植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1356-1361.DOI: 10.3773/j.issn.1005-264x.2008.06.016
收稿日期:
2007-09-30
接受日期:
2008-02-27
出版日期:
2008-09-30
发布日期:
2008-11-30
通讯作者:
叶子飘
作者简介:
*(yezp@jgsu.edu.cn)基金资助:
Received:
2007-09-30
Accepted:
2008-02-27
Online:
2008-09-30
Published:
2008-11-30
Contact:
YE Zi-Piao
摘要:
用美国Li-Cor公司生产的Li-6400光合作用测定仪控制CO2浓度和温度, 测量了华北平原冬小麦(Triticum aestivum)的光响应数据。分别用C3植物光响应新模型、直角双曲线模型、非直角双曲线模型和Prado-Moraes模型拟合这些实测数据, 分析了由直角双曲线模型、非直角双曲线模型和Prado-Moraes模型拟合这些数据得到的最大净光合速率(The maximum net photosynthetic rate)远大于实测值, 而光饱和点(Light saturation point)远小于实测值的原因。结果表明, 由C3植物光响应新模型拟合的结果与实测数据符合程度最高(R2=0.999 4和R2=0.998 7); 表观量子效率(Apparent quantum yield)不是一个理想的表示植物利用光能的指标, 建议用植物光响应曲线在光补偿点处的量子效率作为表示植物光能利用的指标。
叶子飘, 于强. 光合作用光响应模型的比较. 植物生态学报, 2008, 32(6): 1356-1361. DOI: 10.3773/j.issn.1005-264x.2008.06.016
YE Zi-Piao, YU Qiang. COMPARISON OF NEW AND SEVERAL CLASSICAL MODELS OF PHOTOSYNTHESIS IN RESPONSE TO IRRADIANCE. Chinese Journal of Plant Ecology, 2008, 32(6): 1356-1361. DOI: 10.3773/j.issn.1005-264x.2008.06.016
图1 不同气温条件下冬小麦的光响应曲线 Pn: 净光合速率 Net photosynthetic rate PAR: Photosynthetically active radiation Ta: 气温 Air temperature Ca: 气室的CO2浓度 Chamber CO2 concentration φ c: 在光补偿点的量子效率 Quantum yield at light compensation point Pmax: 最大净光合速率 Maximum net photosynthetic rate Isat: 光饱和点 Light saturation point Ic: 光补偿点 Light compensation point Rd: 暗呼吸速率 Dark respiration rate R2: 决定系数 Determination coefficient
Fig. 1 Light response curve of winter wheat (Triticum aestivum) under different temperatures
光合参数 Photosynthetic parameters | 非直角双曲线模型 Nonrectangular hyperbola model | 直角双曲线模型 Rectangular hyperbola model | P-M模型 Prado-Moraes model | C3植物光响应模型 New photosynthetic model for C3 species | 测量值 Measured data |
---|---|---|---|---|---|
最大净光合速率 Maximum net photosynthetic rate (Pmax, μmol CO 2·m-2·s-1) | 51.56 | 31.27 | 24.32 | 22.85 | ≈23 |
初始斜率 Initial slope (α) | 0.103 | 0.084 | 0.060 | 0.067 | - |
光补偿点 Light compensation point (Ic, μmol·m -2·s-1) | 11.81 | 30.60 | 5.52 | 28.47 | ≈29 |
光饱和点 Light saturation point (Isat, μmol·m -2·s-1) | ≈1 220 | ≈750 | 1 243.08 | 1 910.56 | ≈1 900 |
暗呼吸速率 Dark respiration rate (Rd, μmol CO 2·m-2·s-1) | -1.21 | -2.57 | -1.243 | -1.81 | -1.8 |
决定系数 Determination coefficient (R2) | - | 0.997 0 | 0.999 1 | 0.999 4 | - |
表1 4个光响应模型拟合冬小麦在20℃和360 μmol·mol-1 CO2时光响应数据所得结果与实测数据的比较
Table 1 Comparison of the measured data of winter wheat (Triticum aestivum) with the results fitted by four models at 20℃ and 360 μmol·mol-1 CO2 concentration
光合参数 Photosynthetic parameters | 非直角双曲线模型 Nonrectangular hyperbola model | 直角双曲线模型 Rectangular hyperbola model | P-M模型 Prado-Moraes model | C3植物光响应模型 New photosynthetic model for C3 species | 测量值 Measured data |
---|---|---|---|---|---|
最大净光合速率 Maximum net photosynthetic rate (Pmax, μmol CO 2·m-2·s-1) | 51.56 | 31.27 | 24.32 | 22.85 | ≈23 |
初始斜率 Initial slope (α) | 0.103 | 0.084 | 0.060 | 0.067 | - |
光补偿点 Light compensation point (Ic, μmol·m -2·s-1) | 11.81 | 30.60 | 5.52 | 28.47 | ≈29 |
光饱和点 Light saturation point (Isat, μmol·m -2·s-1) | ≈1 220 | ≈750 | 1 243.08 | 1 910.56 | ≈1 900 |
暗呼吸速率 Dark respiration rate (Rd, μmol CO 2·m-2·s-1) | -1.21 | -2.57 | -1.243 | -1.81 | -1.8 |
