植物生态学报 ›› 2015, Vol. 39 ›› Issue (11): 1082-1092.DOI: 10.17521/cjpe.2015.0105
顾祝禹1, 唐钢梁2, 艾克拜尔·伊拉洪1,*(), 吐尔逊·吐尔洪1
收稿日期:
2015-03-27
接受日期:
2015-10-04
出版日期:
2015-11-01
发布日期:
2015-12-02
通讯作者:
艾克拜尔·伊拉洪
作者简介:
# 共同第一作者
基金资助:
GU Zhu-Yu1, TANG Gang-Liang2, AI Kebaier Yilahong1,*(), TU Erxun Tuerhong1
Received:
2015-03-27
Accepted:
2015-10-04
Online:
2015-11-01
Published:
2015-12-02
Contact:
Kebaier Yilahong AI
About author:
# Co-first authors
摘要:
衰老是植物器官和组织发育的最后阶段, 是一个受到严格控制的高度协调过程, 其中碳水化合物浓度对衰老的影响十分显著。花花柴(Karelinia caspia)是塔克拉玛干沙漠南缘策勒绿洲的主要植物种, 为了研究花花柴在韧皮部环割后的碳水化合物变化和叶片衰老过程, 对其进行韧皮部环割, 测量叶片光合色素含量、光合速率、可溶性糖含量、淀粉含量、脱落酸(ABA)含量和叶水势。结果表明: (1)环割能够诱导花花柴叶片的衰老, 而诱导叶片衰老的主要因素有: 叶片碳水化合物的积累、叶片ABA含量的上升, 以及叶片水分状况的恶化。(2)相比于自然衰老, 环割诱导的衰老导致许多正常的生理过程受到破坏。(3)类胡萝卜素在衰老过程中主要起光保护的作用。(4)韧皮部半环割也导致花花柴各种生理指标显著下降, 表明植物无法通过增加剩余部分韧皮部筛管的运输通量而达到维持整个韧皮部运输系统顺畅的目的。
顾祝禹, 唐钢梁, 艾克拜尔·伊拉洪, 吐尔逊·吐尔洪. 韧皮部环割诱导下的花花柴衰老机制. 植物生态学报, 2015, 39(11): 1082-1092. DOI: 10.17521/cjpe.2015.0105
GU Zhu-Yu,TANG Gang-Liang,AI Kebaier Yilahong,TU Erxun Tuerhong. Senescence mechanisms induced by phloem girdling in Karelinia caspia. Chinese Journal of Plant Ecology, 2015, 39(11): 1082-1092. DOI: 10.17521/cjpe.2015.0105
图1 韧皮部环割对花花柴叶片光合色素含量的影响(平均值±标准误差)。Car, 类胡萝卜素; Chl, 叶绿素。CK, 对照; FG, 韧皮部全割; SG, 韧皮部半割。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Effects on photosynthetic pigments content in leaves of Karelinia caspia by phloem girdling (mean ± SE). Car, carotenoid; Chl, chlorophyll. CK, control; FG, full-girdling; SG, semi-girdling. Different small letters indicate significant difference (p < 0.05).
图2 韧皮部环割对花花柴叶片光合参数的影响(平均值±标准误差)。Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。CK, FG, SG见图1。
Fig. 2 Effects on photosynthetic parameters in leaves of Karelinia caspia by phloem girdling (mean ± SE). Gs, stomatal conductance; Pn, net photosynthesis rate; Tr, transpiration rate. CK, FG, SG see Fig. 1.
图3 韧皮部环割对花花柴叶片碳水化合物含量的影响(平均值±标准误差)。CK, FG, SG见图1。不同小写字母表示差异显著 (p < 0.05)。
Fig. 3 Effects on carbohydrate content in leaves of Karelinia caspia by phloem girdling (mean ± SE). CK, FG, SG see Fig. 1. Different small letters indicate significant difference (p < 0.05).
图4 韧皮部环割对花花柴叶片脱落酸(ABA)含量的影响(平均值±标准误差)。CK, FG, SG见图1。不同小写字母表示差异显著(p < 0.05)。
Fig. 4 Effects on abscisic acid (ABA) content in leaves of Karelinia caspia by phloem girdling (mean ± SE). CK, FG, SG see Fig. 1. Different small letters indicate significant difference (p < 0.05).
图5 韧皮部环割对花花柴叶片水势的影响(平均值±标准误差)。CK, FG, SG见图1。不同小写字母表示差异显著(p < 0.05)。
Fig. 5 Effects on water potential in leaves of Karelinia caspia by phloem girdling (mean ± SE). CK, FG, SG see Fig. 1. Different small letters indicate significant difference (p < 0.05).
