植物生态学报 ›› 2013, Vol. 37 ›› Issue (6): 530-541.DOI: 10.3724/SP.J.1258.2013.00054
收稿日期:
2012-11-13
接受日期:
2013-02-09
出版日期:
2013-11-13
发布日期:
2013-06-05
通讯作者:
龚吉蕊
基金资助:
YAN Xin,GONG Ji-Rui(),ZHANG Zi-Yu,HUANG Yong-Mei,AN Ran,QI Yu,LIU Min
Received:
2012-11-13
Accepted:
2013-02-09
Online:
2013-11-13
Published:
2013-06-05
Contact:
GONG Ji-Rui
摘要:
以内蒙古呼伦贝尔草甸草原围封草地和放牧草地为实验样地, 通过对两种草地类型中狼针草(Stipa baicalensis)的光合特性、水分关系、植物渗透调节等生理生态学特性测定分析, 比较研究放牧干扰对狼针草的影响。结果表明: 在放牧干扰下, 狼针草通过增强核酮糖二磷酸羧化酶(RUBPCase)活性、叶绿素含量、改变电子流的方向和速率、增强光系统II (PSII)活性(p < 0.05), 促进同化物的累积和植物的补偿生长, 应对放牧干扰的影响。放牧干扰下狼针草的光合速率日变化曲线呈单峰型, 而围封草地中呈“双峰型”, 出现“午休”现象, 正午RuBPCase的羧化能力下降是造成围封草地狼针草光合“午休”的非气孔因素之一, 而磷元素的缺失可能是导致二磷酸核酮糖羧化酶(Rubisco)活性下降的原因。在光合能量分配方面, 两种样地狼针草的PSII最大光化学量子产量(Fv/Fm)均出现光抑制现象。放牧草地中狼针草对光照增强较为敏感, Fv/Fm值下降趋势明显(p < 0.05)。和围封样地相比, 放牧样地的狼针草光化学猝灭(qP)值升高, 而非光化学猝灭(NPQ)值降低(p < 0.05), 分配更多的能量于光合反应中心, 有利于同化物累积, 提高光合能力来适应放牧的影响。在放牧干扰下, 狼针草叶片水势与叶片含水量降低, 而渗透调节物质可溶性蛋白和可溶性糖含量增加(p < 0.05), 狼针草的蓄水性变弱, 需要通过增加体内渗透调节物质, 主动降低水势, 以保证从土壤中获取足够的水分维持自身生理活性。同时, 放牧干扰促进了狼针草对氮元素的吸收利用。放牧样地中狼针草光合氮、磷利用率均与叶比重呈负相关关系。
晏欣,龚吉蕊,张梓瑜,黄永梅,安然,祁瑜,刘敏. 狼针草光合特性对放牧干扰的响应. 植物生态学报, 2013, 37(6): 530-541. DOI: 10.3724/SP.J.1258.2013.00054
YAN Xin,GONG Ji-Rui,ZHANG Zi-Yu,HUANG Yong-Mei,AN Ran,QI Yu,LIU Min. Responses of photosynthetic characteristics of Stipa baicalensis to grazing disturbance. Chinese Journal of Plant Ecology, 2013, 37(6): 530-541. DOI: 10.3724/SP.J.1258.2013.00054
围封样地 Enclosed grassland | 放牧样地 Grazing grassland |
---|---|
狼针草 Stipa baicalensis 羊草 Leymus chinensis 冷蒿 Artemisia frigida 柄状薹草 Carex pediformis 糙隐子草 Cleistogenes squarrosa 裂叶蒿 Artemisia tanacetifolia 草地早熟禾 Poa pratensis 阿尔泰狗娃花 Heteropappus altaicus | 狼针草 Stipa baicalensis 羊草 Leymus chinensis 冷蒿 Artemisia frigida 宽叶薹草 Carex siderosticta 细叶白头翁 Pulsatilla turczaninovii 裂叶蒿 Artemisia tanacetifoli 长柱沙参 Adenophora stenanthina 柄状薹草 Carex pediformis |
表1 两种草地主要物种组成
Table 1 Main species composition of two grasslands
围封样地 Enclosed grassland | 放牧样地 Grazing grassland |
---|---|
狼针草 Stipa baicalensis 羊草 Leymus chinensis 冷蒿 Artemisia frigida 柄状薹草 Carex pediformis 糙隐子草 Cleistogenes squarrosa 裂叶蒿 Artemisia tanacetifolia 草地早熟禾 Poa pratensis 阿尔泰狗娃花 Heteropappus altaicus | 狼针草 Stipa baicalensis 羊草 Leymus chinensis 冷蒿 Artemisia frigida 宽叶薹草 Carex siderosticta 细叶白头翁 Pulsatilla turczaninovii 裂叶蒿 Artemisia tanacetifoli 长柱沙参 Adenophora stenanthina 柄状薹草 Carex pediformis |
样地 Field type | 平均高度 Average height (cm) | 生物量 Biomass (g) | 盖度 Coverage (%) |
