*()
Published:
2014-02-12
Contact:
WAN Xian-Chong
摘要:
该研究测定了旱季和雨季刺槐(Robinia pseudoacacia)林不同土层厚度的土壤含水量, 刺槐的树高、胸径、小枝凌晨水势、叶片碳稳定同位素组成(δ13C)、叶面积、比叶重和气体交换指标; 分析了刺槐旱季和雨季的水分状况和土层厚度之间的关系; 通过刺槐对季节性干旱胁迫的反应, 估计华北石质山区不同土层厚度土壤水分对刺槐的承载能力; 并求证近年来该地区刺槐衰败和水分因素的关系。结果显示: 随着土层厚度减小, 旱季土壤含水量下降、凌晨小枝水势降低; 气孔导度和最大光合速率都减小, 而瞬时水分利用效率增加, 雨季上述指标无显著性差异, 旱季土壤含水量只有雨季的60%左右。随着土层变薄, 刺槐叶片δ13C增高, 叶面积减小, 比叶重增加; 刺槐树高和胸径减小。以上结果表明: 刺槐在不同季节下的水分状况综合反映土壤的供水能力, 土层浅薄导致土壤水分承载力不足, 致使刺槐在旱季受到较严重的水分胁迫, 这可能是刺槐出现衰败的重要原因。
王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响. 植物生态学报, 2013, 37(3): 248-255. DOI: 10.3724/SP.J.1258.2013.00025
WANG Lin, FENG Jin-Xia, WAN Xian-Chong. Effects of soil thickness on dry-season water relations and growth in Robinia pseudoacacia. Chinese Journal of Plant Ecology, 2013, 37(3): 248-255. DOI: 10.3724/SP.J.1258.2013.00025
样地 Plot | 土层厚度 Soil thickness (cm) | 植株密度 Plant density (No.·hm-2) |
---|---|---|
R70 | 70 ± 10 | 2 250 ± 265 |
R40 | 38 ± 3 | 1 800 ± 200 |
R25 | 25 ± 6 | 2 130 ± 305 |
表1 样地土层厚度和林分密度(平均值±标准偏差)
Table 1 Soil thickness and plant density of plots (mean ± SD)
样地 Plot | 土层厚度 Soil thickness (cm) | 植株密度 Plant density (No.·hm-2) |
---|---|---|
R70 | 70 ± 10 | 2 250 ± 265 |
R40 | 38 ± 3 | 1 800 ± 200 |
R25 | 25 ± 6 | 2 130 ± 305 |
图1 不同土层厚度(R70, 70 cm; R40, 40 cm; R25, 25 cm)下刺槐林旱季和雨季的土壤含水量(平均值±标准偏差)。不同小写字母表示差异显著(p = 0.05)。
Fig. 1 Soil moisture of Robinia pseudoacacia forests in different soil thickness (R70, 70 cm; R40, 40 cm; R25, 25 cm) in dry season and wet season (mean ± SD). Different small letters indicate significant difference (p = 0.05).
图2 不同土层厚度(R70, 70 cm; R40, 40 cm; R25, 25 cm)下刺槐旱季和雨季的小枝凌晨水势(平均值±标准偏差)。不同小写字母表示差异显著(p = 0.05)。
Fig. 2 Predawn twig water potential of Robinia pseudoacacia in different soil thickness (R70, 70 cm; R40, 40 cm; R25, 25 cm) in dry season and wet season (mean ± SD). Different small letters indicate significant difference (p = 0.05).
图3 不同土层厚度(R70, 70 cm; R40, 40 cm; R25, 25 cm)下刺槐旱季和雨季的净光合速率(A)、气孔导度(B)、水分利用效率(C) (平均值±标准偏差)。不同小写字母表示差异显著(p = 0.05)。
Fig. 3 Net photosynthetic rate (A), stomatal conductance (B) and water use efficiency (C) of Robinia pseudoacacia in different soil thickness (R70, 70 cm; R40, 40 cm; R25, 25 cm) in dry season and wet season (mean ± SD). Different small letters indicate significant difference (p = 0.05).
图4 不同土层厚度(R70, 70 cm; R40, 40 cm; R25, 25 cm)下刺槐的叶片碳稳定同位素组成(δ13C) (平均值±标准偏差)。不同小写字母表示差异显著(p = 0.05)。
Fig. 4 Leaf stable carbon isotope ratio (δ13C) of Robinia pseudoacacia in different soil thickness (R70, 70 cm; R40, 40 cm; R25, 25 cm) (mean ± SD). Different small letters indicate significant difference (p = 0.05).
图5 不同土层厚度(R70, 70 cm; R40, 40 cm; R25, 25 cm)下刺槐的叶面积(A)和比叶重(B) (平均值±标准偏差)。不同小写字母表示差异显著(p = 0.05)。
Fig. 5 Leaf area (A) and leaf mass per area (B) of Robinia pseudoacacia in different soil thickness (R70, 70 cm; R40, 40 cm; R25, 25 cm) (mean ± SD). Different small letters indicate significant difference (p = 0.05).
