植物生态学报 ›› 2011, Vol. 35 ›› Issue (1): 82-90.DOI: 10.3724/SP.J.1258.2011.00082
薛伟1,2,3, 李向义1,3,*(), 朱军涛1,2,3, 林丽莎1,3, 王迎菊1,2,3
收稿日期:
2010-03-18
接受日期:
2010-06-30
出版日期:
2011-03-18
发布日期:
2011-01-24
通讯作者:
李向义
作者简介:
*E-mail: lixy@ms.xjb.ac.cn
XUE Wei1,2,3, LI Xiang-Yi1,3,*(), ZHU Jun-Tao1,2,3, LIN Li-Sha1,3, WANG Ying-Ju1,2,3
Received:
2010-03-18
Accepted:
2010-06-30
Online:
2011-03-18
Published:
2011-01-24
Contact:
LI Xiang-Yi
摘要:
通过设置自然光与遮阴(60%自然光)两种光环境, 观测了遮阴60天后疏叶骆驼刺(Alhagi sparsifolia)叶形态、光合生理参数和脯氨酸(Pro)含量的变化。结果表明: 与自然光照下的叶片相比, 遮阴叶的比叶面积显著增大(p < 0.01), 比叶干重、比叶鲜重和叶片厚度明显降低(p < 0.01); 叶绿素(a + b)和类胡萝卜素含量有所增加, 其中叶绿素a含量增加显著(p < 0.01); 光补偿点、光饱和点和暗呼吸速率降低, 表观量子效率提高, 最大净光合速率明显增大, 光能利用效率高于自然光叶; 强光照下遮阴叶的净光合速率明显降低, 易发生光合光抑制现象。上述结果说明: 遮阴处理后, 疏叶骆驼刺在叶形态和光合生理上表现出对遮阴弱光条件的一定程度的驯化适应。另外, 遮阴叶片Pro的大量积累, 说明Pro在疏叶骆驼刺驯化适应弱光环境中起着重要作用。遮蔽环境下疏叶骆驼刺植株死亡率明显偏高, 表明塔克拉玛干沙漠南缘荒漠区的疏叶骆驼刺属于专性阳生植物不耐阴品种。
薛伟, 李向义, 朱军涛, 林丽莎, 王迎菊. 遮阴对疏叶骆驼刺叶形态和光合参数的影响. 植物生态学报, 2011, 35(1): 82-90. DOI: 10.3724/SP.J.1258.2011.00082
XUE Wei, LI Xiang-Yi, ZHU Jun-Tao, LIN Li-Sha, WANG Ying-Ju. Effects of shading on leaf morphology and response characteristics of photosynthesis in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 2011, 35(1): 82-90. DOI: 10.3724/SP.J.1258.2011.00082
处理 Treatment | 暗呼吸速率 Rd (μmol·m-2·s-1) | 表观量子效率 φ (mol·mol-1) | 最大净光合速率 Amax (μmol CO2·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) |
---|---|---|---|---|---|
遮阴 Shade | 2.39 ± 0.333* | 0.040 3 ± 0.004 2 | 19.12 ± 1.72 | 52.40 ± 8.65* | 1 683.33 ± 160.09* |
自然光 Natural light | 3.43 ± 0.306 | 0.035 3 ± 0.004 3 | 17.61 ± 0.96 | 95.33 ± 13.62 | 2 071.36 ± 91.81 |
表1 遮阴对疏叶骆驼刺光响应模型参数的影响(平均值±标准误)
Table 1 Effects of shade treatments on the light response model parameters of Alhagi sparsifolia (mean ± SE)
处理 Treatment | 暗呼吸速率 Rd (μmol·m-2·s-1) | 表观量子效率 φ (mol·mol-1) | 最大净光合速率 Amax (μmol CO2·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) |
---|---|---|---|---|---|
遮阴 Shade | 2.39 ± 0.333* | 0.040 3 ± 0.004 2 | 19.12 ± 1.72 | 52.40 ± 8.65* | 1 683.33 ± 160.09* |
自然光 Natural light | 3.43 ± 0.306 | 0.035 3 ± 0.004 3 | 17.61 ± 0.96 | 95.33 ± 13.62 | 2 071.36 ± 91.81 |
图2 遮阴和自然光条件下疏叶骆驼刺叶片净光合速率与光合有效辐射的关系。
Fig. 2 Relationship between net photosynthetic rate (A) and photosynthetic active radiation (PAR) in Alhagi sparsifolia under shade and natural light treatments.
