植物生态学报 ›› 2020, Vol. 44 ›› Issue (9): 951-961.DOI: 10.17521/cjpe.2020.0188
收稿日期:
2020-06-12
接受日期:
2020-08-13
出版日期:
2020-09-20
发布日期:
2020-09-03
通讯作者:
* 叶学华 E-mail: (yexuehua@ibcas.ac.cn ).ORCID:叶学华: 0000-0002-5625-9877基金资助:
YE Xue-Hua1,*(), XUE Jian-Guo1, XIE Xiu-Fang2, HUANG Zhen-Ying1
Received:
2020-06-12
Accepted:
2020-08-13
Online:
2020-09-20
Published:
2020-09-03
Contact:
YE Xue-Hua
Supported by:
摘要:
克隆植物, 特别是游击型克隆植物, 其分株在一定时间段往往通过连接结构(即间隔子)连接在一起形成克隆网络, 基于克隆网络的克隆植物特性显著提高了克隆植物应对外部干扰的能力。长期封育禁牧使得甘草(Glycyrrhiza uralensis)自然种群免受外部干扰, 却并没有促使受破坏的甘草自然种群快速恢复。因为克隆整合、克隆储存及克隆分株的选择性放置等克隆植物特性的存在, 适度的外部干扰有利于根茎型克隆植物甘草的生长与繁衍。但外部干扰与克隆植物特性在甘草种群恢复中的作用及其机理目前并不清楚。该研究以甘草自然种群为研究对象, 通过野外控制实验进行模拟动物采食和人工采挖干扰, 探讨不同程度干扰对甘草自然种群生长和主要药用成分含量的影响。结果表明在中度放牧采食干扰或者人工采挖干扰下, 甘草自然种群的分株密度、高度和地上生物量与对照相比均没有显著差异, 甘草表现出等补偿生长; 而在不同类型的重度干扰下, 甘草产生的响应不一致。重度放牧采食干扰下甘草表现出欠补偿生长, 而重度人工采挖干扰下甘草表现出超补偿生长。克隆植物特性在甘草应对外部干扰过程中发挥着重要作用。外部干扰一定程度上提高了甘草中甘草苷和甘草酸的含量, 从而提升了药材的品质。进一步的研究应该关注于甘草自然种群与环境因子之间的关系, 解析甘草自然种群退化的原因, 提出相应的复壮技术, 探讨可持续利用的管理模式。
叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响. 植物生态学报, 2020, 44(9): 951-961. DOI: 10.17521/cjpe.2020.0188
YE Xue-Hua, XUE Jian-Guo, XIE Xiu-Fang, HUANG Zhen-Ying. Effects of different disturbances on plant growth and content of main medicinal ingredients of rhizomatous clonal plant Glycyrrhiza uralensis in a natural population. Chinese Journal of Plant Ecology, 2020, 44(9): 951-961. DOI: 10.17521/cjpe.2020.0188
图1 模拟动物采食和人工采挖甘草实验处理。
Fig. 1 Experiments with both clipping (simulated grazing disturbance) and ramet digging out (simulated human excavation disturbance) treatments of Glycyrrhiza uralensis.
性状 Trait | 刈割 Clipping | 挖除 Digging | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
植物生长 Plant growth | ||||||
分株高度 Height of ramets | 2, 89 | 8.513 | <0.001 | 2, 89 | 3.823 | 0.026 |
分株冠幅 Canopy of ramets | 2, 89 | 3.113 | 0.049 | 2, 89 | 3.896 | 0.024 |
分株密度 Density of ramets | 2, 17 | 5.051 | 0.021 | 2, 17 | 2.499 | 0.116 |
主根长 Taproot length | 2, 17 | 0.296 | 0.748 | 2, 17 | 0.012 | 0.988 |
芦头直径 Diameter of reed head | 2, 17 | 1.425 | 0.271 | 2, 17 | 1.806 | 0.198 |
分株生物量 Biomass of single ramet | ||||||
地上生物量 Shoot biomass | 2, 17 | 2.241 | 0.141 | 2, 17 | 3.867 | 0.044 |
主根生物量 Root biomass | 2, 17 | 0.046 | 0.956 | 2, 17 | 0.672 | 0.525 |
主根药用成分含量 Medicinal ingredients | ||||||
甘草苷含量 Liquritin content | 2, 17 | 1.613 | 0.252 | 2, 17 | 2.964 | 0.103 |
甘草酸含量 Glycyrrhizic acid content | 2, 17 | 1.722 | 0.233 | 2, 17 | 2.040 | 0.186 |
表1 刈割和挖除干扰对甘草生长及其主要药用成分的影响
Table 1 Effects of clipping and digging treatments on plant growth and content of main medicinal ingredients in the taproots of Glycyrrhiza uralensis
性状 Trait | 刈割 Clipping | 挖除 Digging | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
植物生长 Plant growth | ||||||
分株高度 Height of ramets | 2, 89 | 8.513 | <0.001 | 2, 89 | 3.823 | 0.026 |
分株冠幅 Canopy of ramets | 2, 89 | 3.113 | 0.049 | 2, 89 | 3.896 | 0.024 |
分株密度 Density of ramets | 2, 17 | 5.051 | 0.021 | 2, 17 | 2.499 | 0.116 |
主根长 Taproot length | 2, 17 | 0.296 | 0.748 | 2, 17 | 0.012 | 0.988 |
芦头直径 Diameter of reed head | 2, 17 | 1.425 | 0.271 | 2, 17 | 1.806 | 0.198 |
分株生物量 Biomass of single ramet | ||||||
地上生物量 Shoot biomass | 2, 17 | 2.241 | 0.141 | 2, 17 | 3.867 | 0.044 |
主根生物量 Root biomass | 2, 17 | 0.046 | 0.956 | 2, 17 | 0.672 | 0.525 |
主根药用成分含量 Medicinal ingredients | ||||||
甘草苷含量 Liquritin content | 2, 17 | 1.613 | 0.252 | 2, 17 | 2.964 | 0.103 |
甘草酸含量 Glycyrrhizic acid content | 2, 17 | 1.722 | 0.233 | 2, 17 | 2.040 | 0.186 |
