植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1362-1372.DOI: 10.3773/j.issn.1005-264x.2008.06.017
所属专题: 生物多样性
收稿日期:
2007-02-08
接受日期:
2007-06-09
出版日期:
2008-02-08
发布日期:
2008-11-30
通讯作者:
胡庭兴
作者简介:
*(hutx001@yahoo.com.cn)基金资助:
CHEN Liang-Hua, HU Ting-Xing(), ZHANG Fan, LI Guo-He
Received:
2007-02-08
Accepted:
2007-06-09
Online:
2008-02-08
Published:
2008-11-30
Contact:
HU Ting-Xing
摘要:
利用AFLP分子标记技术, 运用EcoRⅠ/MseⅠ双酶切组合, 选用多态性高、分辨力强的4对选择性扩增引物组合E32/M48、E33/M61、E35/M61、E33/M62分别对四川省3个野生核桃(Juglans regia)种群和1个野生铁核桃(J. sigillata)种群共46个样品进行遗传多样性分析、居群遗传结构分析及种属关系探讨。结果表明: 1)共扩增出244个遗传位点, 其中146个多态位点, 多态率为59.84%; 核桃群体组和铁核桃群体的多态性百分率分别为55.33%和52.05%, 两个物种遗传多态性水平相当; 核桃群体组所检出的位点平均有效等位基因数Ae、Nei’s基因多样度H、平均Shannon信息指数I分别为1.322 9、0.190 8和0.286 3, 而铁核桃群体分别为1.339 9、0.196 1和0.289 8, 铁核桃群体遗传多样性水平略高于核桃群体。2)群体间特异带及群体间共有带占总扩增带数的15.16%, 其中铁核桃群体特异谱带最多, 群体特异谱带揭示了群体间的遗传差异及相似性。3) Shannon信息指数(I)、Nei’s基因多样性指数(H)和分子方差分析(AMOVA)表明核桃遗传多样性在群体间和群体内的分布分别为14.36%和85.64%、12.6%和87.4%、11.07%和88.93%, 表明群体内的遗传多样性大于群体间的遗传多样性; 核桃群体组与铁核桃群体的变异主要存在于群体组内, 组间的遗传变异仅占总变异的9.35%, 两者间的遗传分化系数Gst为0.093 5, 与AMOVA分析结果一致。4) 4个群体的Nei’s遗传距离在0.038 2~0.069 2之间, 遗传一致度在0.933 2~0.962 5之间, 表现出较高的遗传相似性; 运用Nei’s遗传一致度对供试种群进行了UPGMA聚类, 结果表明核桃的3个群体优先聚类, 大渡河流域群体与甘南地区群体聚类最近。AFLP所检测出的结果既是核桃与铁核桃生物学特性的反映, 又是其各自生态学特性的反映, 该研究结果对核桃种质资源的保护和育种提供一定的理论依据。
陈良华, 胡庭兴, 张帆, 李国和. 用AFLP技术分析四川核桃资源的遗传多样性. 植物生态学报, 2008, 32(6): 1362-1372. DOI: 10.3773/j.issn.1005-264x.2008.06.017
CHEN Liang-Hua, HU Ting-Xing, ZHANG Fan, LI Guo-He. GENETIC DIVERSITIES OF FOUR JUGLANSPOPULATIONS REVEALED BY AFLP IN SICHUAN PROVINCE, CHINA. Chinese Journal of Plant Ecology, 2008, 32(6): 1362-1372. DOI: 10.3773/j.issn.1005-264x.2008.06.017
群体名称及编号 Name of the population and the code | 秦巴山与龙门山区 (核桃群体) Qingba Moutain (POP1) | 邛崃山系及大渡河 流域 (核桃群体) Daduhe vally (POP2) | 甘南地区 (核桃群体) Gannan district (POP3) | 攀枝花及大小凉山地区 (铁核桃群体) Panzhihua district (POP4) |
---|---|---|---|---|
经纬度范围 The range of longitude and latitude | 108°24′~102°25′ E 32°59′~29°92′ N | 102°25′~103°89′ E 29°04′~31°67′ N | 99°00′~101°53′ E 28°71′~30°00′ N | 101°52′~102°68′ E 26°30′~28°72′ N |
海拔高度范围 The range of altitude (m) | 507~970 | 1 440~2 463 | 2 100~2 869 | 976~1 944 |
采样地及编号 Site of the material and the code | 朝天区(1, 2), 市中区(3, 4), 青川县(5, 6) 平武县(7, 8), 南江县(45, 46), 通江县(47, 48) | 汶川县(21, 22), 茂县(23, 24), 泸定(25, 26), 小金县(27, 28), 石棉县(29, 30, 汉源县(31, 32), 宝兴县(33, 34) | 巴塘县(36, 38)、乡城县(39, 40)、九龙县(41, 42)、得荣县(43, 44) | 盐边县(9, 10), 米易县(11, 12), 仁和区(13, 14), 冕宁县(15, 16), 德昌县(17, 18), 盐源县(19, 20) |
