植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1110-1116.DOI: 10.3724/SP.J.1258.2014.00105
康华靖1,2,3,4(), 李红4, 权伟4, 欧阳竹1,2,3,**(
)
收稿日期:
2014-03-06
接受日期:
2014-06-04
出版日期:
2014-03-06
发布日期:
2021-04-20
通讯作者:
欧阳竹
作者简介:
** E-mail: ouyz@igsnrr.ac.cn基金资助:
KANG Hua-Jing1,2,3,4(), LI Hong4, QUAN Wei4, OUYANG Zhu1,2,3,**(
)
Received:
2014-03-06
Accepted:
2014-06-04
Online:
2014-03-06
Published:
2021-04-20
Contact:
OUYANG Zhu
摘要:
以C3作物(小麦, Triticum aestivum和大豆, Glycine max)和C4作物(玉米, Zea mays和千穗谷, Amaranthus hypochondriacus)为例, 探讨了其光下暗呼吸速率降低的原因。结果表明, 2% O2条件下, CO2浓度为0时, 叶室CO2浓度维持在0左右, 而胞间CO2浓度(Ci)显著高于叶室CO2浓度。分析认为这是由于此时植物的暗呼吸仍在正常进行。因此, 该测量条件下的表观光合速率应为CO2浓度为0时的光下暗呼吸速率(Rd)。CO2浓度为0时, 不同光强下的Rd均随光强的升高而降低, 且在低光强(50 μmol·m-2·s-1)和高光强(2000 μmol·m-2·s-1)之间存在显著差异, 说明光强对Rd具有较大影响。在2% O2条件下, 经饱和光强充分活化而断光后, 以上4种作物叶片的暗呼吸速率(Rn)均随着时间的推移而下降, 说明光强并未抑制暗呼吸速率。试验结果表明, Rd的降低是由于CO2被重新回收利用所导致, CO2回收利用率随光强的升高而增大, 从低光强(50 μmol·m-2·s-1)到高光强(2000 μmol·m-2·s-1), 小麦、大豆、玉米和千穗谷的回收利用率范围变动分别为22.65%-52.91%、22.40%-55.31%、54.24%-87.59%和72.43%-90.07%。
康华靖, 李红, 权伟, 欧阳竹. 四种作物光下暗呼吸速率降低的原因. 植物生态学报, 2014, 38(10): 1110-1116. DOI: 10.3724/SP.J.1258.2014.00105
KANG Hua-Jing, LI Hong, QUAN Wei, OUYANG Zhu. Causes of decreasing mitochondrial respiration under light in four crops. Chinese Journal of Plant Ecology, 2014, 38(10): 1110-1116. DOI: 10.3724/SP.J.1258.2014.00105
图1 小麦(A)、大豆(B)、玉米(C)和千穗谷(D)的光响应曲线(平均值±标准偏差)。 圆点(●)表示测量值, 黑线表示拟合值。PAR, 光合有效辐射; Pn, 净光合速率。
Fig. 1 Light response curves of photosynthesis for wheat (A), bean (B), maize (C) and three-colored amaranth (D) (mean ± SD). Dots (●) represent measured data, and black line represents fitted data. PAR, photosynthetically active radiation; Pn, net photosynthetic rate.
图2 380 μmol·mol-1 CO2浓度和2% O2下小麦(A)、大豆(B)、玉米(C)和千穗谷(D)断光后气孔导度(Gs)的动态变化(平均值±标准偏差)。
Fig. 2 Dynamics of stomatal conductance (Gs) after light being turned off for wheat (A), bean (B), maize (C) and three-colored amaranth (D) at 380 μmol·mol-1 CO2and 2% O2(mean ± SD).
图3 380 μmol·mol-1 CO2浓度和2% O2浓度下小麦(A)、大豆(B)、玉米(C)和千穗谷(D)断光后暗呼吸速率(Rn)的动态变化(平均值±标准偏差)。
Fig. 3 Dynamics of mitochondrial respiration (Rn) after light being turned off for wheat (A), bean (B), maize (C) and three-colored amaranth (D) at a CO2 concentration of 380 μmol·mol-1 and 2% O2(mean ± SD).