图2 不同处理下甘草分株地上生物量(A、B)和主根生物量(C、D)(平均值±标准误差)。不同小写字母表示处理之间差异显著(p < 0.05)。
Fig. 2 Shoot (A, B) and taproot biomass (C, D) of individual ramets of Glycyrrhiza uralensis under different experimental treatments (mean ± SE). Different lowercase letters represent significant differences between different treatments (p < 0.05).
图3 不同处理下甘草分株密度(A、B)、分株高度(C、D)、分株冠幅(E、F)和主根长度(G、H)(平均值±标准误差)。不同小写字母表示处理之间差异显著(p < 0.05)。
Fig. 3 Ramet density (A, B), ramet height (C, D), ramet canopy (E, F) and taproot length (G, H) in Glycyrrhiza uralensis under different experimental treatments (mean ± SE). Different lowercase letters represent significant differences between different treatments (p < 0.05).
图4 不同处理下甘草主根甘草苷含量(A、B)和甘草酸含量(C、D)(平均值±标准误差)。不同小写字母表示处理之间差异显著(p < 0.05)。
Fig. 4 The content of liquritin (A, B) and glycyrrhizic acid (C, D) of taproot in Glycyrrhiza uralensis under different experimental treatments (mean ± SE). Different lowercase letters represent significant differences between different treatments (p < 0.05).
[1] | Adler PB, HilleRisLambers J ( 2008). The influence of climate and species composition on the population dynamics of ten prairie forbs. Ecology, 89, 3049-3060. |
[2] | Alpert P ( 1999). Clonal integration in Fragaria chiloensis differs between populations: ramets from grassland are selfish. Oecologia, 120, 69-76. |
[3] | Altesor A, Leoni E, Guido A, Paruelo JM ( 2017). Differential responses of three grasses to defoliation, water and light availability. Plant Ecology, 218, 95-104. |
[4] | Bach CE ( 2000). Effects of clonal integration on response to sand burial and defoliation by the dune plantIpomoea pes-caprae( Convolvulaceae). Australian Journal of Botany, 48, 159-166. |
[5] | Beyschlag W, Wittland M, Jentsch A, Steinlein T ( 2008). Soil crusts and disturbance benefit plant germination, establishhment and growth on nutrient deficient sand. Basic and Applied Ecology, 9, 243-252. |
[6] | Bullock JM, Mortimer AM, Begon M ( 1994). Physiological integration among tillers of Holcus lanatus: age-dependence and responses to clipping and competition. New Phytologist, 128, 737-747. |
[7] | Chao MX, Ye BP ( 2013). Influence of environmental abiotic factors on plant secondary metabolite biosynthesis. Pharmaceutical Biotechnology, 20, 365-368. |
[ 巢牡香, 叶波平 ( 2013). 环境非生物因子对植物次生代谢产物合成的影响. 药物生物技术, 20, 365-368.] | |
[8] | Chen D, Ali A, Yong XH, Lin CG, Niu XH, Cai AM, Dong BC, Zhou ZX, Wang YJ, Yu FH ( 2019). A multi-species comparison of selective placement patterns of ramets in invasive alien and native clonal plants to light, soil nutrient and water heterogeneity. Science of the Total Environment, 657, 1568-1577. |
[9] | Chang CC, Halpern CB, Antos JA, Avolio ML, Biswas A, Cook JE, del Moral R, Fischer DG, Holz A, Pabst RJ, Swanson ME, Zobel DB ( 2019). Testing conceptual models of early plant succession across a disturbance gradient. Journal of Ecology, 107, 517-530. |
[10] | Charpentier A, Stuefer JF ( 1999). Functional specialization of ramets in Scirpus maritimus—Splitting the tasks of sexual reproduction, vegetative growth, and resource storage. Plant Ecology, 141, 129-136. |
[11] | Cheplick GP ( 2017). Responses of native plant populations on an unprotected beach to disturbance by storm-induced overwash events. Plant Ecology, 218, 105-118. |
[12] | Chinese Pharmacopoeia Commission (2015). Pharmacopoeia of China. China Medical Science and Technology Press, Beijing. |