光合参数 Photosynthetic parameters | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F | p |
---|---|---|---|---|---|
净光合速率 A (μmol CO2·m-2·s-1) | 46.4 | 1 | 46.4 | 0.75 | 0.393 |
气孔导度 Gs (mmol·m-2·s-1) | 91 417 | 1 | 91 417 | 15.90** | 0.000 |
蒸腾速率 Tr (mmol·m-2·s-1) | 40.09 | 1 | 40.09 | 7.91** | 0.009 |
胞间CO2浓度 Ci (mmol·mol-1) | 5.0 | 1 | 5.0 | 0.00 | 0.974 |
水分利用效率 WUE (mmol CO2·mol-1 H2O) | 0.378 | 1 | 0.378 | 0.39 | 0.535 |
潜在水分利用效率 WUEi (mmol CO2·mol-1 H2O) | 85.67 | 1 | 85.67 | 17.00** | 0.006 |
表2 遮阴和自然光条件下疏叶骆驼刺光合生理特征的方差分析
Table 2 ANOVA of photo-physiological characteristics of Alhagi sparsifolia under shade and natural light treatments
光合参数 Photosynthetic parameters | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F | p |
---|---|---|---|---|---|
净光合速率 A (μmol CO2·m-2·s-1) | 46.4 | 1 | 46.4 | 0.75 | 0.393 |
气孔导度 Gs (mmol·m-2·s-1) | 91 417 | 1 | 91 417 | 15.90** | 0.000 |
蒸腾速率 Tr (mmol·m-2·s-1) | 40.09 | 1 | 40.09 | 7.91** | 0.009 |
胞间CO2浓度 Ci (mmol·mol-1) | 5.0 | 1 | 5.0 | 0.00 | 0.974 |
水分利用效率 WUE (mmol CO2·mol-1 H2O) | 0.378 | 1 | 0.378 | 0.39 | 0.535 |
潜在水分利用效率 WUEi (mmol CO2·mol-1 H2O) | 85.67 | 1 | 85.67 | 17.00** | 0.006 |
叶形态参数 Leaf morphography parameters | 遮阴 Shade | 自然光 Natural light |
---|---|---|
比叶面积 SLA (cm2·g-1) | 66.302 ± 0.984** | 47.409 ± 1.550 |
比叶干重 LMA·dw (cm2·g-1) | 15.084 ± 0.223** | 21.107 ± 0.694 |
比叶鲜重 LMA·fw (cm2·g-1) | 23.311 ± 0.405** | 35.419 ± 0.439 |
叶片厚度 d (mm) | 1.575 ± 0.229** | 2.256 ± 0.335 |
克隆构件死亡率 Mortality rate of clonal ramet (%) | 65% | 5% |
表3 遮阴对疏叶骆驼刺叶形态的影响(平均数±标准误差)
Table 3 Effect of shade on leaf morphography of Alhagi sparsifolia (mean ± SE)
叶形态参数 Leaf morphography parameters | 遮阴 Shade | 自然光 Natural light |
---|---|---|
比叶面积 SLA (cm2·g-1) | 66.302 ± 0.984** | 47.409 ± 1.550 |
比叶干重 LMA·dw (cm2·g-1) | 15.084 ± 0.223** | 21.107 ± 0.694 |
比叶鲜重 LMA·fw (cm2·g-1) | 23.311 ± 0.405** | 35.419 ± 0.439 |
叶片厚度 d (mm) | 1.575 ± 0.229** | 2.256 ± 0.335 |
克隆构件死亡率 Mortality rate of clonal ramet (%) | 65% | 5% |
生理参数 Physiological parameters | 遮阴 Shade | 自然光 Natural light |
---|---|---|
叶绿素a Chl a (mg·g-1) | 1.533 ± 0.028** | 1.240 ± 0.032 |
叶绿素b Chl b (mg·g-1) | 0.682 ± 0.076 | 0.673 ± 0.030 |
叶绿素(a+b) Chl (a + b) (mg·g-1) | 2.215 ± 0.096** | 1.913 ± 0.060 |
类胡萝卜素 Cars (mg·g-1) | 0.220 ± 0.017 | 0.188 ± 0.012 |
脯氨酸 Pro (mg·g-1) | 0.323 ± 0.010** | 0.261 ± 0.012 |
表4 遮阴对疏叶骆驼刺光合色素和脯氨酸含量的影响(平均数±标准误差)
Table 4 Effect of shade on the content of photosynthetic pigment and proline of Alhagi sparsifolia (mean ± SE)
生理参数 Physiological parameters | 遮阴 Shade | 自然光 Natural light |
---|---|---|
叶绿素a Chl a (mg·g-1) | 1.533 ± 0.028** | 1.240 ± 0.032 |
叶绿素b Chl b (mg·g-1) | 0.682 ± 0.076 | 0.673 ± 0.030 |