年平均气温 Annual average temperature (℃) | 15.7 | 14.4 | 11.5 | 15.9 |
1月平均气温 The average temperature in January (℃) | 4.4 | 4.8 | 2.9 | 8.1 |
7月平均气温 The average temperature in July (℃) | 25.4 | 23.1 | 18.6 | 22.03 |
无霜期 The frost-free period (d) | 254 | 268.4 | 201.2 | 260.5 |
大于10 ℃积温 Accumulative temperature over 10 ℃ degree (℃) | 4 949.1 | 4 471.3 | 3 230.9 | 5 137.03 |
年降水量 Annual precipitation (mm) | 1 086.9 | 683.9 | 559.4 | 1 015.3 |
日照时数 Annual sunshine time (h) | 1 399.8 | 1 445.4 | 2 073.6 | 2 271.6 |
日照百分率 Annual sunshine percentage (%) | 31.7 | 32.9 | 46.8 | 51.5 |
年平均相对湿度 Average annual relative humidity (%) | 73.2 | 65.1 | 51.8 | 64.3 |
表1 供试材料来源及基本气候物征
Table 1 Origin and basic climatic characteristics of the materials in the study
群体名称及编号 Name of the population and the code | 秦巴山与龙门山区 (核桃群体) Qingba Moutain (POP1) | 邛崃山系及大渡河 流域 (核桃群体) Daduhe vally (POP2) | 甘南地区 (核桃群体) Gannan district (POP3) | 攀枝花及大小凉山地区 (铁核桃群体) Panzhihua district (POP4) |
---|---|---|---|---|
经纬度范围 The range of longitude and latitude | 108°24′~102°25′ E 32°59′~29°92′ N | 102°25′~103°89′ E 29°04′~31°67′ N | 99°00′~101°53′ E 28°71′~30°00′ N | 101°52′~102°68′ E 26°30′~28°72′ N |
海拔高度范围 The range of altitude (m) | 507~970 | 1 440~2 463 | 2 100~2 869 | 976~1 944 |
采样地及编号 Site of the material and the code | 朝天区(1, 2), 市中区(3, 4), 青川县(5, 6) 平武县(7, 8), 南江县(45, 46), 通江县(47, 48) | 汶川县(21, 22), 茂县(23, 24), 泸定(25, 26), 小金县(27, 28), 石棉县(29, 30, 汉源县(31, 32), 宝兴县(33, 34) | 巴塘县(36, 38)、乡城县(39, 40)、九龙县(41, 42)、得荣县(43, 44) | 盐边县(9, 10), 米易县(11, 12), 仁和区(13, 14), 冕宁县(15, 16), 德昌县(17, 18), 盐源县(19, 20) |
年平均气温 Annual average temperature (℃) | 15.7 | 14.4 | 11.5 | 15.9 |
1月平均气温 The average temperature in January (℃) | 4.4 | 4.8 | 2.9 | 8.1 |
7月平均气温 The average temperature in July (℃) | 25.4 | 23.1 | 18.6 | 22.03 |
无霜期 The frost-free period (d) | 254 | 268.4 | 201.2 | 260.5 |
大于10 ℃积温 Accumulative temperature over 10 ℃ degree (℃) | 4 949.1 | 4 471.3 | 3 230.9 | 5 137.03 |
年降水量 Annual precipitation (mm) | 1 086.9 | 683.9 | 559.4 | 1 015.3 |
日照时数 Annual sunshine time (h) | 1 399.8 | 1 445.4 | 2 073.6 | 2 271.6 |
日照百分率 Annual sunshine percentage (%) | 31.7 | 32.9 | 46.8 | 51.5 |
年平均相对湿度 Average annual relative humidity (%) | 73.2 | 65.1 | 51.8 | 64.3 |
