植物生态学报 ›› 2015, Vol. 39 ›› Issue (11): 1082-1092.DOI: 10.17521/cjpe.2015.0105
顾祝禹1, 唐钢梁2, 艾克拜尔·伊拉洪1,*(), 吐尔逊·吐尔洪1
收稿日期:
2015-03-27
接受日期:
2015-10-04
出版日期:
2015-11-01
发布日期:
2015-12-02
通讯作者:
艾克拜尔·伊拉洪
作者简介:
# 共同第一作者
基金资助:
GU Zhu-Yu1, TANG Gang-Liang2, AI Kebaier Yilahong1,*(), TU Erxun Tuerhong1
Received:
2015-03-27
Accepted:
2015-10-04
Online:
2015-11-01
Published:
2015-12-02
Contact:
Kebaier Yilahong AI
About author:
# Co-first authors
摘要:
衰老是植物器官和组织发育的最后阶段, 是一个受到严格控制的高度协调过程, 其中碳水化合物浓度对衰老的影响十分显著。花花柴(Karelinia caspia)是塔克拉玛干沙漠南缘策勒绿洲的主要植物种, 为了研究花花柴在韧皮部环割后的碳水化合物变化和叶片衰老过程, 对其进行韧皮部环割, 测量叶片光合色素含量、光合速率、可溶性糖含量、淀粉含量、脱落酸(ABA)含量和叶水势。结果表明: (1)环割能够诱导花花柴叶片的衰老, 而诱导叶片衰老的主要因素有: 叶片碳水化合物的积累、叶片ABA含量的上升, 以及叶片水分状况的恶化。(2)相比于自然衰老, 环割诱导的衰老导致许多正常的生理过程受到破坏。(3)类胡萝卜素在衰老过程中主要起光保护的作用。(4)韧皮部半环割也导致花花柴各种生理指标显著下降, 表明植物无法通过增加剩余部分韧皮部筛管的运输通量而达到维持整个韧皮部运输系统顺畅的目的。
顾祝禹, 唐钢梁, 艾克拜尔·伊拉洪, 吐尔逊·吐尔洪. 韧皮部环割诱导下的花花柴衰老机制. 植物生态学报, 2015, 39(11): 1082-1092. DOI: 10.17521/cjpe.2015.0105
GU Zhu-Yu,TANG Gang-Liang,AI Kebaier Yilahong,TU Erxun Tuerhong. Senescence mechanisms induced by phloem girdling in Karelinia caspia. Chinese Journal of Plant Ecology, 2015, 39(11): 1082-1092. DOI: 10.17521/cjpe.2015.0105
图1 韧皮部环割对花花柴叶片光合色素含量的影响(平均值±标准误差)。Car, 类胡萝卜素; Chl, 叶绿素。CK, 对照; FG, 韧皮部全割; SG, 韧皮部半割。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Effects on photosynthetic pigments content in leaves of Karelinia caspia by phloem girdling (mean ± SE). Car, carotenoid; Chl, chlorophyll. CK, control; FG, full-girdling; SG, semi-girdling. Different small letters indicate significant difference (p < 0.05).
图2 韧皮部环割对花花柴叶片光合参数的影响(平均值±标准误差)。Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。CK, FG, SG见图1。
Fig. 2 Effects on photosynthetic parameters in leaves of Karelinia caspia by phloem girdling (mean ± SE). Gs, stomatal conductance; Pn, net photosynthesis rate; Tr, transpiration rate. CK, FG, SG see Fig. 1.
图3 韧皮部环割对花花柴叶片碳水化合物含量的影响(平均值±标准误差)。CK, FG, SG见图1。不同小写字母表示差异显著 (p < 0.05)。
Fig. 3 Effects on carbohydrate content in leaves of Karelinia caspia by phloem girdling (mean ± SE). CK, FG, SG see Fig. 1. Different small letters indicate significant difference (p < 0.05).