1 | Adams III WW, Winter K, Schreiber U, Schramel P (1990). Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence.Plant Physiology, 92, 1184-1190. |
2 | Agüera E, Cabello P, de la Mata L, Molina E, De la Haba P (. |
3 | Bleecker AB, Patterson SE (1997). Last exit: Senescence, abscission, and meristem arrest in Arabidopsis.The Plant Cell, 9, 1169-1179. |
4 | Brouquisse R, Masclaux C, Feller U, Raymond P (2001). Protein hydrolysis and nitrogen remobilisation in plant life and senescence. In: Lea PJ, Morot-Gaudry JF eds. Plant Nitrogen. Springer, Heidelberg, Germany. 275-293. |
5 | Buchanan-Wollaston V (1997). The molecular biology of leaf senescence.Journal of Experimental Botany, 48, 181-199. |
6 | Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003). The molecular analysis of leaf senescence—A genomics approach.Plant Biotechnology Journal, 1, 3-22. |
7 | Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation- induced senescence in Arabidopsis.The Plant Journal, 42, 567-585. |
8 | Chen DM, Zhang Y, Lin YB, Zhu WX, Fu SL (2010). Changes in belowground carbon in Acacia crassicarpa and Eucalyptus urophylla plantations after tree girdling.Plant and Soil, 326, 123-135. |
9 | Cheng XF, Zhang FY, Chai SX (2010). Stomatal response of spring wheat and related affecting factors under different irrigation treatments.Chinese Journal of Applied Ecology, 21, 36-40. |
(in Chinese with English abstract) [成雪峰, 张凤云, 柴守玺 (2010). 春小麦对不同灌水处理的气孔反应及其影响因子. 应用生态学报, 21, 36-40.] | |
10 | Dai JL, Dong HZ (2011). Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton.Acta Physiologiae Plantarum, 33, 1697-1705. |
11 | Davison PA, Hunter CN, Horton P (2002). Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis.Nature, 418, 203-206. |
12 | Fumuro M (1998). Effects of trunk girdling during early shoot elongation period on tree growth, mineral absorption, water stress, and root respiration in Japanese persimmon (Diospyros kaki L.) cv. Nishimurawase. Journal of the Japanese Society for Horticultural Science (Japan), 67, 219-227. |
13 | Gan SS, Amasino RM (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence).Plant Physiology, 113, 313-319. |
14 | Gregersen PL, Culetic A, Boschian L, Krupinska K (2013). Plant senescence and crop productivity.Plant Molecular Biology, 82, 603-622. |
15 | Gregersen PL, Holm PB, Krupinska K (2008). Leaf senescence and nutrient remobilisation in barley and wheat.Plant Biology, 10, 37-49. |
16 | Hendry G (1988). Where does all the green go?New Scientist (UK), 5, 38-42. |
17 | Hendry GAF, Houghton JD, Brown SB (1987). The degradation of chlorophyll—A biological enigma.New Phytologist, 107, 255-302. |
18 | Hensel LL, Grbić V, Baumgarten DA, Bleecker AB (1993). Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in arabidopsis.The Plant Cell, 5, 553-564. |
19 | Himelblau E, Amasino RM (2001). Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence.Journal of Plant Physiology, 158, 1317-1323. |
20 | Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration.Nature, 411, 789-792. |
21 | Hörtensteiner S, Feller U (2002). Nitrogen metabolism and remobilization during senescence.Journal of Experimental Botany, 53, 927-937. |
22 | Humbeck K, Quast S, Krupinska K (1996). Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants.Plant, Cell & Environment, 19, 337-344. |
23 | Jia L, An LZ (2004). Studies of desalting ability and desalting structure in Karelinia caspica.Acta Botanica Boreali- Occidentalia Sinica, 24, 510-515. |
(in Chinese with English abstract) [贾磊, 安黎哲 (2004). 花花柴脱盐能力及脱盐结构研究. 西北植物学报, 24, 510-515.] | |
24 | Jiang YJ, Liang G, Yang SZ, Yu DQ (2014). Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid-and auxin-mediated signaling in jasmonic acid-induced leaf senescence.The Plant Cell, 26, 230-245. |
25 | Koeslin-Findeklee F, Meyer A, Girke A, Beckmann K, Horst WJ (2014). The superior nitrogen efficiency of winter oilseed rape (Brassica napus L.) hybrids is not related to delayed nitrogen starvation-induced leaf senescence. Plant and Soil, 384, 347-362. |
26 | Kumar M, Singh VP, Arora A, Singh N (2014). The role of abscisic acid (ABA) in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower senescence.Acta Physiologiae Plantarum, 36, 151-159. |
27 | Li CY, Weiss D, Goldschmidt EE (2003). Girdling affects carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees.Annals of Botany, 92, 137-143. |
28 | Li HS (2000). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing. 34-178. |
(in Chinese) [李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京. 34-178.] | |