引物组合 Primer pairs | 总条带数 Total number of AFLP bands | 带长范围 Range of band (bp) | 多态性带 No. of polymorphic bands | 多态百分率 Percentage of polymorphic bands (%) |
---|---|---|---|---|
E32/M48 E33/M61 E35/M61 E33/M62 合计 Total 平均 Average | 74 48 57 65 244 61 | 1 700~80 1 650~75 1 850~60 1 700~60 | 42 28 37 39 146 36.5 | 56.75 58.33 64.91 60 59.84 |
表2 AFLP选择性扩增引物产生的条带多态性
Table 2 Polymorphism of AFLP bands obtained by selective amplification based on the four primer-combinations
引物组合 Primer pairs | 总条带数 Total number of AFLP bands | 带长范围 Range of band (bp) | 多态性带 No. of polymorphic bands | 多态百分率 Percentage of polymorphic bands (%) |
---|---|---|---|---|
E32/M48 E33/M61 E35/M61 E33/M62 合计 Total 平均 Average | 74 48 57 65 244 61 | 1 700~80 1 650~75 1 850~60 1 700~60 | 42 28 37 39 146 36.5 | 56.75 58.33 64.91 60 59.84 |
群体 Population | 特异带数(特有带编号) (占总位点百分比) No. of specific bands (The band code) (Percentage in the total bands) | 2群体共有带数 (占总带数百分比) No. of shared bands between 2 populations (Percentage in the total bands) | 3群体共有带数 (占总带数百分比) No. of shared bands among 3 populations (Percentage in the total bands) |
---|---|---|---|
POP1 POP2 POP3 POP4 合计Total | E32/M48-1540 E33/M61-1600 E33/M61-380 E33/M62-1380 E33/M62-540 E35/M61-1320 E32/M48-1620 E32/M48-1300 E32/M48-1180 E32/M48-970 E32/M48-540 E33/M61-720 E33/M61-640 E33/M62-1410 E33/M62-980 E33/M62-720 E33/M62-1010 17 (6.97%) | E32/M48-440 (POP2, POP3 shared) E32/M48-870 (POP2, POP3 shared) E35/M61-690 (POP3, POP4 shared) E35/M61-510 (POP1, POP4 shared) E33/M61-1160 (POP2, POP4 shared) E33/M62-240 (POP1, POP2 shared) E33/M62-390 (POP2, POP3 shared) E33/M62-380 (POP1, POP2 shared) 8 (3.28%) | E32/M48-1650 (POP1, POP2, POP3 shared) E32/M48-1470 (POP2, POP3, POP4 shared) E32/M48-630 (POP1, POP3, POP4 shared) E32/M48-430 (POP1, POP3, POP4 shared) E32/M48-280 (POP1, POP3, POP4 shared) E35/M61-1630 (POP1, POP2, POP3 shared) E35/M61-1170 (POP1, POP3, POP4 shared) E35/M61-650 (POP1, POP2, POP4 shared) E33/M62-1330 (POP1, POP3, POP4 shared) E33/M62-770 (POP1, POP2, POP4 shared) E33/M62-530 (POP1, POP2, POP3 shared) E33/M62-450 (POP1, POP2, POP4 shared) 12 (4.92%) |
表3 4个群体AFLP特有扩增带统计结果
Table 3 Statistics of the specific AFLP bands of the four populations