[ 国家药典委员会(2015). 中华人民共和国药典. 中国医院科技出版社, 北京.] | |
[13] | de Kroon H, van Groenendael J ( 1997). The Ecology and Evolution of Clonal Plants. Backhuys Publishers,Leiden. |
[14] | Dong BC, Yu GL, Guo W, Zhang MX, Dong M, Yu FH ( 2010). How internode length, position and presence of leaves affect survival and growth of Alternanthera philoxeroides after fragmentation? Evolutionary Ecology, 24, 1447-1461. |
[15] | Dong M (2001). Clonal Plant Ecology. Science Press, Beijing. |
[ 董鸣 (2001). 克隆植物生态学. 科学出版社, 北京.] | |
[16] | Dong M, Alaten B ( 1999). Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grass Psammochloa villosa in an Inner Mongolian dune, China. Plant Ecology, 141, 53-58. |
[17] | Editorial Committee of Flora of China, the Chinese Academic of Science ( 1998). Flora of China: Volume 42(2). Science Press, Beijing. |
[ 中国科学院中国植物志编辑委员会(1998). 中国植物志, 第四十二卷第二分册. 科学出版社, 北京.] | |
[18] | Ferraro DO, Oesterheld M ( 2002). Effect of defoliation on grass growth. A quantitative review. Oikos, 98, 125-133. |
[19] | Franklin DC, Prior LD, Hogarth NJ, McMahon CR ( 2010). Bamboo, fire and flood: consequences of disturbance for the vegetative growth of a clumping, clonal plant. Plant Ecology, 208, 319-332. |
[20] | Grogan P, Zamin TJ ( 2018). Growth responses of the common arctic graminoid Eriophorum vaginatum to simulated grazing are independent of soil nitrogen availability. Oecologia, 186, 151-162. |
[21] | Herben T, Klimesova J, Chytrý M ( 2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 32, 799-808. |
[22] | Hicks S, Turkington R ( 2000). Compensatory growth of three herbaceous perennial species: the effects of clipping and nutrient availability. Canadian Journal of Botany, 78, 759-767. |
[23] | Holzapfel C, Alpert P ( 2003). Root cooperation in a clonal plant: connected strawberries segregate roots. Oecologia, 134, 72-77. |
[24] | Hu JF, Shen FJ ( 1996). A survey of the studies on chemical constituents of Glycyrrhiza. Natural Product Research and Development, 8, 77-91. |
[ 胡金锋, 沈凤嘉 ( 1996). 甘草属植物化学成分研究概况. 天然产物研究与开发, 8, 77-91.] | |
[25] | Huang LQ, Guo LP ( 2007). Secondary metabolites accumulating and geoherbs formation under environmental stress. China Journal of Chinese Materia Medica, 32, 277-280. |
[ 黄璐琦, 郭兰萍 ( 2007). 环境胁迫下次生代谢产物的积累及道地药材的形成. 中国中药杂志, 32, 277-280.] | |
[26] | Huang MJ, Wang WQ, Wei SL ( 2010). Investigation on medicinal plant resources of Glycyrrhiza uralensis in China and chemical assessment of its underground part. China Journal of Chinese Materia Medica, 35, 947-952. |
[ 黄明进, 王文全, 魏胜利 ( 2010). 我国甘草药用植物资源调查及质量评价研究. 中国中药杂志, 35, 947-952.] | |
[27] | Janeček Š, Klimešová J ( 2014). Carbohydrate storage in meadow plants and its depletion after disturbance: Do roots and stem-derived organs differ in their roles? Oecologia, 175, 51-61. |
[28] | Jiang Q, Pan ZB, Zhang QY, Li M ( 2004). Countermeasures of Glycyrrhiza resource protection and sustainable utilization in Ningxia. Resource Development & Market, 20, 128-130. |
[ 蒋齐, 潘占兵, 张清云, 李明 ( 2004). 宁夏甘草资源的保护及可持续利用对策. 资源开发与市场, 20, 128-130.] | |
[29] |
Kumordzi BB, Aubin I, Cardou F, Shipley B, Violle C, Johnstone J, Anand M, Arsenault A, Bell FW, Bergeron Y, Boulangeat I, Brousseau M, de Gradnpré L, Delagrange S, Fenton NJ, Gravel D, Macdonald SE, Hamel B, Higelin M, Hébert F, Isabel N, Mallik A, McIntosh ACS, McLaren JR, Messier C, Morris D, Thiffault N, Tremblay JP, Munson AD ( 2019). Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Functional Ecology, 33, 1771-1784.