29 | Liu TX, Zhang YP (2010). Determination of ABA content in the seedling of capsicum by HPLC.Guangdong Agricultural Sciences, 37, 249-250. |
(in Chinese with English abstract) [刘同祥, 张艳平 (2010). HPLC法测定辣椒苗中ABA含量研究. 广东农业科学, 37, 249-250.] | |
30 | Lobell DB, Sibley A, Ortiz-Monasterio JI (2012). Extreme heat effects on wheat senescence in India.Nature Climate Change, 2, 186-189. |
31 | Masclaux C, Valadier MH, Brugière N, Morot-Gaudry JF, Hirel B (2000). Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence.Planta, 211, 510-518. |
32 | Matile P (1992). Chloroplast senescence. In: Baker NR, Thomas H eds. Crop Photosynthesis: Spatial and Temporal Determinant. Elsevier, Amsterdam, the Netherlands. 413-440. |
33 | Miller A, Schlagnhaufer C, Spalding M, Rodermel S (2000). Carbohydrate regulation of leaf development: Prolongation of leaf senescence in Rubisco antisense mutants of tobacco.Photosynthesis Research, 63, 1-8. |
34 | Mittler R, Merquiol E, Hallak-Herr E, Rachmilevitch S, Kaplan A, Cohen M (2001). Living under a “dormant” canopy: A molecular acclimation mechanism of the desert plant Retama raetam.The Plant Journal, 25, 407-416. |
35 | Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling.Science, 300, 332-336. |
36 | Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T (2013). Assimilate transport in phloem sets conditions for leaf gas exchange.Plant, Cell & Environment, 36, 655-669. |
37 | Noodén LD, Guiamét JJ, John I (1997). Senescence mechanisms.Physiologia Plantarum, 101, 746-753. |
38 | Parrott D, Yang L, Shama L, Fischer AM (2005). Senescence is accelerated, and several proteases are induced by carbon “feast” conditions in barley (Hordeum vulgare L.) leaves.Planta, 222, 989-1000. |
39 | Parrott DL, Martin JM, Fischer AM (2010). Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: A family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels.New Phytologist, 187, 313-331. |
40 | Parrott DL, McInnerney K, Feller U, Fischer AM (2007). Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence- associated genes.New Phytologist, 176, 56-69. |
41 | Poli?vka T, Frank HA (2010). Molecular factors controlling photosynthetic light harvesting by carotenoids.Accounts of Chemical Research, 43, 1125-1134. |
42 | Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006). Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis.Planta, 224, 556-568. |
43 | Pourtau N, Marès M, Purdy S, Quentin N, Ruël A, Wingler A (2004). Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence.Planta, 219, 765-772. |
44 | Rahman MM, Yang CL, Rahman MM, Islam KS (2012). Effects of copper on growth, accumulation, antioxidant activity and malondialdehyde content in young seedlings of the mangrove species Kandelia candel (L.).Plant Biosystems, 146, 47-57. |
45 | Rajcan I, Dwyer LM, Tollenaar M (1999). Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence.Field Crops Research, 63, 13-17. |
46 | Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M (2012). Chemical quenching of singlet oxygen by carotenoids in plants.Plant Physiology, 158, 1267-1278. |
47 | Rivas F, Erner Y, Alós E, Juan M, Almela V, Agustí M (2006). Girdling increases carbohydrate availability and fruit-set in citrus cultivars irrespective of parthenocarpic ability.The Journal of Horticultural Science & Biotechnology, 81, 289-295. |
48 | Rivas F, Fornes F, Rodrigo MJ, Zacarías L, Agusti M (2011). Changes in carotenoids and ABA content in Citrus leaves in response to girdling.Scientia Horticulturae, 127, 482-487. |
49 | Robert-Seilaniantz A, Grant M, Jones JD (2011). Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism.Annual Review of Phytopathology, 49, 317-343. |
50 | Setter TL, Brun WA, Brenner ML (1980). Effect of obstructed translocation on leaf abscisic acid, and associated stomatal closure and photosynthesis decline.Plant Physiology, 65, 1111-1115. |
51 | Smart CM (1994). Gene expression during leaf senescence.New Phytologist, 126, 419-448. |
52 | Speirs J, Binney A, Collins M, Edwards E, Loveys B (2013). Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv. Cabernet Sauvignon).Journal of Experimental Botany, 64, 1907-1916. |
53 | Suzuki Y, Shioi Y (2004). Changes in chlorophyll and carotenoid contents in radish (Raphanus sativus) cotyledons show different time courses during senescence.Physiologia Plantarum, 122, 291-296. |
54 | Tang G, Li X, Lin L, Guo H, Li L (2015a). Combined effects of girdling and leaf removal on fluorescence characteristic of Alhagi sparsifolia leaf senescence.Plant Biology, 17, 980-989. |