---|---|---|---|
围封样地 Enclosed grassland | 26.92 ± 0.1 | 237.500 ± 0.09 | 81.65 ± 0.06 |
放牧样地 Grazing grassland | 10.46 ± 0.1 | 99.962 ± 0.16 | 71.24 ± 0.02 |
表2 两种样地植物群落分布(平均值±标准误差, n = 4)
Table 2 Plant community distribution of two grasslands (mean ± SE, n = 4)
样地 Field type | 平均高度 Average height (cm) | 生物量 Biomass (g) | 盖度 Coverage (%) |
---|---|---|---|
围封样地 Enclosed grassland | 26.92 ± 0.1 | 237.500 ± 0.09 | 81.65 ± 0.06 |
放牧样地 Grazing grassland | 10.46 ± 0.1 | 99.962 ± 0.16 | 71.24 ± 0.02 |
图1 围封和放牧样地光合有效辐射(PAR)和大气温度的日变化(平均值±标准误差)。
Fig. 1 Diurnal variations of photosynthetically active radiation (PAR) and air temperature in enclosed and grazing grassland (mean ± SE).
土壤深度 Soil depth (cm) | 围封样地 Enclosed grassland (%) | 放牧样地 Grazing grassland (%) |
---|---|---|
0-10 | 34.09 ± 0.04 | 30.66 ± 0.02 |
10-20 | 29.10 ± 0.09 | 26.00 ± 0.12 |
20-30 | 23.01 ± 0.07 | 20.49 ± 0.10 |
30-40 | 21.99 ± 0.90 | 17.93 ± 0.20 |
表3 围封和放牧样地的土壤含水量(平均值±标准误差, n = 4)
Table 3 Soil water content of enclosed and grazing grassland (mean ± SE, n = 4)
土壤深度 Soil depth (cm) | 围封样地 Enclosed grassland (%) | 放牧样地 Grazing grassland (%) |
---|---|---|
0-10 | 34.09 ± 0.04 | 30.66 ± 0.02 |
10-20 | 29.10 ± 0.09 | 26.00 ± 0.12 |
20-30 | 23.01 ± 0.07 | 20.49 ± 0.10 |
30-40 | 21.99 ± 0.90 | 17.93 ± 0.20 |
图5 两种样地狼针草叶绿素和可溶性糖与可溶性蛋白含量的日变化(平均值±标准误差)。
Fig. 5 Diurnal change of chlorophyll (Chl), soluble sugar and protein content of Stipa baicalensis in two grasslands (mean ± SE).
图6 两种样地狼针草核酮糖二磷酸羧化酶(RUBPCase)活性和电子传递速率(ETR)的日变化(平均值±标准误差)。
Fig. 6 Diurnal changes of ribulose bisphosphate carboxylase (RUBPCase) activity and electronic transport rate (ETR) of Stipa baicalensis in the two grasslands (mean ± SE).
图7 两种样地狼针草叶比重(LMA)、光合氮磷利用率(PNUE、PPUE)和叶片磷含量的日变化(平均值±标准误差)。
Fig. 7 Diurnal variations of leaf mass per area (LMA), photosynthetic nitrogen-use efficiency (PNUE), photosynthetic phosphorus-use efficiency (PPUE) and foliar P content of S. baicalensis in two grasslands (mean ± SE).
[1] |
Anderson JM (1986). Photo regulation of the composition, function, and structure of thylakoid membranes. Annual Review of Plant Physiology, 37, 93-136.
DOI URL |
[2] |
Anderson TM, Dong Y, McNaughton SJ (2006). Nutrient acquisition and physiological responses of dominant Serengeti grasses to variation in soil texture and grazing. Journal of Ecology, 94, 1164-1175.
DOI URL |
[3] |
Arnon D (1949). Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-25.
