植物生态学报 ›› 2013, Vol. 37 ›› Issue (3): 239-247.DOI: 10.3724/SP.J.1258.2013.00024
赵晓伟, 赵平*(), 朱丽薇, 倪广艳, 曾小平, 牛俊峰
发布日期:
2014-02-12
通讯作者:
赵平
作者简介:
E-mail: zhaoping@scib.ac.cn基金资助:
ZHAO Xiao-Wei, ZHAO Ping*(), ZHU Li-Wei, NI Guang-Yan, ZENG Xiao-Ping, NIU Jun-Feng
Published:
2014-02-12
Contact:
ZHAO Ping
摘要:
利用热消散探针(TDP)法对位于中国科学院华南植物园的木荷(Schima superba)人工纯林的15株样树进行了树干液流监测, 并结合光合有效辐射(PAR)和土壤含水量的测定, 探讨了不同季节的夜间水分补充量与树形特征和叶片生物量的关系。结果表明: 1)夜间液流活动时间与PAR同步, 但其结束时间不受PAR影响; 春、夏季夜间液流明显比秋冬季活跃。2)春、夏、秋季的夜间水分补充量与样树的胸径、冠幅、边材面积、叶片生物量呈极显著线性关系, 与树高仅在春季呈显著线性关系。3)春、夏季的夜间水分补充量主要受样树冠幅影响, 成正相关; 秋季主要受胸径影响, 成正相关; 冬季仅受树高影响。该试验说明木荷夜间水分补充与树形特征、叶片生物量关系密切, 但起主要作用的树形特征和具体关系具有季节差别。
赵晓伟, 赵平, 朱丽薇, 倪广艳, 曾小平, 牛俊峰. 木荷树干夜间水分补充的季节动态及其与树形特征和叶片生物量的关系. 植物生态学报, 2013, 37(3): 239-247. DOI: 10.3724/SP.J.1258.2013.00024
ZHAO Xiao-Wei, ZHAO Ping, ZHU Li-Wei, NI Guang-Yan, ZENG Xiao-Ping, NIU Jun-Feng. Seasonal dynamics of night-time stem water recharge of Schima superba and its relation to tree architecture and leaf biomass. Chinese Journal of Plant Ecology, 2013, 37(3): 239-247. DOI: 10.3724/SP.J.1258.2013.00024
图1 不同季节中最大最小径级木荷样树的液流密度变化(24-h)。PAR, 光合有效辐射。
Fig. 1 Variations of 24-h sap flow density of the sample tree of Schima superb with smallest and biggest diameter at breast height (DBH) in seasons. PAR, photosynthetically active radiation.
图2 夜间树干水分补充量与树形特征、叶片生物量的一元回归分析。
Fig. 2 Single regressions between night-time stem water recharge and tree architecture, leaf biomass. DBH, diameter at breast height.
Zscore (胸径 D) | Zscore (边材面积 S) | Zscore (叶片生物量 B) | ||
---|---|---|---|---|
相关性 Correlation | Zscore (胸径 D) | 1.000 | 0.990 | 0.989 |
Zscore (边材面积 S) | 0.990 | 1.000 | 1.000 | |
Zscore (叶片生物量 B) | 0.989 | 1.000 | 1.000 |
表1 相关系数矩阵
Table 1 Correlation matrix
Zscore (胸径 D) | Zscore (边材面积 S) | Zscore (叶片生物量 B) | ||
---|---|---|---|---|
相关性 Correlation | Zscore (胸径 D) | 1.000 | 0.990 | 0.989 |
Zscore (边材面积 S) | 0.990 | 1.000 | 1.000 | |
Zscore (叶片生物量 B) | 0.989 | 1.000 | 1.000 |
主成分 Component | 初始特征值 Initial eigenvalues | 提取后平方载荷 Extraction sums of squared loadings | |||||
---|---|---|---|---|---|---|---|
总数 Total | 方差百分率 % of variance | 累计方差百分率 Cumulative variance % | 总数 Total | 方差百分率 % of variance | 累计方差百分率 Cumulative variance % | ||
D | 2.986 | 99.526 | 99.526 | 2.986 | 99.526 | 99.526 | |
S | 0.014 | 0.468 | 99.994 | ||||
B | 0.000 | 0.006 | 100.000 |
表2 总变异累积量解释
Table 2 Total variance explained
主成分 Component | 初始特征值 Initial eigenvalues | 提取后平方载荷 Extraction sums of squared loadings | |||||
---|---|---|---|---|---|---|---|
总数 Total | 方差百分率 % of variance | 累计方差百分率 Cumulative variance % | 总数 Total | 方差百分率 % of variance | 累计方差百分率 Cumulative variance % | ||
D | 2.986 | 99.526 | 99.526 | 2.986 | 99.526 | 99.526 | |
S | 0.014 | 0.468 | 99.994 | ||||
B | 0.000 | 0.006 | 100.000 |
夜间水分补充 Night-time water recharge | 考虑自变量 Assumption independent variable | 最优模型 Optimum model | R2 | p |
---|---|---|---|---|
4月 Apr. | 胸径 D | y = 0.912C-1.42E-016 | 0.832 | 0.000 |
7月 Jul. | 树高 H | y = 0.652C-1E-016 | 0.425 | 0.008 |
10月 Oct. | 冠幅 C | y = 496.765 + 366.488D | 0.645 | 0.000 |
1月 Jan. | - |
表3 夜间水分补充与树形特征的多元线性回归分析