图4 2% O2和0 μmol·mol-1 CO2浓度下小麦(A)、大豆(B)、玉米(C)和千穗谷(D)的叶室CO2浓度(Cs)与胞间CO2浓度(Ci) (平均值±标准偏差)。PAR, 光合有效辐射。
Fig. 4 Leaf chamber CO2 concentration (Cs) and intercellular CO2 concentration (Ci) for wheat (A), bean (B), maize (C) and three-colored amaranth (D) at a CO2 concentration of 0 μmol·mol-1 and 2% O2(mean ± SD). PAR, photosynthetically active radiation.
图5 2% O2和0 μmol·mol-1CO2下小麦(A)、大豆(B)、玉米(C)和千穗谷(D)净光合速率(Pn) (平均值±标准偏差)。
Fig. 5 Net photosynthetic rate (Pn) for wheat (A), bean (B), maize (C) and three-colored amaranth (D) at a CO2 concentration of 0 μmol·mol-1 and 2% O2(mean ± SD).
图6 不同光合有效辐射(RAR)下0 μmol mol-1 CO2浓度和2% O2时小麦、大豆(左)和玉米、千穗谷(右)对暗呼吸CO2的回收利用率(平均值±标准偏差)。
Fig. 6 Recovery of respiratory CO2 for wheat and bean (left), and maize and three-colored amaranth (right) at a CO2 concentration of 0 μmol·mol-1 and 2% O2under different photosynthetically active radication (PAR) (mean ± SD).
[1] |
Andersen IH, Dons C, Nilsen S, Haugstad M K (1985). Growth, photosynthesis and photorespiration of Lemna gibba: response to variations in CO2 and O2 concentrations and photon flux density. Photosynthesis Research, 6,87-96.
DOI URL PMID |
[2] |
Brooks A, Farquhar GD (1985). Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta, 165,397-406.
DOI URL PMID |
[3] | Foyer CH, Noctor G (2000). Oxygen processing in photosynthesis: regulation and signalling. New Phytologist, 146,359-388. |
[4] | Kok B (1948). A critical consideration of the quantum yield of Chlorella-photosynthesis. Enzymologia, 13,1-56. |
[5] |
Laisk A, Sumberg A (1994). Partitioning of the leaf CO2 exchange into components using CO2 exchange and fluorescence measurements. Plant Physiology, 106,689-695.
DOI URL PMID |
[6] | Laisk AK (1977). Kinetics of photosynthesis and photorespiration in C3-plants. Nauka: Moscow,76-123. |
[7] | Loreto F, Delfine S, Di-marco G (1999). Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Australian Journal of Plant Physiology, 26,733-736. |
[8] | Loreto F, Velikova VB, Marco GDA (2001). Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves. Australian Journal of Plant Physiology, 28,1103-1108. |
[9] | Peng FY, Chen SS, Li MQ (1991). Comparative studies on photorespiration and the activities of photorespiration enzymes in C3, C4 and CAM plants. Journal of South China Agricultural University, 12,5-12. (in Chinese with English abstract) |
[ 彭飞燕, 陈升枢, 李明启 (1991). C3、C4和CAM植物的光呼吸及有关酶活性的比较研究. 华南农业大学学报, 12,5-12.] | |
[10] |
Pinelli P, Loreto F (2003). 12CO2 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low atmospheric and elevated CO2 concentration. Journal of Experimental Botany, 54,1761-1769.
DOI URL PMID |
[11] |
Sharp RE, Matthews MA, Boyer JS (1984). Kok effect and the quantum yield of photosynthesis: light partially inhibits dark respiration. Plant Physiology, 75,95-101.
DOI URL PMID |
[12] |
Tcherkez G, Cornic G, Bligny R, Gout E, Ghashghaie J (2005). In vivo respiratory metabolism of illuminated leaves. Plant Physiology, 138,1596-1606.
DOI URL PMID |
[13] |
Tirumala DM, Raghavendra AS (1993). Photorespiration in C3-C4 intermediate species of Alternanthera and Parthenium: reduced ammonia production and increased capacity of CO2 refixation in the light. Photosynthesis Research, 38,177-184.
URL PMID |
[14] |
Villar R, Held AA, Merino J (1994). Comparison of methods to estimate dark respiration in the light in leaves of two woody species. Plant Physiology, 105,167-172.
DOI URL PMID |
[15] |
Villar R, Held AA, Merino J (1995). Dark leaf respiration in light and darkness of an evergreen and a deciduous plant species. Plant Physiology, 107,421-427.