叶绿素(a+b) Chl (a + b) (mg·g-1) | 2.215 ± 0.096** | 1.913 ± 0.060 |
类胡萝卜素 Cars (mg·g-1) | 0.220 ± 0.017 | 0.188 ± 0.012 |
脯氨酸 Pro (mg·g-1) | 0.323 ± 0.010** | 0.261 ± 0.012 |
图3 遮阴和自然光条件下疏叶骆驼刺叶片光合生理特征的光响应。
Fig. 3 Light responses characteristics of photosynthetic parameters in Alhagi sparsifolia under shade and natural light treatments. Ci, intercellular CO2 concentration; Gs, stomatal conductance; Ls, stomatal limitation; PAR, photosynthetic active radiation; Tr, transpiration rate; WUE, water use efficiency; WUEi, potential water use efficiency.
[1] |
Atanasova L, Stefanov D, Yordanov I, Kornova K, Kavardzikov L (2003). Comparative characteristics of growth and photosynthesis of sun and shade leaves from normal and pendulum walnut ( Juglans regia L.) trees. Photosynthetica, 41, 289-292.
DOI URL |
[2] | Berry JA, Downton WJ (1982). Environmental regulation of photosynthesis. In: Govindjee ed. Photosynthesis, Vol. II. Development, Carbon Metabolism and Plant Productivity. Academic Press, New York. 263-343. |
[3] |
Bertamini M, Muthuchelian K, Nedunchezhian N (2004). Photoinhibition of photosynthesis in sun and shade grown leaves of grapevine ( Vitis vinifera L.). Photosynthetica, 42, 7-14.
DOI URL |
[4] |
Bertamini M, Muthuchelian K, Nedunchezhian N (2006). Shade effect alters leaf pigments and photosynthetic responses in Norway spruce ( Picea abies L.) grown under field conditions. Photosynthetica, 44, 227-234.
DOI URL |
[5] | Björkman O (1981). Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Encyclopedia of Plant Physiology, Vol. 12A. Springer, New York. 57-107. |
[6] | Cao K (曹珂), Zhu GR (朱更瑞), Wang YX (王永熙), Fang WC (方伟超), Wang LR (王力荣) (2006). Effects of shading on morphological and physiological indices in sapling of peach (Prunus persica). Journal of Plant Resources and Environment (植物资源与环境学报), 15, 52-56. (in Chinese with English abstract) |
[7] | Chi W (迟伟), Wang RF (王荣富), Zhang CL (张成林) (2001). Changes of photosynthetic characteristics of strawberry leaf under shading. Chinese Journal of Applied Ecology (应用生态学报), 12, 566-568. (in Chinese with English abstract) |
[8] | Cregg BM, Teskey RO, Dougherty PM (1993). Effect of shade stress on growth, morphology, and carbon dynamics of loblolly pine branches. Trees, 7, 208-213. |
[9] |
Cruz P (1997). Effect of shade on the growth and mineral nutrition of a C4 perennial grass under field conditions. Plant and Soil, 188, 227-237.
DOI URL |
[10] |
Dai YJ, Shen ZG, Liu Y, Wang LL, Hannaway D, Lu HF (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65, 177-182.
DOI URL |
[11] |
Demmig-Adams B, Adams WW (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1, 21-26.