决定系数 Determination coefficient (R2) | - | 0.997 0 | 0.999 1 | 0.999 4 | - |
图2 冬小麦的光响应曲线(左)和在低光强时的光合响应曲线(右) Pn、PAR: 见图1 See Fig. 1
Fig. 2 Light-response curve of photosynthesis (left) and photosynthetic response to irradiance at lower levels of light intensity (right) for winter wheat
光合有效辐射 Photosynthetically active radiation (PAR, μmol·m -2·s-1) | ≤200 μmol·m-2·s-1 | ≤180 μmol·m-2·s-1 | ≤160 μmol·m-2·s-1 | ≤140 μmol·m-2·s-1 | ≤120 μmol·m-2·s-1 |
---|---|---|---|---|---|
表观量子效率 Apparent quantum yield (AQY) | 0.049 | 0.050 | 0.052 | 0.054 | 0.055 |
光补偿点 Light compensation point ( Ic, μmol·m -2·s-1) | 28.16 | 28.80 | 29.23 | 30.00 | 30.18 |
暗呼吸速率 Dark respiration rate (Rd, μmol·m -2·s-1) | -1.38 | -1.44 | -1.52 | -1.62 | -1.66 |
表2 不同拟合有效光合辐射区间的表观量子效率、光补偿点和暗呼吸速率
Table 2 Apparent quantum yield, light compensation point and dark respiration rate under different fitted scopes of PAR
光合有效辐射 Photosynthetically active radiation (PAR, μmol·m -2·s-1) | ≤200 μmol·m-2·s-1 | ≤180 μmol·m-2·s-1 | ≤160 μmol·m-2·s-1 | ≤140 μmol·m-2·s-1 | ≤120 μmol·m-2·s-1 |
---|---|---|---|---|---|
表观量子效率 Apparent quantum yield (AQY) | 0.049 | 0.050 | 0.052 | 0.054 | 0.055 |
光补偿点 Light compensation point ( Ic, μmol·m -2·s-1) | 28.16 | 28.80 | 29.23 | 30.00 | 30.18 |
暗呼吸速率 Dark respiration rate (Rd, μmol·m -2·s-1) | -1.38 | -1.44 | -1.52 | -1.62 | -1.66 |
[1] | Chen GY (陈根云), Yu GL (俞冠路), Chen Y (陈悦), Xu DQ (许大全) (2006). Exploring the observation methods of photosynthetic responses to light and carbon dioxide. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 32,691-696. (in Chinese with English abstract) |
[2] | Eilers PHC, Peeters JCH (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42,199-215. |
[3] | Evans JG, Jakonbsen I, Ögren E (1993). Photosynthetic light-response curves. 2. Gradients of light absorption and photosynthetic capacity. Planta, 189,191-200. |
[4] | Falkowski PG, Wirick CD (1981). A simulation model of the effects of vertical mixing on primary productivity. Marine Biology, 65,69-75. |
[5] |
Farquhar GD, Caemmerers S, Berry JA (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149,78-90.
DOI URL PMID |
[6] | Fasham MJR, Platt T (1983). Photosynthesis response of phytoplankton to light: a physiological model. Proceedings of the Royal Society of London, Series B: Biological Sciences, 219,355-370. |
[7] | Gao J (高峻), Meng P (孟平), Wu B (吴斌), Zhang JS (张劲松), Chu JM (禇健民) (2006). Photosynthesis and transpiration of Salvia miltiorrhiza in tree-herb system of Prunus dulcis and Salvia miltiorrhiza. Journal of Beijing Forestry University (北京林业大学学报), 28(2),64-67. ( in Chinese with English abstract). |
[8] | Jassby AD, Platt T (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21,540-547. |
[9] | Hand DW, Warren WJW, Acock B (1993). Effects of light and CO 2 on net photosynthetic rates of stands of aubergine and Amaranthus. Annals of Botany, 71,209-216. |
[10] | Kyei-Boahen S, Lada R, Astatkie T, Gordon R, Caldwell C (2003). Photosynthetic response of carrots to varying irradiances. Photosynthetica, 41,1-5. |
[11] |
Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO 2 concentration in the absence of drought. Plant Physiology, 140,779-790.