DOI URL |
[30] | Li SZ, Pennings SC ( 2017). Timing of disturbance affects biomass and flowering of a saltmarsh plant and attack by stem-boring herbivores. Ecosphere, 8, e01675. DOI: 10.1002/ecs2.1675. |
[31] | Li XB, Chen L, Li GQ, An H ( 2013a). Influence of enclosure on Glyeyrrhiza uralensis community and distribution pattern in arid and semi-arid areas. Acta Ecologica Sinica, 33, 3995-4001. |
[ 李学斌, 陈林, 李国旗, 安慧 ( 2013a). 干旱半干旱地区围栏封育对甘草群落特征及其分布格局的影响. 生态学报, 33, 3995-4001.] | |
[32] | Li XB, Chen L, Li GQ, An H ( 2013b). Ecological distribution and propagative technique research of Glycyrrhiza resources in China. Ecology and Environment, 22, 718-722. |
[ 李学斌, 陈林, 李国旗, 安慧 ( 2013b). 中国甘草资源的生态分布及其繁殖技术研究. 生态环境学报, 22, 718-722.] | |
[33] | Liang B, Yang AF, Huang FL, Hu BZ ( 2006). Research advances on chemical constituents and pharmacological activities in Glycyrrhiza. Journal of Northeast Agricultural University, 37, 115-119. |
[ 梁冰, 杨爱馥, 黄凤兰, 胡宝忠 ( 2006). 甘草属(Glycyrrhiza)化学成分及药理作用研究进展. 东北农业大学学报, 37, 115-119.] | |
[34] | Liu HD, Yu FH, He WM, Chu Y, Dong M ( 2009). Clonal integration improves compensatory growth in heavily grazed ramet populations of two inland-dune grasses. Flora, 204, 298-305. |
[35] | Liu ZR, Cheng J ( 2011). The correlation between the content of liquritin and glycyrrhizin acid in licorice and its growth factores. Xinjiang Journal of Traditional Chinese Medicine, 29, 39-41. |
[ 刘中荣, 陈靖 ( 2011). 甘草中甘草酸、甘草苷的含量与其生长因子的相关性研究. 新疆中医药, 29, 39-41.] | |
[36] | McNaughton SJ ( 1983). Compensatory plant growth as a response to herbivory. Oikos, 40, 329-336. |
[37] | McNaughton SJ ( 1979). Grazing as an optimization process: grass-ungulate relationships in the Serengeti. The American Naturalist, 113, 691-703. |
[38] | Meuriot F, Morvan-Bertrand A, Noiraud-Romy N, Decau ML, Escobar-Gutiérrez AJ, Gastal F, Prud’homme MP ( 2018). Short-term effects of defoliation intensity on sugar remobilization and N fluxes in ryegrass. Journal of Experimental Botany, 69, 3975-3986. |
[39] |
Oborny B, Kun A, Czaran T, Bokros S ( 2000). The effect of clonal integration on plant competition for mosaic habitat space. Ecology, 81, 3291-3304.