Table 3 Multiple linear regressions between night-time water recharge and tree architecture
夜间水分补充 Night-time water recharge | 考虑自变量 Assumption independent variable | 最优模型 Optimum model | R2 | p |
---|---|---|---|---|
4月 Apr. | 胸径 D | y = 0.912C-1.42E-016 | 0.832 | 0.000 |
7月 Jul. | 树高 H | y = 0.652C-1E-016 | 0.425 | 0.008 |
10月 Oct. | 冠幅 C | y = 496.765 + 366.488D | 0.645 | 0.000 |
1月 Jan. | - |
图3 夜间树干水分补充量的季节极差与树形特征、叶片生物量关系的散点图。
Fig. 3 Scatter plot of range of seasonal night-time stem water recharge with tree architecture and leaf biomass. DBH, diameter at breast height.
[1] |
Brooks JR, Meinzer FC, Coulombe R, Gregg J (2002). Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiology, 22, 1107-1117.
URL PMID |
[2] |
Buckley TN, Turnbull TL, Pfautsch S, Adams MA (2011). Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands. Ecology and Evolution, 1, 435-450.
URL PMID |
[3] |
Burgess SSO, Adams MA, Turner NC, Ong CK (1998). The redistribution of soil water by tree root systems. Oecologia, 115, 306-311.
DOI URL PMID |
[4] |
Burgess SSO, Adams MA, Turner NC, Ong CK (2001). Tree roots: conduits for deep recharge of soil water. Oecologia, 126, 158-165.
URL PMID |
[5] | Burgess SSO, Dawson TE (2004). The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell & Environment, 27, 1023-1034. |
[6] |
Daley MJ, Phillips NG (2006). Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology, 26, 411-419.
DOI URL PMID |
[7] | Dawson TE, Burgess SSO, Tu KP, Oliveira RS, Santiago LS, Fisher JR, Simonin KA, Ambrose AR (2007). Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 27, 516-575. |
[8] |
Fisher JB, Baldocchi DD, Misson L, Dawson TE, Goldstein AH (2007). What the towers don’t see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 27, 597-610.
DOI URL PMID |
[9] | Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Gavelier J, Jackson P, Celis A (1998). Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment, 21, 397-406. |
[10] | Green SR, McNaughton KG, Clothier BE (1989). Observations of night-time water use in kiwifruit vines and apple trees. Agricultural and Forest Meteorology, 48, 251-261. |
[11] | Holbrook NM (1995). Stem water storage. In: Gartner BL ed. Plant Stems: Physiology and Functional Morphology. Academic Press, San Diego, USA. |
[12] | Hultine KR, Scott RL, Cable WL, Goodrich C, Eilliams DG (2004). Hydraulic redistribution by a dominant, warm- desert phreatophyte: seasonal patterns and response to precipitation pulses. Functional Ecology, 18, 530-538. |
[13] | Iritz Z, Lindroth A (1994). Night-time evaporation from a short-rotation willow stand. Journal of Hydrology, 157, 235-245. |
[14] | Mei TT, Zhao P, Wang Q, Cai XA, Yu MH, Zhu LW, Zou LL, Zeng XP (2010). Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization. Chinese Journal of Applied Ecology, 21, 2457-2464. (in Chinese with English abstract) |
[ 梅婷婷, 赵平, 王权, 蔡锡安, 余孟好, 朱丽薇, 邹绿柳, 曾小平 (2010). 基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响. 应用生态学报, 21, 2457-2464.] | |
[15] |
Oliveira RS, Dawson TE, Burgess SS, Nepstad DC (2005). Hydraulic redistribution in three Amazonian trees. Oecologia, 145, 354-363.