DOI URL |
[12] | Deng X (邓雄), Li XM (李小明), Zhang XM (张希明), Ye WH (叶万辉), Foezki A, Runge M (2003). The studies about the photosynthetic response of the four desert plants. Acta Ecologica Sinica (生态学报), 3, 598-605. (in Chinese with English abstract) |
[13] | Eschrich W, Burchardt R, Essiamah S (1989). The induction of sun and shade leaves of the European beech ( Fagus sylvatica L.) anatomical studies. Trees, 3, 1-10. |
[14] |
Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345.
DOI URL |
[15] | Givnish TJ (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63-92. |
[16] | He WM (何维明), Dong M (董鸣) (2003). Growth and physiological features of Salix matsudana on the Mu Us Sandland in response to shading. Chinese Journal of Applied Ecology (应用生态学报), 14, 175-178. (in Chinese with English abstract) |
[17] | Jiang GM (蒋高明) (2004). Plant Ecophysiology (植物生理生态学). Higher Education Press, Beijing. 166-167. (in Chinese) |
[18] | Lambers H, Chapin III FS, Pons TL (2008). Plant Physiological Ecology 2nd edn. Springer-Verlag, New York. 320-374. |
[19] |
Lichtenthaler HK, Alexander AC, Marek MV, Kalina J, Urban O (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45, 577-588.
URL PMID |
[20] |
Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U (1981). Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research, 2, 115-141.
DOI URL PMID |
[21] | Li HS (李合生) (2000). Plant Physiology and Biochemistry Experiment Principle and Technology (植物生理生化实验原理和技术). Higher Education Press, Beijing. 134- 137, 258-260. (in Chinese) |
[22] | Luo B (骆郴), Tan Y (谭勇), Liu T (刘彤), Gong HT (龚海涛), Wei P (魏鹏), Zhang YH (张艳红) (2006). Differences of photosynthetic and physiological adoption between oasis and desert on Alhagi sparsifolia. Arid Land Geography (干旱区地理), 29, 503-509. (in Chinese with English abstract) |
[23] | Li XY (李向义), Lin LS (林丽莎), Zhao Q (赵强) (2009). Distribution of dominant plant species and characteristic of its communities on the foreland of Cele Oasis in relation to groundwater level. Arid Land Geography (干旱区地理), 32, 906-911. (in Chinese with English abstract) |
[24] | Li XY, Zhang XM, Zeng FJ, Foetzki A, Thomas FM, Li XM, Runge M, He XY (2002). Water relations on Alhagi sparsifolia in the southern fringe of Taklamakan Desert. Acta Botanica Sinica, 44, 1219-1224. |
[25] |
Moreiraa AS, Filhoa JP, Zotz G, Isaiasa RM (2009). Anatomy and photosynthetic parameters of roots and leaves of two shade-adapted orchids, Dichaea cogniauxiana Shltr. and Epidendrum secundum Jacq. Flora, 204, 604-611.
DOI URL |
[26] |
Morgan JM (1984). Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology, 35, 299-319.
DOI URL |
[27] | Pearcy RW (1999). Responses of plants to heterogeneous light environments. In: Pugnaire Fl, Valladares F eds. Handbook of Functional Plant Ecology. Marcel Dekker Inc., New York. 270-314. |
[28] |
Perry MH, Friend DJ, Yamamoto HY (1986). Photosynthetic and leaf morphological characteristics in Leucaena leucocephala as affected by growth under different neutral shade levels. Photosynthesis Research, 9, 305-316.
URL PMID |
[29] | Qin SH (秦舒浩), Li LL (李玲玲) (2006). Effects of shading on squash seedlings’ morphological and photosynthetic physiological characteristics. Chinese Journal of Applied Ecology (应用生态学报), 17, 653-656. (in Chinese with English abstract) |
[30] | Öquist G, Brunes L, Hällgren JE (2006). Photosynthetic efficiency of Betula pendula acclimated to different quantum flux densities. Plant, Cell & Environment, 5, 9-15. |
[31] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[32] |
Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystem. Ecological Monographs, 62, 365-392.
DOI URL |
[33] |
Sarijeva G, Knapp M, Lichtenthaler HK (2007). Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. Journal of Plant Physiology, 164, 950-955.
DOI URL PMID |
[34] |
Šesták Z (1996). Limitations for finding a linear relationship between chlorophyll content and photosynthetic activity. Biologia Plantarum, 8, 336-346.
DOI URL |
[35] |
Sofo A, Dichio B, Montanaro G, Xiloyannis C (2009). Shade effect on photosynthesis and photoinhibition in olive during drought and rewatering. Agricultural Water Management, 96, 1201-1206.