DOI URL |
[40] | Oyarzabal M, Oesterheld M ( 2009). Phosphorus reserves increase grass regrowth after defoliation. Oecologia, 159, 717-724. |
[41] | Pitelka LF, Ashmun JW (1985). Physiology and integration of ramets in clonal plants//Jackson JBC, Buss LW, Cook RE. Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven. 399-436. |
[42] | Pitelka LF ( 1984). Application of the -3/2 power law to clonal herbs. The American Naturalist, 123, 442-449. |
[43] | Qin RR, Wang XL ( 2020). Effects of crown height on the compensatory growth of Italian ryegrass based on combined effects of stored organic matter and cytokinin. Grassland Science, 66, 29-39. |
[44] | Ren HY, Taube FH, Stein CD, Zhang YJ, Bai YF, Hu SJ ( 2018). Grazing weakens temporal stabilizing effects of diversity in the Eurasian steppe. Ecology and Evolution, 8, 231-241. |
[45] | Reusch TBH ( 2006). Does disturbance enhance genotypic diversity in clonal organisms? A field test in the marine angiosperm Zostera marina. Molecular Ecology, 15, 277-286. |
[46] | Saixiyala, Yang D, Zhang SD, Liu GF, Yang XJ, Huang ZY, Ye XH ( 2017). Facilitation by a spiny shrub on a rhizomatous clonal herbaceous in thicketization-grassland in Northern China: increased soil resources or shelter from herbivores. Frontiers in Plant Science, 8, 809. DOI: 10.3389/fpls.2017.00809. |
[47] | Shang XH, Yan YN, Wang WQ ( 2010). Effect of exclosure on community structure, yield and quality of Glycyrrhiza uralensis root in G. uralensis community. Journal of Agricultural University of Hebei, 33, 40-44. |
[ 尚辛亥, 阎玉凝, 王文全 ( 2010). 封育年限对甘草群落及甘草产量、质量的影响. 河北农业大学学报, 33, 40-44.] | |
[48] | Suzuki J, Stuefer JF ( 1999). On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology, 14, 11-17. |
[49] | van Staalduinen MA, Anten NPR ( 2005). Differences in the compensatory growth of two co-occurring grass species in relation to water availability. Oecologia, 146, 190-199. |
[50] | van Groenendael JM, de Kroon H ( 1990). Clonal Growth in Plants: Regulation and Function. SPB Academic Publishing, the Hague. |
[51] | Wang JY, Abdullah I, Xu TT, Zhu WY, Gao Y, Wang L ( 2019). Effects of mowing disturbance and competition on spatial expansion of the clonal plant Leymus chinensis into saline-alkali soil patches. Environmental and Experimental Botany, 168, 103890. DOI: 10.1016/j.envexpbot.2019. 103890. |
[52] | Wang YJ, Shi XP, Zhong ZC . ( 2013). The relative importance of sexual reproduction and clonal propagation in rhizomatous herb Iris japonica Thunb. from two habitats of Jinyun Mountain, Southwest China. Russian Journal of Ecology, 44, 199-206. |
[53] | Wang ZW, Li LH, Han XG, Dong M ( 2004). Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level? Acta Oecologica, 26, 255-260. |
[54] | Xie ZC, Chu YK, Zhang WJ, Lang DY, Zhang XH ( 2019). Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environmental and Experimental Botany, 158, 99-106. |
[55] | Yang LL, Chen JJ, Yang TS, Li Z, Hu WM, Wang Y ( 2013). Geographic distribution and resource survey of the wild medicinal plants Licorice ( Glycyrrhiza uralensis) in northwest China. Chinese Wild Plant Resources, 32, 27-31. |
[ 杨路路, 陈建军, 杨天顺, 李重, 胡伟明, 王瑛 ( 2013). 我国西北地区药用植物甘草(Glycyrrhiza uralensis)野生资源的地理分布与调查. 中国野生植物资源, 32, 27-31.] | |
