植物生态学报 ›› 2016, Vol. 40 ›› Issue (2): 151-164.DOI: 10.17521/cjpe.2015.0360
所属专题: 稳定同位素生态学
何春霞1,2, 陈平1,3, 孟平1,2,,A;*(), 张劲松1,2,,A;*(
), 杨洪国1,2
出版日期:
2016-02-10
发布日期:
2016-03-08
通讯作者:
孟平,张劲松
Chun-Xia HE1,2, Ping CHEN1,3, Ping MENG1,2,*(), Jin-Song ZHANG1,2,*(
), Hong-Guo YANG1,2,*
Online:
2016-02-10
Published:
2016-03-08
摘要:
了解林农复合系统的种间水分关系至关重要.该文通过稳定氘同位素研究了华北低丘山区核桃(Juglans regia)-菘蓝(Isatis tinctoria)/决明(Senna tora)复合系统各组分的水分来源, 试图明确该果药复合系统的种间水分利用策略, 为该区林农配置模式的选择提供理论依据.研究结果表明: 果药复合系统的土壤含水量明显高于单作菘蓝和单作决明地块, 在2012年,2013年上半年比单作菘蓝高26.74%和7.93%, 在下半年比单作决明高17.39%和13.65%.在果药复合系统内部, 土壤含水量以核桃树行中间位置的最低,树行北侧和树下最高.在各个土层深度, 单作系统的土壤水氢稳定同位素比率(δD值)均比复合系统的高.在菘蓝生长时期的春旱期, 复合系统中核桃的大部分水分来源于30-80 cm深层土壤水, 表明此时期核桃表层根系活性不高; 而决明生长时期正值雨季, 此时核桃优先利用雨水补充的0-30 cm浅层土壤水,表层根系活性增强.在任何生长时期, 菘蓝和决明85%以上的水分都来自浅层土壤水.在菘蓝苗期, 其根系尚未扎入深层土壤中, 单作菘蓝的水分完全来源于浅层土壤, 而在2012年间作菘蓝却有5.7%的水分来自于深层土壤, 在更为干旱的2013年该比例上升到9.7%, 该结果证实了核桃在旱季存在"水力提升"作用, 供浅根系作物吸收利用, 并且越干旱, 该水力提升作用越强.在华北低丘山区核桃-菘蓝/决明复合系统中, 深根性核桃改善了复合系统的土壤水分状况, 在旱季主要利用深层土壤水以避开与浅层作物的水分竞争,并能将深层土壤水提升至浅层土壤供菘蓝吸收利用, 核桃与两种药材表现为水分互利关系, 因而该模式适合在该地区发展.
何春霞, 陈平, 孟平, 张劲松, 杨洪国. 华北低丘山区果药复合系统种间水分利用策略. 植物生态学报, 2016, 40(2): 151-164. DOI: 10.17521/cjpe.2015.0360
Chun-Xia HE, Ping CHEN, Ping MENG, Jin-Song ZHANG, Hong-Guo YANG. Interspecific water use strategies of a Juglans regia and Isatis tinctoria/Senna tora agroforestry. Chinese Journal of Plant Ecology, 2016, 40(2): 151-164. DOI: 10.17521/cjpe.2015.0360
图2 2012和2013年不同系统土壤含水量的时间动态变化(平均值±标准偏差).
Fig. 2 Temporal variations of soil water content in different intercropping systems in 2012 and 2013 (mean ± SD).
图3 2012和2013年不同系统土壤含水量的垂直变化特征(平均值±标准偏差).
Fig. 3 Vertical variations of soil water content in different intercropping systems in 2012 and 2013 (mean ± SD).
图4 2012和2013年不同系统土壤含水量的水平变化特征(平均值±标准偏差).N0.5,N1.5,M,S1.5分别为核桃树北侧0.5 m,1.5 m,4 m和南侧1.5 m.
Fig. 4 Horizontal variations of soil water content in different intercropping systems in 2012 and 2013 (mean ± SD). N0.5, N1.5, M, S1.5 denote distances of 0.5 m, 1.5 m, 4 m to north side and 1.5 m to south side of tree rows, respectively.
图7 2012年不同复合系统不同土层δD值的差异(平均值±标准偏差).
Fig. 7 Differences in δD value of soil water for different soil layers between different intercropping systems in 2012 (mean ± SD).
图8 2013年不同复合系统不同土层δD值差异(平均值±标准偏差).
Fig. 8 Differences in δD value of soil water for different soil layers between different intercropping systems in 2013 (mean ± SD).