图4 韧皮部环割对花花柴叶片脱落酸(ABA)含量的影响(平均值±标准误差)。CK, FG, SG见图1。不同小写字母表示差异显著(p < 0.05)。
Fig. 4 Effects on abscisic acid (ABA) content in leaves of Karelinia caspia by phloem girdling (mean ± SE). CK, FG, SG see Fig. 1. Different small letters indicate significant difference (p < 0.05).
图5 韧皮部环割对花花柴叶片水势的影响(平均值±标准误差)。CK, FG, SG见图1。不同小写字母表示差异显著(p < 0.05)。
Fig. 5 Effects on water potential in leaves of Karelinia caspia by phloem girdling (mean ± SE). CK, FG, SG see Fig. 1. Different small letters indicate significant difference (p < 0.05).
1 | Adams III WW, Winter K, Schreiber U, Schramel P (1990). Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence.Plant Physiology, 92, 1184-1190. |
2 | Agüera E, Cabello P, de la Mata L, Molina E, De la Haba P (. |
3 | Bleecker AB, Patterson SE (1997). Last exit: Senescence, abscission, and meristem arrest in Arabidopsis.The Plant Cell, 9, 1169-1179. |
4 | Brouquisse R, Masclaux C, Feller U, Raymond P (2001). Protein hydrolysis and nitrogen remobilisation in plant life and senescence. In: Lea PJ, Morot-Gaudry JF eds. Plant Nitrogen. Springer, Heidelberg, Germany. 275-293. |
5 | Buchanan-Wollaston V (1997). The molecular biology of leaf senescence.Journal of Experimental Botany, 48, 181-199. |
6 | Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003). The molecular analysis of leaf senescence—A genomics approach.Plant Biotechnology Journal, 1, 3-22. |
7 | Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation- induced senescence in Arabidopsis.The Plant Journal, 42, 567-585. |
8 | Chen DM, Zhang Y, Lin YB, Zhu WX, Fu SL (2010). Changes in belowground carbon in Acacia crassicarpa and Eucalyptus urophylla plantations after tree girdling.Plant and Soil, 326, 123-135. |
9 | Cheng XF, Zhang FY, Chai SX (2010). Stomatal response of spring wheat and related affecting factors under different irrigation treatments.Chinese Journal of Applied Ecology, 21, 36-40. |
(in Chinese with English abstract) [成雪峰, 张凤云, 柴守玺 (2010). 春小麦对不同灌水处理的气孔反应及其影响因子. 应用生态学报, 21, 36-40.] | |
10 | Dai JL, Dong HZ (2011). Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton.Acta Physiologiae Plantarum, 33, 1697-1705. |
11 | Davison PA, Hunter CN, Horton P (2002). Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis.Nature, 418, 203-206. |
12 | Fumuro M (1998). Effects of trunk girdling during early shoot elongation period on tree growth, mineral absorption, water stress, and root respiration in Japanese persimmon (Diospyros kaki L.) cv. Nishimurawase. Journal of the Japanese Society for Horticultural Science (Japan), 67, 219-227. |
13 | Gan SS, Amasino RM (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence).Plant Physiology, 113, 313-319. |
14 | Gregersen PL, Culetic A, Boschian L, Krupinska K (2013). Plant senescence and crop productivity.Plant Molecular Biology, 82, 603-622. |
15 | Gregersen PL, Holm PB, Krupinska K (2008). Leaf senescence and nutrient remobilisation in barley and wheat.Plant Biology, 10, 37-49. |
16 | Hendry G (1988). Where does all the green go?New Scientist (UK), 5, 38-42. |
17 | Hendry GAF, Houghton JD, Brown SB (1987). The degradation of chlorophyll—A biological enigma.New Phytologist, 107, 255-302. |
18 | Hensel LL, Grbić V, Baumgarten DA, Bleecker AB (1993). Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in arabidopsis.The Plant Cell, 5, 553-564. |
19 | Himelblau E, Amasino RM (2001). Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence.Journal of Plant Physiology, 158, 1317-1323. |
20 | Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration.Nature, 411, 789-792. |