55 | Tang GL, Li XY, Lin LS, Guo ZC, Li CJ, Guo H, Zeng FJ (2015b). Impact of phloem girdling on water status in desert plants Alhagi sparsifolia Shap. (Fabaceae) and Karelinia Caspica (Pall.) Less. (Asteraceae).Brazilian Journal of Botany, doi: 10.1007/s40415-015-0178-2. |
56 | Tang GL, Li XY, Lin LS, Li L, Lu JR (2013a). Effects of short-term phloem girdling on physiology in two desert plants in the southern edge of the Taklimakan Desert.Chinese Journal of Plant Ecology, 37, 1101-1113. |
(in Chinese with English abstract) [唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2013a). 短期环割对塔克拉玛干沙漠南缘两种荒漠植物的生理影响. 植物生态学报, 37, 1101-1113.] | |
57 | Tang GL, Li XY, Lin LS, Li L, Lu JR (2013b). Change of different shading on moisture conditions and the physiological response in Alhagi sparsifolia.Chinese Journal of Plant Ecology, 37, 354-364. |
(in Chinese with English abstract) [唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2013b). 骆驼刺在不同遮阴下的水分状况变化及其生理响应. 植物生态学报, 37, 354-364.] | |
58 | Tang GL, Li XY, Lin LS, Li L, Lu JR (2014a). Short-term effect of phloem girdling on water potential and photosynthetic characteristics in Karelinia caspica.Journal of Desert Research, 34, 1527-1536. |
(in Chinese with English abstract) [唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2014a). 表皮环割对花花柴(Karelinia caspica)水势及光合参数的短期影响. 中国沙漠, 34, 1527-1536.] | |
59 | Tang GL, Li XY, Lin LS, Li L, Lu JR (2014b). Effect of short-term girdling on stozmatal conductance and chlorophyll fluorescence in Alhagi sparsifolia.Acta Ecologica Sinica, 34, 6817-6827. |
(in Chinese with English abstract) [唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2014b). 短期环割对骆驼刺气孔导度及叶绿素荧光的影响. 生态学报, 34, 6817-6827.] | |
60 | Tang GL, Li XY, Lin LS, Zeng FJ (2015c). Impact of girdling and leaf removal on Alhagi sparsifolia leaf senescence.Plant Growth Regulation, doi: 10.1007/s10725-015-0086-2. |
61 | Tang GL, Li XY, Lin LS, Zeng FJ, Gu ZY (2015d). Girdling- induced Alhagi sparsifolia senescence and chlorophyll fluorescence changes.Photosynthetica, 53, 585-596. doi: 10.1007/s11099- 015-0148-8 |
62 | Thomas H, Smart CM (1993). Crops that stay green.Annals of Applied Biology, 123, 193-219. |
63 | Urban L, Alphonsout L (2007). Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves.Tree Physiology, 27, 345-352. |
64 | Vogelmann K, Drechsel G, Bergler J, Subert C, Philippar K, Soll J, Julia CE (2012). Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway.Plant Physiology, 159, 1477-1487. |
65 | Wingler A, Purdy S, MacLean JA, Pourtau N (2006). The role of sugars in integrating environmental signals during the regulation of leaf senescence.Journal of Experimental Botany, 57, 391-399. |
66 | Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998). Regulation of leaf senescence by cytokinin, sugars, and light—Effects on NADH-dependent hydroxypyruvate reductase.Plant Physiology, 116, 329-335. |
67 | Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2001). Water deficit-induced senescence and its relationship to the remobilization of prestored carbon in wheat during grain filling.Agronomy Journal, 93, 196-206. |
68 | Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling.Plant, Cell & Environment, 26, 1621-1631. |
69 | Yang XY, Wang FF, Teixeira da Silva JA, Zhong J, Liu YZ, Peng SA (2013). Branch girdling at fruit green mature stage affects fruit ascorbic acid contents and expression of genes involved in l-galactose pathway in citrus.New Zealand Journal of Crop and Horticultural Science, 41, 23-31. |
70 | Zhang YJ, Meinzer FC, Qi JH, Goldstein G, Cao KF (2013). Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees.Plant, Cell & Environment, 36, 149-158. |
71 | Zwack PJ, Robinson BR, Risley MG, Rashotte AM (2013). Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses.Plant and Cell Physiology, 54, 971-981. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[3] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[4] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[5] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[6] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[7] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[8] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[9] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[10] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[11] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[12] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[13] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[14] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[15] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19