DOI URL PMID |
[12] | Marshall B, Biscoe PV (1980). A model for C 3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany, 31,29-39. |
[13] | Megard ROD, Tonkyn W, Senft WH (1984). Kinetics of oxygenic photosynthesis in planktonic algae. Journal of Plankton Research, 6,325-337. |
[14] | Olsson T, Leverenz JW (1994). Non-uniform stomata closure and the apparent convexity of the photosynthetic photon flux density response curve. Plant,Cell & Environment, 17,701-710. |
[15] | Prado CHBA, Moraes JAPV (1997). Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition. Photosynthetica, 33,103-112. |
[16] |
Richardson A, Berlyn G (2002). Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting. Tree Physiology, 22,499-506.
DOI URL PMID |
[17] |
Robert ES, Mark A, John SB (1984). Kok effect and the quantum yield of photosynthesis. Plant Physiology, 75,95-101.
URL PMID |
[18] |
Rubio FC, Camacho FG, Sevilla JMF, Chisti Y, Grima EM (2003). A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering, 81,459-473.
DOI URL PMID |
[19] | Thornley JHM (1976). Mathematical Models in Plant Physiology. Academic Press, London, 86-110. |
[20] | Walker DA (1989). Automated measurement of leaf photosynthetic O 2 evolution as a function of photon flux density. Philosophical Transactions of the Royal Society London B, 323,313-326. |
[21] | Webb WL, Newton M, Starr D (1974). Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologica, 17,281-291. |
[22] | Ye ZP (叶子飘) (2007). Application of light-response model in estimating the photosynthesis of super-hybrid rice combinationⅡ—Youming 86. Chinese Journal of Ecology(生态学杂志), 26,1323-1326. (in Chinese with English abstract) |
[23] | Ye ZP (2007). A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45,637-640. |
[24] |
Yu Q, Zhang YQ, Liu YF, Shi PL (2004). Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO 2 changes. Annals of Botany, 93,435-441.
DOI URL PMID |
[25] | Zeng XM (曾小美), Yuan L (袁琳), Shen YG (沈允刚) (2002). Response of photosynthesis to light intensity in intact and detached leaves of Arabidopsis thaliana. Plant Physiology Communications(植物生理学通讯), 38,25-26. (in Chinese with English abstract) |
[26] | Zonneveld C (1998). Photoinhibition as affected by photoacclimation in phytoplankton: a model approach. Journal of Theoretical Biology, 193,115-123. |
[1] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[2] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[3] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[4] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[5] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[6] | 金皖豫, 李铭, 何杨辉, 杜正刚, 邵钧炯, 张国栋, 周灵燕, 周旭辉. 不同施氮水平对冬小麦生长期土壤呼吸的影响[J]. 植物生态学报, 2015, 39(3): 249-257. |
[7] | 黄彩霞, 柴守玺, 赵德明, 康燕霞. 灌溉对干旱区冬小麦干物质积累、分配和产量的影响[J]. 植物生态学报, 2014, 38(12): 1333-1344. |
[8] | 李世莹,冯伟,王永华,王晨阳,郭天财. 宽幅播种带间距对冬小麦冠层特征及产量的影响[J]. 植物生态学报, 2013, 37(8): 758-767. |
[9] | 熊淑萍,张娟娟,杨阳,刘娟,王晓航,吴延鹏,马新明. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析[J]. 植物生态学报, 2013, 37(7): 601-610. |
[10] | 杨斌, 谢甫绨, 温学发, 孙晓敏, 王建林. 华北平原农田土壤蒸发δ18O的日变化特征及其影响因素[J]. 植物生态学报, 2012, 36(6): 539-549. |
[11] | 袁国富, 庄伟, 罗毅. 冬小麦叶片气孔导度模型水分响应函数的参数化[J]. 植物生态学报, 2012, 36(5): 463-470. |
[12] | 朱治林,孙晓敏,赵风华,温学发,唐新斋,袁国富. 鲁西北平原冬小麦田臭氧浓度变化特征及对产量的潜在影响和机理分析[J]. 植物生态学报, 2012, 36(4): 313-323. |
[13] | 陈卫英, 陈真勇, 罗辅燕, 彭正松, 余懋群. 光响应曲线的指数改进模型与常用模型比较[J]. 植物生态学报, 2012, 36(12): 1277-1285. |
[14] | 赵风华, 马军花, 欧阳竹. 过量施氮对冬小麦生产力的影响[J]. 植物生态学报, 2012, 36(10): 1075-1081. |
[15] | 熊淑萍, 王小纯, 李春明, 马新明, 杜少勇, 张营武, 蔺世召. 冬小麦根系时空分布动态及产量对不同氮源配施的响应[J]. 植物生态学报, 2011, 35(7): 759-768. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 7385
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 6626
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La