DOI URL PMID |
[4] | Asada K (1994). Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM eds. Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Tokyo. 77-104. |
[5] |
Bieleski RL (1973). Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology, 24, 225-252.
DOI URL |
[6] |
Chen SP, Bai YF, Lin GH, Liang Y, Han XG (2005). Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China. Photosynthetica, 43, 559-565.
DOI URL |
[7] | Chen ZZ, Wang SP (2000). Typical Grassland Ecosystem of China. Science Press, Beijing. (in Chinese) |
[ 陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] | |
[8] | Crofts AR, Baroli I, Kramer D, Taoka S (1993). Kinetics of electron transfer between QA and QB in wild type and herbicide-resistant mutants of Chlamydomonas reinhardtii. Z Naturforsch, 48, 259-266. |
[9] |
Demmig B, Björkman O (1987). Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta, 171, 171-184.
DOI URL PMID |
[10] |
Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264.
DOI URL |
[11] | Elser JJ, Marzolf ER, Goldman CR (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 47, 146-1477. |
[12] | Epron D, Godard D, Cornic G, Genty B (1995). Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvation L. and Castanea sativa Mill.). Plant, Cell & Environment, 18, 43-51. |
[13] |
Evans JR (1983). Nitrogen and photosynthesis in the flagleaf of wheat (Triticum aestivum L.). Plant Physiology, 72, 297-302.
DOI URL PMID |
[14] |
Evans JR, Seemann JR (1984). Differences between wheat genotypes in specific activity of ribulose-1, 5 bisphos- phate carboxylase and the relationship to photosynthesis. Plant Physiology, 74, 759-765.
DOI URL PMID |
[15] |
Farquhar GD, Sharkey TD (1982). Stomach conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345.
DOI URL |
[16] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI URL PMID |
[17] |
Filella I, Llusià J, Piñol J, Peñuelas J (1998). Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in severe drought and high temperature conditions. Environmental and Experimental Botany, 39, 213-220.
DOI URL |
[18] |
Groat RG, Vance CP (1981). Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L). Plant Physiology, 67, 1198-1203.
DOI URL |
[19] |
Hikosaka K (2004). Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research, 117, 481-494.
DOI URL |
[20] |
Kedrowski RA (1983). Extraction and analysis of nitrogen, phosphorus and carbon fractions in plant material. Journal of Plant Nutrition, 6, 989-1011.
DOI URL |
[21] |
Krall JP, Edward GE (1992). Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum, 86, 180-187.
DOI URL |
[22] | Kramer PJ (1998). Water Relations of Plants. Academic Press, New York. |
[23] |
Laisk A, Loreto F (1996). Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Plant Physiology, 110, 903-912.
DOI URL PMID |
[24] | Larcher W (1994). Ökophysiologie der Pflanzen. Verlag Eugen Ulmer, Stuttgart. 47-100. |
[25] | Li HS (1999). Plant Physiological Biochemical Experiment Principles and Techniques. Higher Education Press, Beijing. 131-261. (in Chinese) |
[ 李合生 (1999). 植物生理生化实验原理和技术. 高等教育出版社, 北京. 131-261.] | |
[26] | Liang EY, Wang YF, Xu Y, Liu B, Shao XM (2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan. Plateau Trees, 24, 363-373. |
[27] | Lin ZF, Peng CL (2000). The allocation of photosynthetic electron transport and absorbed light energy in leaves of four woody plants acclimated to different light intensities. Acta Phytophysiologica Sinica, 26, 387-392. (in Chinese with English abstract) |
[ 林植芳, 彭长连 (2000). 4种木本植物叶片的光合电子传递和吸收光能分配特性对光强的适应. 植物生理学报, 26, 387-392.] | |
[28] |
Makhnev AK, Makhneva NE (2010). Landscape-ecological and population aspects of the strategy of restoration of disturbed lands. Contemporary Problems of Ecology, 3, 318-322.
DOI URL |
[29] | Marschner H (1995). Mineral Nutrition of Higher Plants. 2nd edn. Academic Press, London, UK. |
[30] | Melis A, Harvey GW (1981). Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Biochimica et Biophysica Acta-Bioenergetics, 63, 138-145. |
[31] |
Meyer GA (1998). Mechanisms promoting recovery from defoliation in goldenrod (Solidago altissima). Canadian Journal of Botany, 76, 450-459.