图6 不同土层厚度(R70, 70 cm; R40, 40 cm; R25, 25 cm)条件下刺槐的树高(A)和胸径(B) (平均值±标准偏差)。不同小写字母表示差异显著(p = 0.05)。
Fig. 6 Height (A) and diameter at breast height (B) of Robinia pseudoacacia in different soil thickness (R70, 70 cm; R40, 40 cm; R25, 25 cm) (mean ± SD). Different small letters indicate significant difference (p = 0.05).
[1] | Améglio T, Archer P, Cohen M, Valancogne C, Daudet FA, Dayau S, Cruiziat P (1999). Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant and Soil, 207, 155-167. |
[2] | Anyia AO, Slaski JJ, Nyachiro JM, Archambault DJ, Juskiw P (2009). Relationship of carben isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions. Journal of Agronomy and Crop Science, 193, 313-323. |
[3] | Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WR (2008). Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment, 7, 185-189. |
[4] | Buttle JM, Dillon PJ, Eerkes GR (2004). Hydrologic coupling of slopes, riparian zones and streams: an example from the Canadian Shield. Journal of Hydrology, 287, 161-177. |
[5] |
Carter JL, White DA (2009). Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee eucalypt with variation to groundwater depth. Tree Physiology, 29, 1407-1418.
DOI URL PMID |
[6] | Cui NB, Du TS, Kang SZ, Li FH, Hu XT, Wang MX, Li ZJ (2009). Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree. Agricultural Water Management, 96, 1615-1622. |
[7] | Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503-537. |
[8] | Galle A, Esper J, Feller U, Ribas-Carbo M, Fonti P (2010). Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Annals of Forest Science, 67, 809-825. |
[9] | Guerfel M, Baccouri O, Boujnah D, Chaïbi W, Zarrouk M (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive ( Olea europaea L.) cultivars. Scientia Horticulturae, 119, 257-263. |
[10] | Hu XN, Zhao Z, Yuan ZF, Wang DH, Guo MC, Li J (2010). Relationship between fine root growth of Robinia pseudoacacia plantation and the soil moisture in the loess plateau. Scientia Silvae Sinicae, 46, 30-35. (in Chinese with English abstract) |
[ 胡小宁, 赵忠, 袁志发, 王迪海, 郭满才, 李剑 (2010). 黄土高原刺槐林细根生长与土壤水分的耦合关系. 林业科学, 46, 30-35.] | |
[11] | Jin X, Xu J, Bai KD, Feng JX, Zhang JS, Wan XC (2011). Comparison of drought strategies of three co-existing woody plants by their hydraulic structures. Journal of Beijing Forestry University, 33, 135-141. (in Chinese with English abstract) |
[ 靳欣, 徐洁, 白坤栋, 冯锦霞, 张劲松, 万贤崇 (2011). 从水力结构比较3种共存木本植物的抗旱策略. 北京林业大学学报, 33, 135-141.] | |
[12] | Lamont BB, Groom PK, Cowling RM (2002). High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Functional Ecology, 16, 403-412. |
[13] |
Levanič T, Čater M, McDowell NG, Abrams M (2011). Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest. Tree Physiology, 31, 298-308.
URL PMID |
[14] | Li J, Wang XC, Shao MA, Zhao YJ, Li XF (2010). Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau. Chinese Journal of Plant Ecology, 34, 330-339. (in Chinese with English abstract) |
[ 李军, 王学春, 邵明安, 赵玉娟, 李小芳 (2010). 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟. 植物生态学报, 34, 330-339.] | |
[15] | Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit J M, Barbaroux C, Le Thiec D, Brechet C, Brignolas F (2006). Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytologist, 169, 765-777. |
[16] |
Nie YP, Chen HS, Wang KL (2011). Methods for determining plant water source in thin soil region: a review. Chinese Journal of Applied Ecology, 21, 2427-2433. (in Chinese with English abstract)
URL PMID |
[ 聂云鹏, 陈洪松, 王克林 (2011). 石灰岩地区连片出露石丛生境植物水分来源的季节性差异. 应用生态学报, 21, 2427-2433.]
PMID |
|
[17] | Poff RJ (1996). Effects of silvicultural practices and wildfire on productivity of forest soils. http://pubs.usgs.gov/dds/dds-43/VOL_II//VII_C16.PDF.Cited:10 Dec.2012. |
[18] | Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area ( LMA): a meta-analysis. New Phytologist, 182, 565-588. |
[19] |
Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ (2007). Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia, 152, 26-36.
URL PMID |
[20] |
Schenk HJ (2008). Soil depth, plant rooting strategies and species’ niches. New Phytologist, 178, 223-225.