群体 Population | 特异带数(特有带编号) (占总位点百分比) No. of specific bands (The band code) (Percentage in the total bands) | 2群体共有带数 (占总带数百分比) No. of shared bands between 2 populations (Percentage in the total bands) | 3群体共有带数 (占总带数百分比) No. of shared bands among 3 populations (Percentage in the total bands) |
---|---|---|---|
POP1 POP2 POP3 POP4 合计Total | E32/M48-1540 E33/M61-1600 E33/M61-380 E33/M62-1380 E33/M62-540 E35/M61-1320 E32/M48-1620 E32/M48-1300 E32/M48-1180 E32/M48-970 E32/M48-540 E33/M61-720 E33/M61-640 E33/M62-1410 E33/M62-980 E33/M62-720 E33/M62-1010 17 (6.97%) | E32/M48-440 (POP2, POP3 shared) E32/M48-870 (POP2, POP3 shared) E35/M61-690 (POP3, POP4 shared) E35/M61-510 (POP1, POP4 shared) E33/M61-1160 (POP2, POP4 shared) E33/M62-240 (POP1, POP2 shared) E33/M62-390 (POP2, POP3 shared) E33/M62-380 (POP1, POP2 shared) 8 (3.28%) | E32/M48-1650 (POP1, POP2, POP3 shared) E32/M48-1470 (POP2, POP3, POP4 shared) E32/M48-630 (POP1, POP3, POP4 shared) E32/M48-430 (POP1, POP3, POP4 shared) E32/M48-280 (POP1, POP3, POP4 shared) E35/M61-1630 (POP1, POP2, POP3 shared) E35/M61-1170 (POP1, POP3, POP4 shared) E35/M61-650 (POP1, POP2, POP4 shared) E33/M62-1330 (POP1, POP3, POP4 shared) E33/M62-770 (POP1, POP2, POP4 shared) E33/M62-530 (POP1, POP2, POP3 shared) E33/M62-450 (POP1, POP2, POP4 shared) 12 (4.92%) |
群体 Population | N | AP | P | A | Ae | H | I |
---|---|---|---|---|---|---|---|
野生核桃 Juglans regia 种级水平Species level POP1 POP2 POP3 铁核桃 J. sigillata POP4 合计 In total | 34 12 14 8 12 46 | 135 115 108 103 127 146 | 55.33% 47.13% 44.26% 42.21% 52.05% 59.84% | 1.553 3 (0.498 2) 1.471 3 (0.500 2) 1.442 6 (0.497 7) 1.422 1 (0.494 9) 1.520 5 (0.500 6) 1.598 4 (0.491 2) | 1.322 9 (0.363 1) 1.288 2 (0.368 4) 1.310 4 (0.389 4) 1.263 5 (0.354 2) 1.339 9 (0.380 4) 1.356 3 (0.370 7) | 0.190 8 (0.197 6) 0.167 2 (0.200 2) 0.175 2 (0.210 1) 0.154 7 (0.195 1) 0.196 1 (0.205 9) 0.208 7 (0.200 7) | 0.286 3 (0.284 2) 0.249 2 (0.287 2) 0.255 9 (0.300 5) 0.230 6 (0.283 0) 0.289 8 (0.295 5) 0.311 8 (0.286 8) |
表4 AFLP检测的核桃、铁核桃4个群体的遗传多样性水平
Table 4 Genetic diversity of the four populations detected by AFLP
群体 Population | N | AP | P | A | Ae | H | I |
---|---|---|---|---|---|---|---|