图9 2012和2013年复合系统内距离树行不同位置土壤水δD值的差异(平均值±标准偏差).N1.5,N2.5,M,S2.5,S1.5分别为核桃树北侧1.5,2.5,4 m和南侧2.5,1.5 m.
Fig. 9 Differences in δD value of soil water at different distances to tree row in intercropping systems in 2012 and 2013 (mean ± SD). N1.5, N2.5, M, S2.5, S1.5 denote distances of 1.5 m, 2.5 m, 4 m to north side and 2.5 m, 1.5 m to south side of tree rows, respectively.
图10 2012和2013年不同复合系统植物δD值(平均值±标准偏差).不同小写字母表示不同复合模式差异显著(p < 0.05).
Fig. 10 Stem δD of plants from different intercropping systems in 2012 and 2013 (mean ± SD). Different small letters indicate significant differences between different intercropping systems (p < 0.05).
图11 2012年间作核桃(A),间作菘蓝(B)和单作菘蓝(C)水分利用来源比例.
Fig. 11 Proportion of water sources for intercropped walnut (A), intercropped woad (B), and monocultural woad (C) in 2012.
图12 2013年间作核桃(A),间作菘蓝(B)和单作菘蓝(C)水分利用来源比例.
Fig. 12 Proportion of water sources for intercropped walnut (A), intercropped woad (B), and monocultural woad (C) in 2013.
图13 2012年间作核桃(A),间作决明(B)和单作决明(C)水分利用来源比例.
Fig. 13 Proportion of water sources for intercropped walnut (A), intercropped sicklepod (B), and monocultural sicklepod (C) in 2012.
图14 2013年间作核桃(A),间作决明(B)和单作决明(C)水分利用来源比例.
Fig. 14 Proportions of water sources for intercropped walnut (A), intercropped sicklepod (B), and monocultural sicklepod (C) in 2013.
图15 2012和2013年土壤水分δD值与土壤含水量的相关关系.
Fig. 15 The correlations between δD value of soil water and soil water content in 2012 and 2013.
[1] | Chen P, Meng P, Zhang JS, He CX, Jia CR, Li JZ (2014). Water use of intercropping system of tree and two herbal medicine in the low hilly area of North China. Journal of Northeast Forestry University, 42(8), 52-56, 78.[陈平, 孟平, 张劲松, 何春霞, 贾长荣, 李建中 (2014). 华北低丘山区2种林药复合模式的水分利用. 东北林业大学学报, 42(8), 52-56, 78.] |
[2] | Durand JL, Bariac T, Ghesquière M, Biron P, Richard P, Humphreys M, Zwierzykovski Z (2007). Ranking of the depth of water extraction by individual grass plants, using natural 18O isotope abundance.Environmental and Experimental Botany, 60, 137-144. |
[3] | Ehleringer JR, Phillips SL, Schuster WSE, Sandquist DR (1991). Differential utilization of summer rains by desert plants.Oecologia, 88, 430-434. |
[4] | February E, Higgins S, Bond W J (2007). Using stable water isotopes to determine the depth of water used by different sizes of savanna trees.South African Journal of Botany, 73, 287-292. |
[5] | He CX, Meng P, Zhang JS, Gao J, Sun SJ (2012). Water use of walnut-wheat intercropping system based on stable carbon isotope technique in the low hilly area of North China.Acta Ecologica Sinica, 32, 2047-2055.[何春霞, 孟平, 张劲松, 高峻, 孙守家 (2012). 基于稳定碳同位素技术的华北低丘山区核桃-小麦复合系统种间水分利用研究. 生态学报, 32, 2047-2055.] |
[6] | Meinzer FC, Andrade JL, Goldstein G (1999). Partitioning of soil water among canopy trees in a seasonally dry tropical forest.Oecologia, 121, 293-301. |
[7] | Nie YP, Chen HS, Wang KL (2011). Seasonal variation of water sources for plants growing on continuous rock outcrops in limestone area of Southwest China.Chinese Journal of Plant Ecology, 35, 1029-1037. (in Chinese with English abstract)[聂云鹏, 陈洪松, 王克林 (2011). 石灰岩地区连片出露石丛生境植物水分来源的季节性差异. 植物生态学报, 35, 1029-1037.] |
[8] | Penna D, Oliviero O, Assendelft R, Zuecco G, Meerveld I, Anfodillo T, Carraro V, Borga M, Fontana GD (2013). Tracing the water sources of trees and streams: Isotopic analysis in a small pre-alpine catchment.Procedia Environmental Science, 19, 106-112. |
[9] | Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: Coping with too many sources.Oecologia, 136, 261-269. |