21 | Hörtensteiner S, Feller U (2002). Nitrogen metabolism and remobilization during senescence.Journal of Experimental Botany, 53, 927-937. |
22 | Humbeck K, Quast S, Krupinska K (1996). Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants.Plant, Cell & Environment, 19, 337-344. |
23 | Jia L, An LZ (2004). Studies of desalting ability and desalting structure in Karelinia caspica.Acta Botanica Boreali- Occidentalia Sinica, 24, 510-515. |
(in Chinese with English abstract) [贾磊, 安黎哲 (2004). 花花柴脱盐能力及脱盐结构研究. 西北植物学报, 24, 510-515.] | |
24 | Jiang YJ, Liang G, Yang SZ, Yu DQ (2014). Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid-and auxin-mediated signaling in jasmonic acid-induced leaf senescence.The Plant Cell, 26, 230-245. |
25 | Koeslin-Findeklee F, Meyer A, Girke A, Beckmann K, Horst WJ (2014). The superior nitrogen efficiency of winter oilseed rape (Brassica napus L.) hybrids is not related to delayed nitrogen starvation-induced leaf senescence. Plant and Soil, 384, 347-362. |
26 | Kumar M, Singh VP, Arora A, Singh N (2014). The role of abscisic acid (ABA) in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower senescence.Acta Physiologiae Plantarum, 36, 151-159. |
27 | Li CY, Weiss D, Goldschmidt EE (2003). Girdling affects carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees.Annals of Botany, 92, 137-143. |
28 | Li HS (2000). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing. 34-178. |
(in Chinese) [李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京. 34-178.] | |
29 | Liu TX, Zhang YP (2010). Determination of ABA content in the seedling of capsicum by HPLC.Guangdong Agricultural Sciences, 37, 249-250. |
(in Chinese with English abstract) [刘同祥, 张艳平 (2010). HPLC法测定辣椒苗中ABA含量研究. 广东农业科学, 37, 249-250.] | |
30 | Lobell DB, Sibley A, Ortiz-Monasterio JI (2012). Extreme heat effects on wheat senescence in India.Nature Climate Change, 2, 186-189. |
31 | Masclaux C, Valadier MH, Brugière N, Morot-Gaudry JF, Hirel B (2000). Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence.Planta, 211, 510-518. |
32 | Matile P (1992). Chloroplast senescence. In: Baker NR, Thomas H eds. Crop Photosynthesis: Spatial and Temporal Determinant. Elsevier, Amsterdam, the Netherlands. 413-440. |
33 | Miller A, Schlagnhaufer C, Spalding M, Rodermel S (2000). Carbohydrate regulation of leaf development: Prolongation of leaf senescence in Rubisco antisense mutants of tobacco.Photosynthesis Research, 63, 1-8. |
34 | Mittler R, Merquiol E, Hallak-Herr E, Rachmilevitch S, Kaplan A, Cohen M (2001). Living under a “dormant” canopy: A molecular acclimation mechanism of the desert plant Retama raetam.The Plant Journal, 25, 407-416. |
35 | Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling.Science, 300, 332-336. |
36 | Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T (2013). Assimilate transport in phloem sets conditions for leaf gas exchange.Plant, Cell & Environment, 36, 655-669. |
37 | Noodén LD, Guiamét JJ, John I (1997). Senescence mechanisms.Physiologia Plantarum, 101, 746-753. |
38 | Parrott D, Yang L, Shama L, Fischer AM (2005). Senescence is accelerated, and several proteases are induced by carbon “feast” conditions in barley (Hordeum vulgare L.) leaves.Planta, 222, 989-1000. |
39 | Parrott DL, Martin JM, Fischer AM (2010). Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: A family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels.New Phytologist, 187, 313-331. |
40 | Parrott DL, McInnerney K, Feller U, Fischer AM (2007). Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence- associated genes.New Phytologist, 176, 56-69. |