DOI URL PMID |
[16] | Wang X, Lewis JD, Tissue DT, Seemann JR, Griffin KL (2001). Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness. Proceedings of the National Academy of Sciences of the United States of America, 98,2479-2484. |
[17] | Wang Z, Gao YZ (1983). Research for the relationship between photorespiration and photosynthesis III. CO2 outburst of wheat leaves and its relationship with photosynthesis. Acta Phytophysiologia Sinica, 9,421-435. (in Chinese with English abstract) |
[ 王忠, 高煜珠 (1983). 关于光呼吸与光合作用关系的研究III. 小麦叶片CO2猝发及其与光合作用的关系. 植物生理学报, 9,421-435.] | |
[18] | Ye ZP (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45,637-640. |
[19] | Ye ZP, Yu Q (2008). A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica, 46,637-640. |
[20] | Ye ZP, Yu Q (2009). Mechanism model of stomatal conductance. Chinese Journal of Plant Ecology, 33,772-782. (in Chinese with English abstract) |
[ 叶子飘, 于强 (2009). 植物气孔导度的机理模型. 植物生态学报, 33,772-782.] | |
[21] |
Yin XY, Sun ZP, Struik PC, Gu JF (2011). Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. Journal of Experimental Botany, 62,3489-3499.
DOI URL PMID |
[22] | Zou D H, Gao K S, Xiao JR (2011). Dark respiration in the light and in darkness of three marine macroalgal species grown under ambient and elevated CO2concentrations. Acta Oceanologica Sinica, 30,106-112. |
[1] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[2] | 樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏. 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定[J]. 植物生态学报, 2016, 40(9): 942-951. |
[3] | 胡文海, 张斯斯, 肖宜安, 闫小红. 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制[J]. 植物生态学报, 2015, 39(11): 1093-1100. |
[4] | 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制[J]. 植物生态学报, 2014, 38(7): 720-728. |
[5] | 张超, 占东霞, 张鹏鹏, 张亚黎, 罗宏海, 张旺锋. 棉花苞叶光呼吸和PSII热耗散对土壤水分的响应[J]. 植物生态学报, 2014, 38(4): 387-395. |
[6] | 师生波, 张怀刚, 师瑞, 李妙, 陈文杰, 孙亚男. 青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J]. 植物生态学报, 2014, 38(4): 375-386. |
[7] | 康华靖, 陶月良, 权伟, 王伟, 欧阳竹. 植物光合CO2响应模型对光下(暗)呼吸速率拟合的探讨[J]. 植物生态学报, 2014, 38(12): 1356-1363. |
[8] | 赵哈林, 曲浩, 周瑞莲, 李瑾, 潘成臣, 王进. 沙埋对两种沙生植物幼苗生长的影响及其生理响应差异[J]. 植物生态学报, 2013, 37(9): 830-838. |
[9] | 刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10): 1062-1074. |
[10] | 宋旭丽, 胡春梅, 孟静静, 侯喜林, 何启伟, 李新国. NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统I的光抑制[J]. 植物生态学报, 2011, 35(6): 681-686. |
[11] | 张亚黎, 罗毅, 姚贺盛, 田景山, 罗宏海, 张旺锋. 田间条件下海岛棉和陆地棉花铃期叶片光保护的机制[J]. 植物生态学报, 2010, 34(10): 1204-1212. |
[12] | 陈华新, 陈玮, 姜闯道, 高辉远, 邹琦. 光温交叉处理对小麦紫黄质脱环氧化酶活性及其热耗散能力的影响[J]. 植物生态学报, 2008, 32(5): 1015-1022. |
[13] | 吴学友, 孙立平, 刘丽霞, 吴涛, 李德全. PLC/PLD抑制剂对盐胁迫下玉米幼苗根系新的69.5kD热稳定蛋白表达调控的影响[J]. 植物生态学报, 2005, 29(3): 510-515. |
[14] | 杨兴洪, 邹琦, 赵世杰. 遮荫和全光下生长的棉花光合作用和叶绿素荧光特征[J]. 植物生态学报, 2005, 29(1): 8-15. |
[15] | 蔡志全, 曹坤芳, 齐欣. 热带雨林冠层树种绒毛番龙眼两种发育阶段叶片的光抑制[J]. 植物生态学报, 2003, 27(2): 210-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19