[10] | Rezig M, Sahli A, Ben jeddi F, Harbaoui Y (2013). Potato (Solanum tuberosum L.) and sulla (Hedysarum coronaruim L.) intercropping in Tunisia: Effects in water consumption and water use efficiency.Journal of Agricutural Science, 5(10), 123-136. |
[11] | Rivest D, Cogliastro A, Bradley RL, Olivier A (2010). Intercropping hybrib poplar with soybean increses soil microbial biomass, mineral N supply and tree growth.Agroforestry System, 76, 513-523 |
[12] | Rose KL, Graham RC, Parker DR (2003). Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock.Oecologia, 134, 46-54. |
[13] | Sekiya N, Yano K (2004). Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift? Hydrogen stable isotope investigation of xylem waters.Field Crops Research, 86, 167-173. |
[14] | Sher AA, Wiegand K, Ward D (2010). Do Acacia and Tamarix trees compete for water in the Negev desert?Journal of Arid Environments, 74, 338-343. |
[15] | Siriri D, Wilson J, Coe R, Tenywa MM, Bekunda MA, Ong CK, Black CR (2013). Trees improve water storage and reduce soil evaporation in agroforestry systems on bench terraces in SW Uganda.Agroforestry System, 87, 45-58. |
[16] | Snyder KA, Williams DG (2000). Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona.Agricultural and Forest Meteorology, 105, 227-240. |
[17] | Sun SJ, Meng P, Zhang JS, Huang H, Wan XC (2010). Deute- rium isotope variation and water use in an agroforestry system in the rocky mountainous area of North China.Acta Ecologica Sinica, 30, 3717-3726. (in Chinese with English abstract)[孙守家, 孟平, 张劲松, 黄辉, 万贤崇 (2010). 华北石质山区核桃-绿豆复合系统氘同位素变化及其水分利用. 生态学报, 30, 3717-3726.] |
[18] | Sun SJ, Meng P, Zhang JS, Wan XC (2014). Hydraulic lift by Juglans regia relates to nutrient status in the intercropped shallow-root crop plant.Plant and Soil, 374, 629-641. |
[19] | Wanvestraut RH, Jose S, Nair PKR, Brecke B (2004). Competition for water in a pecan (Carya illinoensis K. Koch)- cotton (Gossypium hirsutum L.) alley cropping system in the southern United States.Agroforestry Systems, 60, 167-179. |
[20] | Williams DG, Ehleringer JR (2000). Intra- and inter-specific variation for summer precipitation use in pinyon-juniper woodlands.Ecological Monographs, 70, 517-537. |
[21] | Xu Q, Ji CL, Wang HY, Li Y (2009). Use of stable isotopes of hydrogen, oxygen and carbon to identify water use strategy by plants.World Forestry Research, 22(4), 41-46. (in Chinese with English abstract)[徐庆, 冀春雷, 王海英, 李旸 (2009). 氢氧碳稳定同位素在植物水分利用策略研究中的应用. 世界林业研究, 22(4), 41-46.] |
[22] | Zencich SJ, Froend RH, Turner JV, Gailitis V (2002). Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer.Oecologia, 131, 8-19. |
[23] | Zhang W, Ahanbieke P, Wang BJ, Lu WL, Li LH, Christie P, Li L (2013). Root distribution and interaction in jujube tree/wheat agroforestry system.Agroforestry System, 87, 929-939. |
[1] | 张翠萍, 孟平, 李建中, 万贤崇. 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响[J]. 植物生态学报, 2014, 38(12): 1345-1355. |
[2] | 平晓燕, 王铁梅, 卢欣石. 农林复合系统固碳潜力研究进展[J]. 植物生态学报, 2013, 37(1): 80-92. |
[3] | 李海防, 夏汉平, 傅声雷, 张杏锋. 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响[J]. 植物生态学报, 2009, 33(6): 1015-1022. |
[4] | 郝海平, 姜闯道, 石雷, 唐宇丹, 姚涓, 李志强. 根系温度对光核桃幼苗光合机构热稳定性的影响[J]. 植物生态学报, 2009, 33(5): 984-992. |
[5] | 蒋馥蔚, 江洪, 李巍, 余树全, 曾波, 王艳红. 不同起源时期的3种被子植物对酸雨胁迫响应的光合生理生态特征[J]. 植物生态学报, 2009, 33(1): 125-133. |
[6] | 陈良华, 胡庭兴, 张帆, 李国和. 用AFLP技术分析四川核桃资源的遗传多样性[J]. 植物生态学报, 2008, 32(6): 1362-1372. |
[7] | 王正加, 黄有军, 郭传友, 黄坚钦, 王华芳. 大别山山核桃种群遗传多样性研究[J]. 植物生态学报, 2006, 30(3): 534-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19