URL PMID |
[16] |
Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP (1999). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 19, 337-347.
DOI URL PMID |
[17] |
Phillips NG, Lewis JD, Logan BA, Tissue DT (2010). Inter- and intra-specific variation in nocturnal water transport in Eucalyptus. Tree Physiology, 30, 586-596.
URL PMID |
[18] |
Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Čermák J (2003). Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology, 23, 237-245.
DOI URL PMID |
[19] | Ryan MG, Phillips N, Bond BJ (2006). The hydraulic limitation hypothesis revisited. Plant, Cell & Environ- ment, 29, 367-381. |
[20] | Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242. |
[21] |
Vertessy RA, Hatton TJ, Reece P, O’Sullivan SK, Benyon RG (1997). Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physiology, 17, 747-756.
DOI URL PMID |
[22] | Wang H, Zhao P, Cai XA, Ma L, Rao XQ, Zeng XP, Wang W (2009). Partition of nocturnal sap flow in Acacia mangium and its implication for estimating the whole-tree transpiration. Frontiers of Forestry in China, 4, 191-200. |
[23] | Wang H, Zhao P, Cai XA, Wang Q, Ma L, Rao XQ, Zeng XP (2007). Partitioning of night sap flow of Acacia mangium and its implication for estimating whole-tree transpiration. Journal of Plant Ecology (Chinese Version), 31, 777-786. (in Chinese with English abstract) |
[ 王华, 赵平, 蔡锡安, 王权, 马玲, 饶兴权, 曾小平 (2007). 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响. 植物生态学报, 31, 777-786.] | |
[24] |
Zhao P (2010). Compensation of tree water storage for hydraulic limitation: research progress. Chinese Journal of Applied Ecology, 21, 1565-1572. (in Chinese with English abstract)
URL PMID |
[ 赵平 (2010). 树木储存水对水力限制的补偿研究进展. 应用生态学报, 21, 1565-1572.]
PMID |
|
[25] | Zhao P, Rao XQ, Ma L, Cai XA, Zeng XP (2006). The variations of sap flux density and whole-tree transpiration across individuals of Acacia mangium. Acta Ecologica Sinica, 26, 4050-4058. (in Chinese with English abstract) |
[ 赵平, 饶兴权, 马玲, 蔡锡安, 曾小平 (2006). 马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异. 生态学报, 26, 4050-4058.] |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[3] | 陈立欣, 张志强, 李湛东, 张文娟, 张晓放, 董克宇, 王国玉. 大连4种城市绿化乔木树种夜间液流活动特征[J]. 植物生态学报, 2010, 34(5): 535-546. |
[4] | 马雪红, 周志春, 金国庆, 张一. 竞争对马尾松和木荷觅取异质分布养分行为的影响[J]. 植物生态学报, 2009, 33(1): 81-88. |
[5] | 李志勇, 陈建军, 王彦辉, 于澎涛, 杜士才, 何萍, 段健. 重庆酸雨区人工木荷林对土壤化学性质的影响[J]. 植物生态学报, 2008, 32(3): 632-638. |
[6] | 王华, 赵平, 蔡锡安, 王权, 马玲, 饶兴权, 曾小平. 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J]. 植物生态学报, 2007, 31(5): 777-786. |
[7] | 潘开文, 张咏梅, 刘照光, 张远彬. 四川中亚热带扁刺栲-华木荷群系不同演替阶段林内小气候的比较[J]. 植物生态学报, 2002, 26(2): 195-202. |
[8] | 朱锦懋, 陈由强. 人为干扰对闽北栲树和木荷种群的影响[J]. 植物生态学报, 1998, 22(5): 455-460. |
[9] | 李振问. 杉木萌芽林林冠下营造细柄阿丁枫与木荷的生态效益的研究[J]. 植物生态学报, 1997, 21(3): 260-266. |
[10] | 蔡飞, 宋永昌. 武夷山木荷种群结构和动态的研究[J]. 植物生态学报, 1997, 21(2): 138-148. |
[11] | 谭绍满, 徐英宝, 陈红跃, 符国荣, 李茂祥. 杉木与阔叶树混交试验初报[J]. 植物生态学报, 1995, 19(2): 183-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19