野生核桃 Juglans regia 种级水平Species level POP1 POP2 POP3 铁核桃 J. sigillata POP4 合计 In total | 34 12 14 8 12 46 | 135 115 108 103 127 146 | 55.33% 47.13% 44.26% 42.21% 52.05% 59.84% | 1.553 3 (0.498 2) 1.471 3 (0.500 2) 1.442 6 (0.497 7) 1.422 1 (0.494 9) 1.520 5 (0.500 6) 1.598 4 (0.491 2) | 1.322 9 (0.363 1) 1.288 2 (0.368 4) 1.310 4 (0.389 4) 1.263 5 (0.354 2) 1.339 9 (0.380 4) 1.356 3 (0.370 7) | 0.190 8 (0.197 6) 0.167 2 (0.200 2) 0.175 2 (0.210 1) 0.154 7 (0.195 1) 0.196 1 (0.205 9) 0.208 7 (0.200 7) | 0.286 3 (0.284 2) 0.249 2 (0.287 2) 0.255 9 (0.300 5) 0.230 6 (0.283 0) 0.289 8 (0.295 5) 0.311 8 (0.286 8) |
变异来源 Source of variation | 自由度 df | 方差 SS | 均方差 Ms | 变异成分 Variance component | 变异百分率Percentage of variance component (%) | Phist系数 Фst | 显著度检测 p-value |
---|---|---|---|---|---|---|---|
群体间 Among populations 群体内 Within populations 组间 Among groups 组内 Within groups | 3 42 1 44 | 168.58 977.702 84.689 1 061.59 | 56.193 23.279 84.689 24.127 | 2.897 23.279 3.414 24.127 | 11.07% 88.93% 12.4% 87.6% | 0.111 0.124 | ﹤0.001 ﹤0.001 |
表5 运用方差分析(AMOVA)所得结果如下表所示
Table 5 Analysis of molecular variance (AMOVA) of four populations
变异来源 Source of variation | 自由度 df | 方差 SS | 均方差 Ms | 变异成分 Variance component | 变异百分率Percentage of variance component (%) | Phist系数 Фst | 显著度检测 p-value |
---|---|---|---|---|---|---|---|
群体间 Among populations 群体内 Within populations 组间 Among groups 组内 Within groups | 3 42 1 44 | 168.58 977.702 84.689 1 061.59 | 56.193 23.279 84.689 24.127 | 2.897 23.279 3.414 24.127 | 11.07% 88.93% 12.4% 87.6% | 0.111 0.124 | ﹤0.001 ﹤0.001 |
POP1 | POP2 | POP3 | POP4 | |
---|---|---|---|---|
POP1 | * | |||
POP2 | 0.087 4 | * | ||
POP3 | 0.081 7 | 0.0472 | * | |
POP4 | 0.154 6 | 0.139 1 | 0.117 8 | * |
表6 两两群体间的Phist遗传分化系数(Фst)
Table 6 Genetic differentiation of Phist analysis between pairs of populations (ФSt) detected by AFLP
POP1 | POP2 | POP3 | POP4 | |
---|---|---|---|---|
POP1 | * | |||
POP2 | 0.087 4 | * | ||
POP3 | 0.081 7 | 0.0472 | * | |
POP4 | 0.154 6 | 0.139 1 | 0.117 8 | * |
POP1 | POP2 | POP3 | POP4 | |
---|---|---|---|---|
POP1 | * | 0.956 7 | 0.952 0 | 0.933 2 |
POP2 | 0.044 3 | * | 0.962 5 | 0.933 7 |
POP3 | 0.049 1 | 0.038 2 | * | 0.934 1 |
POP4 | 0.069 2 | 0.068 6 | 0.068 2 | * |
表7 AFLP所检测的核桃4个种群间的遗传距离及 遗传一致度
Table 7 Nei’s genetic identity and genetic distance between two populations detected by AFLP
POP1 | POP2 | POP3 | POP4 | |
---|---|---|---|---|
POP1 | * | 0.956 7 | 0.952 0 | 0.933 2 |
POP2 | 0.044 3 | * | 0.962 5 | 0.933 7 |
POP3 | 0.049 1 | 0.038 2 | * | 0.934 1 |
POP4 | 0.069 2 | 0.068 6 | 0.068 2 | * |
[1] |
Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196,80-83.