41 | Poli?vka T, Frank HA (2010). Molecular factors controlling photosynthetic light harvesting by carotenoids.Accounts of Chemical Research, 43, 1125-1134. |
42 | Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006). Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis.Planta, 224, 556-568. |
43 | Pourtau N, Marès M, Purdy S, Quentin N, Ruël A, Wingler A (2004). Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence.Planta, 219, 765-772. |
44 | Rahman MM, Yang CL, Rahman MM, Islam KS (2012). Effects of copper on growth, accumulation, antioxidant activity and malondialdehyde content in young seedlings of the mangrove species Kandelia candel (L.).Plant Biosystems, 146, 47-57. |
45 | Rajcan I, Dwyer LM, Tollenaar M (1999). Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence.Field Crops Research, 63, 13-17. |
46 | Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M (2012). Chemical quenching of singlet oxygen by carotenoids in plants.Plant Physiology, 158, 1267-1278. |
47 | Rivas F, Erner Y, Alós E, Juan M, Almela V, Agustí M (2006). Girdling increases carbohydrate availability and fruit-set in citrus cultivars irrespective of parthenocarpic ability.The Journal of Horticultural Science & Biotechnology, 81, 289-295. |
48 | Rivas F, Fornes F, Rodrigo MJ, Zacarías L, Agusti M (2011). Changes in carotenoids and ABA content in Citrus leaves in response to girdling.Scientia Horticulturae, 127, 482-487. |
49 | Robert-Seilaniantz A, Grant M, Jones JD (2011). Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism.Annual Review of Phytopathology, 49, 317-343. |
50 | Setter TL, Brun WA, Brenner ML (1980). Effect of obstructed translocation on leaf abscisic acid, and associated stomatal closure and photosynthesis decline.Plant Physiology, 65, 1111-1115. |
51 | Smart CM (1994). Gene expression during leaf senescence.New Phytologist, 126, 419-448. |
52 | Speirs J, Binney A, Collins M, Edwards E, Loveys B (2013). Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv. Cabernet Sauvignon).Journal of Experimental Botany, 64, 1907-1916. |
53 | Suzuki Y, Shioi Y (2004). Changes in chlorophyll and carotenoid contents in radish (Raphanus sativus) cotyledons show different time courses during senescence.Physiologia Plantarum, 122, 291-296. |
54 | Tang G, Li X, Lin L, Guo H, Li L (2015a). Combined effects of girdling and leaf removal on fluorescence characteristic of Alhagi sparsifolia leaf senescence.Plant Biology, 17, 980-989. |
55 | Tang GL, Li XY, Lin LS, Guo ZC, Li CJ, Guo H, Zeng FJ (2015b). Impact of phloem girdling on water status in desert plants Alhagi sparsifolia Shap. (Fabaceae) and Karelinia Caspica (Pall.) Less. (Asteraceae).Brazilian Journal of Botany, doi: 10.1007/s40415-015-0178-2. |
56 | Tang GL, Li XY, Lin LS, Li L, Lu JR (2013a). Effects of short-term phloem girdling on physiology in two desert plants in the southern edge of the Taklimakan Desert.Chinese Journal of Plant Ecology, 37, 1101-1113. |
(in Chinese with English abstract) [唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2013a). 短期环割对塔克拉玛干沙漠南缘两种荒漠植物的生理影响. 植物生态学报, 37, 1101-1113.] | |
57 | Tang GL, Li XY, Lin LS, Li L, Lu JR (2013b). Change of different shading on moisture conditions and the physiological response in Alhagi sparsifolia.Chinese Journal of Plant Ecology, 37, 354-364. |
(in Chinese with English abstract) [唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2013b). 骆驼刺在不同遮阴下的水分状况变化及其生理响应. 植物生态学报, 37, 354-364.] | |
58 | Tang GL, Li XY, Lin LS, Li L, Lu JR (2014a). Short-term effect of phloem girdling on water potential and photosynthetic characteristics in Karelinia caspica.Journal of Desert Research, 34, 1527-1536. |