DOI URL |
[32] |
Onoda HK, Hirose T, Hirose T (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 18, 419-425.
DOI URL |
[33] |
Parkhurst DF (1994). Diffusion of CO2 and other gases inside leaves. New Phytologist, 126, 449-479.
DOI URL |
[34] |
Peng Y, Jiang GM, Liu XH, Niu SL, Liu MZ, Biswas DK (2007). Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in Hunshandak Sandland, China. Journal of Arid Environments, 70, 304-315.
DOI URL |
[35] | Poorter H, Evans JR (1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 126-137. |
[36] | Racker E (1962). Ribulose diphosphate carboxylase from spinach leaves. In: Colowick SP, Kaplan NO eds. Methods in Enzymology. Academic Press, New York. 266-278. |
[37] | Richards JH (1993). Physiology of plants recovering from defoliation. In: Proceedings of the XVII International Grasslands Conference. Polmerston North, New Zealand. 47-55. |
[38] | Sukenik A, Bennett J, Falkowski P (1987). Light-saturated photosynthesis-limitation by electron transport or carbon fixation. Biochimica et Biophysica Acta-Bioenergetics, 2, 205-215. |
[39] |
Sun W, Resco V, Williams DG (2010). Nocturnal and seasonal patterns of carbon isotope composition of leaf dark- respired carbon dioxide differ among dominant species in a semiarid savanna. Oecologia, 164, 297-310.
URL PMID |
[40] | Takashhna T, Kkosaka K, Hirose T (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment, 27, 1047-1054. |
[41] |
Vu JC, Allon LH, Gowes G (1987). Drought stress and elevated CO2 effects on soybean ridulose bisphosphate carboxylase activity and canopy photosynthetic rates. Plant Physiology, 83, 573-578.
DOI URL PMID |
[42] | Xue S, Wang PH (1992). Effects of water stress of CO2 assimilation of two winter wheat cultivars with different drought resistance. Acta Phytophysiol Sinica, 18, 1-7. (in Chinese with English abstract) |
[43] | Ye JY, Mi HL (1999). Experimental Guide of Modern Plant Physiology. Science Press, Beijing. 108-109. (in Chinese) |
[ 叶济宇, 米华玲 (1999). 现代植物生理学实验指南. 科学出版社, 北京. 108-109.] | |
[44] | Zhao P, Sun GC, Peng SL (1998). Ecophysiological research on nitrogen nutrition of plant. Ecologic Science, 17, 37-42. (in Chinese with English abstract) |
[ 赵平, 孙谷畴, 彭少麟 (1998). 植物氮素营养的生理生态学研究. 生态科学, 17, 37-42.] | |
[45] |
Zhao W, Chen SP, Han XG, Lin GH (2009). Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 24, 99-108.
DOI URL |
[46] |
Zhou G, Wang Y, Wang S (2002). Responses of grassland ecosystems to precipitation and land use along the Northeast China Transect. Journal of Vegetation Science, 13, 361-368.
DOI URL |
[47] | Zou Q (2000). The Experiment Guide of Plant Physiology. China Agricultural Press, Beijing. 80-82, 137-138, 119-120. (in Chinese) |
[ 邹琦 (2000). 植物生理学实验指导. 中国农业科技出版社, 北京. 80-82, 137-138, 119-120.] |
[1] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[2] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[3] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[4] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[5] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[6] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[7] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[8] | 胡涛, 李苏, 柳帅, 刘文耀, 陈曦, 宋亮, 陈泉. 哀牢山山地森林不同附生地衣功能群的水分关系和光合生理特征[J]. 植物生态学报, 2016, 40(8): 810-826. |
[9] | 何春霞, 陈平, 孟平, 张劲松, 杨洪国. 华北低丘山区果药复合系统种间水分利用策略[J]. 植物生态学报, 2016, 40(2): 151-164. |
[10] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[11] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[12] | 郭增江, 于振文, 石玉, 赵俊晔, 张永丽. 拔节期与开花期测墒补灌对小麦旗叶荧光特性和水分利用效率的影响[J]. 植物生态学报, 2014, 38(7): 757-766. |
[13] | 厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739. |
[14] | 张翠萍, 孟平, 李建中, 万贤崇. 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响[J]. 植物生态学报, 2014, 38(12): 1345-1355. |
[15] | 武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超, 阿丽艳·肉孜. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应[J]. 植物生态学报, 2014, 38(10): 1124-1134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19