DOI URL |
[21] | Shan CJ, Liang ZS, Hao WF, Liu SM (2004). Relationship between growth of locust and soil water in the different habitats on the Loess Plateau. Journal of Northwest Forestry University, 19(2), 9-14. (in Chinese with English abstract) |
[ 单长卷, 梁宗锁, 郝文芳, 刘淑明 (2004). 黄土高原不同立地条件下刺槐生长与水分关系研究. 西北林学院学报, 19(2), 9-14.] | |
[22] |
Sun SJ, Meng P, Zhang JS, Wan XC (2011). Variation in soil water uptake and its effect on plant water status in Juglans regia L during dry and wet seasons. Tree Physiology, 31, 1378-1389.
URL PMID |
[23] | Villalba R, Grau HR, Boninsegna JA, Jacoby GC, Ripalta A (1998). Tree-ring evidence for long-term precipitation changes in subtropical South America. International Journal of Climatology, 18, 1463-1478. |
[24] | Wang JM, Meng L, Sun JH, Guo XY (1999). Study of the relation between antidrought capability of trees and their secondary root structure. Soil and Water Conservation in China, (6), 20-22. (in Chinese with English abstract) |
[ 王均明, 孟丽, 孙金花, 郭向阳 (1999). 林木抗旱性与其根次生构造关系的研究. 中国水土保持, (6), 20-22.] | |
[25] | Wang L, Feng JX, Wang SX, Jia CR, Wan XC (2013). The interaction of drought and slope aspect on growth of Quercus variabilis and Platycladus orientalis. Acta Ecologica Sinica, doi: 10.5846/stxb201209051255. (in Chinese with English abstract) |
[ 王林, 冯锦霞, 王双霞, 贾长荣, 万贤崇 (2013). 干旱和坡向的互作对栓皮栎和侧柏生长的影响. 生态学报, doi: 10.5846/stxb2012 09051255.] | |
[26] | Wang L, Shao MA, Hou QC, Yang GM (2001). The analysis to dried soil layer of artificial Robinnia pseudoscacia forestry land in the Yan’an experimental area. Acta Botanica Boreali-Occidentalia Sinica, 21, 101-106. (in Chinese with English abstract) |
[ 王力, 邵明安, 侯庆春, 杨岗民 (2001). 延安试区人工刺槐林地的土壤干层分析. 西北植物学报, 21, 101-106.] | |
[27] | Xu J (2010). Hydraulic Architecture and Photosynthetic Characteristics of Three Main Afforestation Species in Responses to Water Dynamics. Master degree dissertation, Chinese Academy of Forestry, Beijing. 21-22. (in Chinese with English abstract) |
[ 徐洁 (2010). 三个主要造林树种水力结构和光合特性对水分消长的响应. 硕士学位论文, 中国林业科学研究院, 北京. 21-22.] | |
[28] | Yang JY, Liang ZS, Han RL (2004). Characteristics of growth and water use of Robinia pseudoacacia under different soil water conditions. Scientia Silvae Sinicae, 40(5), 93-98. (in Chinese with English abstract) |
[ 杨建伟, 梁宗锁, 韩蕊莲 (2004). 不同土壤水分状况对刺槐的生长及水分利用特征的影响. 林业科学, 40(5), 93-98.] | |
[29] | Yu ZH, Chen YM, Du S (2009). Sap flow dynamics in the leaf-flushing period of a Robinia pseudoacacia plantation in semi-arid region of loess plateau. Scientia Silvae Sinicae, 45(4), 53-59. (in Chinese with English abstract) |
[ 于占辉, 陈云明, 杜盛 (2009). 黄土高原半干旱区人工林刺槐展叶期树干液流动态分析. 林业科学, 45(4), 53-59.] | |
[30] |
Zhang YX, Equiza MA, Zheng QS, Tyree MT (2012). Factors controlling plasticity of leaf morphology in Robinia pseudoacacia L. II: the impact of water stress on leaf morphology of seedlings grown in a controlled environment chamber. Annals of Forest Science, 69, 39-47.
DOI URL |
[1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[2] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[3] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[4] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[5] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[6] | 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876. |
[7] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[8] | 李永华, 李臻, 辛智鸣, 刘明虎, 李艳丽, 郝玉光. 形态变化对叶片表面温度的影响[J]. 植物生态学报, 2018, 42(2): 202-208. |
[9] | 李理渊, 李俊, 同小娟, 孟平, 张劲松, 张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟[J]. 植物生态学报, 2018, 42(10): 1009-1021. |
[10] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. |
[11] | 任青吉, 李宏林, 卜海燕. 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较[J]. 植物生态学报, 2015, 39(6): 593-603. |
[12] | 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4): 362-370. |
[13] | 吴旭, 陈云明, 唐亚坤. 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应[J]. 植物生态学报, 2015, 39(12): 1176-1187. |
[14] | 张翠萍,孟平,张劲松,万贤崇. 固氮植物绿豆对核桃幼苗生长、叶片气孔气体交换及水力特征的作用[J]. 植物生态学报, 2014, 38(5): 499-506. |
[15] | 李东胜, 史作民, 冯秋红, 刘峰. 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应[J]. 植物生态学报, 2013, 37(9): 793-802. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 4630
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La