(in Chinese with English abstract) [唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2014a). 表皮环割对花花柴(Karelinia caspica)水势及光合参数的短期影响. 中国沙漠, 34, 1527-1536.] | |
59 | Tang GL, Li XY, Lin LS, Li L, Lu JR (2014b). Effect of short-term girdling on stozmatal conductance and chlorophyll fluorescence in Alhagi sparsifolia.Acta Ecologica Sinica, 34, 6817-6827. |
(in Chinese with English abstract) [唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2014b). 短期环割对骆驼刺气孔导度及叶绿素荧光的影响. 生态学报, 34, 6817-6827.] | |
60 | Tang GL, Li XY, Lin LS, Zeng FJ (2015c). Impact of girdling and leaf removal on Alhagi sparsifolia leaf senescence.Plant Growth Regulation, doi: 10.1007/s10725-015-0086-2. |
61 | Tang GL, Li XY, Lin LS, Zeng FJ, Gu ZY (2015d). Girdling- induced Alhagi sparsifolia senescence and chlorophyll fluorescence changes.Photosynthetica, 53, 585-596. doi: 10.1007/s11099- 015-0148-8 |
62 | Thomas H, Smart CM (1993). Crops that stay green.Annals of Applied Biology, 123, 193-219. |
63 | Urban L, Alphonsout L (2007). Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves.Tree Physiology, 27, 345-352. |
64 | Vogelmann K, Drechsel G, Bergler J, Subert C, Philippar K, Soll J, Julia CE (2012). Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway.Plant Physiology, 159, 1477-1487. |
65 | Wingler A, Purdy S, MacLean JA, Pourtau N (2006). The role of sugars in integrating environmental signals during the regulation of leaf senescence.Journal of Experimental Botany, 57, 391-399. |
66 | Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998). Regulation of leaf senescence by cytokinin, sugars, and light—Effects on NADH-dependent hydroxypyruvate reductase.Plant Physiology, 116, 329-335. |
67 | Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2001). Water deficit-induced senescence and its relationship to the remobilization of prestored carbon in wheat during grain filling.Agronomy Journal, 93, 196-206. |
68 | Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling.Plant, Cell & Environment, 26, 1621-1631. |
69 | Yang XY, Wang FF, Teixeira da Silva JA, Zhong J, Liu YZ, Peng SA (2013). Branch girdling at fruit green mature stage affects fruit ascorbic acid contents and expression of genes involved in l-galactose pathway in citrus.New Zealand Journal of Crop and Horticultural Science, 41, 23-31. |
70 | Zhang YJ, Meinzer FC, Qi JH, Goldstein G, Cao KF (2013). Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees.Plant, Cell & Environment, 36, 149-158. |
71 | Zwack PJ, Robinson BR, Risley MG, Rashotte AM (2013). Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses.Plant and Cell Physiology, 54, 971-981. |
[1] | 李变变 张凤华 赵亚光 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢以及生物量的影响[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[3] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[4] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[5] | 韩广轩, 王法明, 马俊, 肖雷雷, 初小静, 赵明亮. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4): 373-382. |
[6] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[7] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[8] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[9] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[10] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[11] | 林雍 陈智 杨萌 陈世苹 高艳红 刘冉 郝彦宾 辛晓平 周莉 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[12] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[13] | 杨丽婷, 谢燕燕, 左珂怡, 徐森, 谷瑞, 陈双林, 郭子武. 分株比例对异质光环境下美丽箬竹克隆系统光合生理的影响[J]. 植物生态学报, 2022, 46(1): 88-101. |
[14] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[15] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19