DOI URL |
[36] | Turner IM (1994). Sclerophylly: primarily protective? Functional Ecology, 8, 669-675. |
[37] | Walker DA, Jarvis PG, Farquhar GD, Leverenz J (1989). Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 323, 313-326. |
[38] | Wang K (王凯), Zhu JJ (朱教君), Yu LZ (于立忠), Sun YR (孙一荣), Chen GH (陈光华) (2009). Effects of shading on the photosynthetic characteristics and light use efficiency of Phellodendron amurense seedlings. Chinese Journal of Plant Ecology (植物生态学报), 33, 1003-1012. (in Chinese with English abstract) |
[39] | Wittmann C, Aschan G, Pfanz H (2001). Leaf and twig photosynthesis of young beech Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic and Applied Ecology, 2, 145-154. |
[40] | Xu HF (徐惠风), Liu XT (刘兴土), Sha L (沙箓), Gao L (高磊) (2004). Study on the correlation between proline, chlorophyll and stoma block on Cyperaceae under shadings. System Sciences and Comprehensive Studies in Agriculture (农业系统科学与综合研究), 20, 232-234. (in Chinese with English abstract) |
[41] | Yang G (杨戈), Li YF (李银芳) (1992). A study on the ecological type of Alhagi from their anatomy. Arid Zone Research (干旱区研究), (4), 21-25. (in Chinese with English abstract) |
[42] |
Zhang JZ, Shi L, Shi AP, Zhang QX (2004). Photosynthetic responses of four Hosta cultivars to shade treatments. Photosynthetica, 42, 213-218.
DOI URL |
[43] | Zhang L (张林), LUO TX (罗天祥) (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica (植物生态学报), 28, 844-852. (in Chinese with English abstract) |
[44] | Zhang Q (张强), Hu YQ (胡隐樵) (2002). The geographical features and climatic effects of oasis. Advance in Earth Sciences (地球科学进展), 4, 477-486. (in Chinese with English abstract) |
[45] | Zhao GD (赵广东), Liu SR (刘世荣), Ma QL (马全林) (2003). Ecophysiological responses of two xerophytes Atraphaxis frutescens and Elaeagnus angustifolia to the change of groundwater depth in arid area. I. Changes in leaf nutrient, chlorophyll, soluble sugar and starch contents. Acta Phytoecologica Sinica (植物生态学报), 27, 228-234. (in Chinese with English abstract) |
[46] | Zheng SX (郑淑霞), Shangguan ZP (上官周平) (2006). Comparison of leaf gas exchange and chlorophyll fluorescence parameters in eight broad-leaved tree species. Acta Ecologica Sinica (生态学报), 26, 1081-1087. (in Chinese with English abstract) |
[47] | Zhu YH (朱永华), Wu YQ (仵彦卿) (2003). Water consumption of natural plant Alhagi sparsifolia in arid desert region. Bulletin of Soil and Water Conservation (水土保持通报), 23, 43-45. (in Chinese with English abstract) |
[48] | Zhu JT (朱军涛), Li XY (李向义), Zhang XM (张希明), Zeng FJ (曾凡江), Yan HL (闫海龙), Yang SG (杨尚功) (2009). Effect of irrigation on photosynthetic physiology characteristics and osmolytes of Alhagi sparsifolia. Journal of Desert Research (中国沙漠), 9, 697-702. (in Chinese with English abstract) |
[1] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[2] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[3] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[4] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[5] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[6] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[7] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[8] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[9] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[10] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[11] | 胡文海, 张斯斯, 肖宜安, 闫小红. 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制[J]. 植物生态学报, 2015, 39(11): 1093-1100. |
[12] | 厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739. |
[13] | 张翠萍, 孟平, 李建中, 万贤崇. 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响[J]. 植物生态学报, 2014, 38(12): 1345-1355. |
[14] | 武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超, 阿丽艳·肉孜. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应[J]. 植物生态学报, 2014, 38(10): 1124-1134. |
[15] | 晏欣,龚吉蕊,张梓瑜,黄永梅,安然,祁瑜,刘敏. 狼针草光合特性对放牧干扰的响应[J]. 植物生态学报, 2013, 37(6): 530-541. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19