DOI URL PMID |
[2] | Bayazit S, Kazan K, Gülbitti S, Cevik V, Ayanoglu H, Ergül A (2007). AFLP analysis of genetic diversity in low chill requiring walnut ( Juglans regia L.) genotypes from Hatay, Turkey. Scientia Horticulturae, 111,394-398. |
[3] | Chen J (陈静), Wang WJ (王文江) (2004). Extraction of DNA for AFLP amplification reaction in tender walnut leaves. Journal of Agricultural University of Hebei(河北农业大学学报), 27,44-47. (in Chinese with English abstract) |
[4] | Chen SY (陈少瑜), Yang E (杨恩), Xi XL (习学良), Fan ZY (范志远), Zhang Y (张雨) (2006). Molecular identification of main varieties in Juglans sigillata Dode from Yunnan Province by ISSR. Nonwood Forest Research (经济林研究), 24(4),41-45. (in Chinese with English abstract) |
[5] | Conner PJ, Wood BW (2001). Identification of pecan cultivars and their genetic relatedness as determined by randomly amplified polymorphic DNA analysis. Journal of the American Society for Horticultural Science, 126,474-480. |
[6] | Dangl GS, Woeste K, Aradhya MK, Koehmstedt A, Simon C, Potter D, Leslie CA, McGranhan G (2005). Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. Journal of the American Society for Horticultural Science, 130,348-354. |
[7] | Fjellstrom RG, Parfitt DE, McGranahan GH (1994). Genetic-relationships and characterization of Persian walnut ( Juglans regia) cultivars using restriction-fragment-length-polymorphisms (RFLPs). Journal of the American Society for Horticultural Science, 119,833-839. |
[8] | Foroni I, Woeste K, Monti LM, Rao R (2007). Identification of ‘Sorrento’ walnut using simple sequence repeats (SSRs). Genetic Resources and Crop Evolution, 54,1081-1094. |
[9] | Gao HZ (高焕章), Zhang Y (张义), Li QJ (李秋杰), Bao XM (鲍新梅) (2000). General situation of production and sales of world walnut and countermeasures on development of Hubei excellent and famous products. Journal of Hubei Agricultural College (湖北农学院学报), 20,141-143. (in Chinese with English abstract) |
[10] | Gao ST (高绍棠), Liu CB (刘朝斌), Liu DL (刘杜玲), Li L (李莉), Ye NL (叶乃玲), Chen YF (陈耀锋) (1999). Apomixis characteristics of Juglans regia L. . Journal of Northwest Forestry University (西北林学院学报), 14(1),45-47. (in Chinese with English abstract) |
[11] | Gao X (高翔), Pang HX (庞红喜), Pei AW (裴阿卫) (2002). Application of molecular marker techniques in the plant genetic diversity study. Journal of Henan Agricultural University (河南农业大学学报), 36,356-359. (in Chinese with English abstract) |
[12] | Guo CY (郭传友), Huang JQ (黄坚钦), Wang ZJ (王正加), Fang YM (方炎明) (2006). RAPD analysis for natural population genetic structure of Carya cathayensis. Journal of Nanjing Agricultural University (南京农业大学学报), 29(3),12-17. (in Chinese with English abstract) |
[13] | Hao YB (郝艳宾), Xiao YQ (肖永强), Qi JX (齐建勋), Qi S (齐实), Chen LL (程丽莉) (2006). Application of Microsatellite DNA on analyzing the homology of related species in Juglans L. Journal of Beijing Agricultural College (北京农学院学报), 21(3),1-4. (in Chinese with English abstract) |
[14] | Huang JQ (黄坚钦), Zhang BS (章滨森), Wang ZJ (王正加), Guo CY (郭传友) (2003). RAPD analysis on genetic relationship among species in Genus Carya. Journal of Southwest Forestry College (西南林学院学报), 23(4),2-5. (in Chinese with English abstract) |
[15] | Kafkas S, Ozkan H, Sutyemez M (2005). DNA polymorphism and assessment of genetic relationships in walnut genotypes based on AFLP and SAMPL markers. Journal of the American Society for Horticultural Science, 130,585-590. |
[16] | Kuang KR (匡可任), Lu AM (路安民) (1979). Flora Reipublicae Popularis Sinicae (中国植物志). Science Press, Beijing, 21,30-35. (in Chinese) |
[17] | Li WY (李文英), Gu WC (顾万春), Zhou SL (周世良) (2003). AFLP analysis on genetic diversity of Quercus Mongolica populations. Scientic Silvae Sinicae (林业科学), 39(5),29-36. (in Chinese with English abstract) |
[18] | Li Y (黎裕), Wang TY (王天宇), Tian SJ (田松杰), Shi YS (石云素), Song YC (宋燕春) (2003). Sampling strategies of Maize populations when molecular markers are used in genetic diversity analysis. Journal of Plant Genetic Resources (植物遗传资源学报), 4,314-317. (in Chinese with English abstract) |
[19] | Mei XY (梅秀英), Jiang ZM (姜在民), Gao ST (高绍棠), Cui HA (崔宏安), Liu CB (刘朝斌), Cao YM (曹玉美) (1998). A study on the anatomical structures of the leaves of 14 Juglans regia and Juglans sigillate varieties (excellent clones). Journal of Northwest Forestry College (西北林学院学报), 13(1),16-20. (in Chinese with English abstract) |
[20] |
Nei M (1973). Analysis of gene diversity in subdivided population. Proceedings of the National Academy of Sciences of the United States of America, 70,3321-3323.
DOI URL PMID |
[21] | Nicese FP, Hormaza JI, McGranahan GH (1998). Molecular characterization and genetic relatedness among walnut ( Juglans regia L.) genotypes based on RAPD markers. Euphytica, 101,199-206. |
[22] | Ninot A, Aleta N (2003). Identification and genetic relationship of Persian walnut genotypes using isozyme markers. Journal of the American Pomological Society, 57,106-114. |
[23] | Orel G, Marchant AD, Mcleod JA, Richards GD (2003). Characterization of 11 Juglandaceae genotypes based on morphology, cpDNA, and RAPD. HortScience, 38,1178-1183. |
[24] | Peng JY (彭建营), Su HR (束怀瑞), Sun ZX (孙仲序) (2001). Application prospects of molecular markers in the research of fruit gdrmplasm resources. Journal of Shandong Agricultural University (Natural Science Edition) (山东农业大学学报(自然科学版)), 32,103-106. (in Chinese with English abstract) |
[25] | Potter D, Gao FY, Aiello G, Leslie C, McGranhan G (2002). Intersimple sequence repeat markers for fingerprinting and determining genetic relationships of walnut ( Juglans regia) cultivars. Journal of the American Society for Horticultural Science, 127,75-81. |
[26] | Qiang W (钱韦), Ge S (葛颂), Hong DY (洪德元) (2000). Assessment of genetic variation of Oryza granulate detected by RAPDs and ISSRs. Acta Botanica Sinica (植物学报), 42,741-750. (in Chinese with English abstract) |
[27] | Sun QL (孙庆磊), Liang YR (梁月荣), Ding ZT (丁兆堂), LU JL (陆建良) (2004). AFLP molecular marker technique and its application to tea genetic and breeding research. Journal of Tea (茶叶), 30,203-206. (in Chinese with English abstract) |
[28] | Wang GA (王国安), Zhang FP (张虎平), Hu HF (虎海防), Niu JX (牛建新), Ma BG (马兵钢) (2004). Identification of a RAPD marker related to early-bearing characteristic of walnut seedlings. Journal of Fruit Science (果树学报), 21,485-487. (in Chinese with English abstract) |
[29] | Wang ZJ (王正加), Huang YJ (黄有军), Guo CY (郭传友), Huang JQ (黄坚钦), Wang HF (王华芳) (2006). RAPD analysis on genetic diversity of Carya Dabieshanensis populations. Journal of Plant Ecology (Chinese Version)(植物生态学报), 30,534-538. (in Chinese with English abstract) |
[30] | Woeste K, Burns R, Rhodes O, Michler C (2002). Thirty polymorphic nuclear microsatellite loci from black walnut. Journal of Heredity, 93,58-60. |
[31] | Wright S (1951). The genetical structure of populations. Annals of Eugenices, 15,323-354. |
[32] | Wu YM (吴燕民), Liu Y (刘英), Dong FX (董凤祥), Xi SK (奚声珂) (2000a). Study on different ecological types of Chinese walnut ( J.regia) using RAPD markers. Journal of Beijing Forestry University (北京林业大学学报), 22(5),23-27. (in Chinese with English abstract) |
[33] | Wu YM (吴燕民), Pei D (裴东), Xi SK (奚声珂), Li JR (李嘉瑞) (2000b). A study on the genetic relationship among species in Juglans L. using RAPD markers. Acta Horticulturae Sinica (园艺学报), 27,17-22. (in Chinese with English abstract) |
[34] | Xi RT (郗荣庭), Zhang YP (张毅萍) (1992). Chinese Walnut (中国核桃). China Forestry Publishing House, Beijing,111-117. (in Chinese) |
[35] | Yang KQ (杨克强), Wang YJ (王跃进), Zhang YD (张银东), Zheng XQ (郑学勤) (2002). RAPD analysis for the identification of the precocious trait in walnut. Acta Horticulturae Sinica (园艺学报), 29,573-574. (in Chinese with English abstract) |
[36] | Yang ZX (杨自湘), Xi SK (奚声珂) (1989). A study on isozymes of peroxidase of 10 species in Juglans L.. Acta Phytotaxonomica Sinica (植物分类学报), 27,53-57. (in Chinese with English abstract) |
[37] | Zhang FM (张富民), Ge S (葛颂) (2002). Data analysis in population genetics. I. Analysis of RAPD data with AMOVA. Biodiversity Science (生物多样性), 10,438-444. (in Chinese with English abstract) |
[38] | Zhang RQ (张日清), He F (何方), Lv FD (吕芳德), Li B (栗彬) (2001). Population genetic analysis by randomly amplified polymorphic DNA markers in Pecan. Economic Forest Researches (经济林研究), 19(2),1-4. (in Chinese with English abstract) |
[39] | Zhao AJ (赵安玖), Xiao QW (肖千文), Hu TX (胡庭兴) (2004). Ecological quality regionalization of walnut in Sichuan Province. Economic Forest Researches (经济林研究), 22(2),1-4. (in Chinese with English abstract) |
[40] | Zhou LD (周连第), Lan YP (兰彦平), Han ZH (韩振海) (2006). Study on heritance diversity of Chinese chestnut ( Castanea mollissima) variety resources at molecular level. Acta Agriculturae Boreali-Sinica(华北农学报), 21(3),81-85. (in Chinese with English abstract) |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[3] | 王雨婷, 刘旭婧, 唐驰飞, 陈玮钰, 王美娟, 向松竹, 刘梅, 杨林森, 傅强, 晏召贵, 孟红杰. 神农架极小种群植物庙台槭群落特征及种群动态[J]. 植物生态学报, 2024, 48(1): 80-91. |
[4] | 王燕玲, 招礼军, 朱栗琼, 莫若果, 林婷, 赵小雨. 广西天然红鳞蒲桃种群幼苗数量特征及动态分析[J]. 植物生态学报, 2023, 47(9): 1278-1286. |
[5] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[6] | 管岳, 王妍欣, 褚佳瑶, 冯琳骄, 宋晓萌, 周龙. 新疆野扁桃种群年龄结构及动态分析[J]. 植物生态学报, 2023, 47(7): 967-977. |
[7] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[8] | 杨玲, 梁思琪, 潘佳明, 韦金鑫, 丁涛, 蒋日红, 邵毅贞, 张宪春, 刘勇波, 向巧萍. 濒危植物百山祖冷杉和资源冷杉的物种划分及其遗传资源的保护[J]. 植物生态学报, 2023, 47(12): 1629-1645. |
[9] | 林春惠, 顾惠怡, 叶钦良, 张志坚, 钟智明, 易绮斐. 珍稀濒危植物大苞山茶种群结构与动态特征[J]. 植物生态学报, 2023, 47(12): 1684-1692. |
[10] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[11] | 张宏祥, 闻志彬, 王茜. 新疆野苹果种群遗传结构及其环境适应性[J]. 植物生态学报, 2022, 46(9): 1098-1108. |
[12] | 张金峰, 葛树森, 梁金花, 李俊清. 长白山阔叶红松林红松种群年龄结构与数量动态特征[J]. 植物生态学报, 2022, 46(6): 667-677. |
[13] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[14] | 陈天翌, 娄安如. 青藏高原东侧白桦种群的遗传多样性与遗传结构[J]. 植物生态学报, 2022, 46(5): 561-568. |
[15] | 叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响[J]. 植物生态学报, 2020, 44(9): 951-961. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19