[56] | Yang P, Li KC, Xin J, Yun NQ, Ma GZ, You Q, Zhang ZZ ( 2004). A study on the status and protective utilization of licorice resource in Ningxia. Journal of Ningxia Agricultural College, 25, 17-20. |
[ 杨平, 李克昌, 辛健, 貟宁强, 马广智, 尤其, 张治忠 ( 2004). 宁夏甘草资源现状和保护利用研究. 宁夏农学院学报, 25, 17-20.] | |
[57] | Ye XH, Gao SQ, Liu ZL, Zhang YL, Huang ZY, Dong M ( 2015). Multiple adaptations to light and nutrient heterogeneity in the clonal plant Leymus secalinus with a combined growth form. Flora, 213, 49-56. |
[58] | Ye XH, Hu YK, Liu ZL, Gao SQ, Dong M ( 2013). Water heterogeneity affects water storage in two rhizomatous clonal plants Leymus secalinus and Calamagrostis pseudophragmites. Chinese Journal of Plant Ecology, 37, 427-435. |
[ 叶学华, 胡宇坤, 刘志兰, 高树琴, 董鸣 ( 2013). 水分异质性影响两种根茎型克隆植物赖草和假苇拂子茅的水分存储能力. 植物生态学报, 37, 427-435.] | |
[59] | Yu FH, Dong M, Krusi B ( 2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist, 162, 697-704. |
[60] | Yu FH, Wang N, He WM, Chu Y, Dong M ( 2008). Adaptation of rhizome connections in drylands: increasing tolerance of clones to wind erosion. Annals of Botany, 102, 571-577. |
[61] | Zhang CY, Yang C, Dong M ( 2002). Clonal integration and its ecological significance in Hedysarum laeave, a rhizomatous shrub in Mu Us Sandland. Journal of Plant Research, 115, 113-118. |
[62] | Zhang DM, Zhao WZ, Luo WC ( 2019). Effect of the population density on belowground bud bank of a rhizomatous clonal plant Leymus secalinus in Mu Us sandy land. Journal of Plant Research, 132, 69-80. |
[63] | Zhang SC, Long ZP, Qi GB, Li XY ( 2007). Research on grassland community management—A case study of Yanchi County. Acta Agrestia Sinica, 15, 479-485. |
[ 张树川, 龙治普, 齐顾波, 李小云 ( 2007). 草原社区管理模式研究——以宁夏盐池为例. 草地学报, 15, 479-485.] | |
[64] | Zhu CG, Chen YN, Li WH, Ma XD ( 2014). Effect of herbivory on the growth and photosynthesis of replanted Calligonum caput-medusae saplings in an infertile arid desert. Plant Ecology, 215, 155-167. |
[1] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[2] | 杨丽婷, 谢燕燕, 左珂怡, 徐森, 谷瑞, 陈双林, 郭子武. 分株比例对异质光环境下美丽箬竹克隆系统光合生理的影响[J]. 植物生态学报, 2022, 46(1): 88-101. |
[3] | 秦倩倩, 邱聪, 郑大柽, 刘艳红. 油松人工林火烧迹地早期土壤入渗动态[J]. 植物生态学报, 2021, 45(8): 903-917. |
[4] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[5] | 王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597-609. |
[6] | 黄菊莹, 余海龙, 王丽丽, 马凯博, 康扬眉, 杜雅仙. 不同氮磷比处理对甘草生长与生态化学计量特征的影响[J]. 植物生态学报, 2017, 41(3): 325-336. |
[7] | 李宝, 程雪寒, 吕利新. 西藏朗县地区不同龄级高山松林木径向生长对火干扰的响应[J]. 植物生态学报, 2016, 40(5): 436-446. |
[8] | 李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 2015, 39(4): 322-332. |
[9] | 朱良军, 金光泽, 王晓春. 典型阔叶红松林干扰历史重建及干扰形成机制[J]. 植物生态学报, 2015, 39(2): 125-139. |
[10] | 王意锟, 金爱武, 朱强根, 邱永华, 季新良, 张四海. 施肥对毛竹种群不同年龄分株间胸径大小关系的影响[J]. 植物生态学报, 2014, 38(3): 289-297. |
[11] | 贾呈鑫卓, 李帅锋, 苏建荣, 苏磊. 择伐对思茅松天然林乔木种间与种内关系的影响[J]. 植物生态学报, 2014, 38(12): 1296-1306. |
[12] | 曹萍麟,陆梅,田昆,吕思彤,杨洪昇,姚茜,李丽萍,岳海涛. 纳帕海高原湿地不同干扰强度下土壤真菌的分布格局[J]. 植物生态学报, 2014, 38(11): 1166-1173. |
[13] | 陆嘉惠, 吕新, 梁永超, 林海荣. 新疆胀果甘草幼苗耐盐性及对NaCl胁迫的离子响应[J]. 植物生态学报, 2013, 37(9): 839-850. |
[14] | 魏宇航,周晓波,陈劲松,谌利民,李娇,刘庆. 模拟采食干扰下克隆整合对两种箭竹分株种群更新的影响[J]. 植物生态学报, 2013, 37(8): 699-708. |
[15] | 张敏,潘艳霞,杨洪晓. 山东半岛潮上带沙草地的物种多度格局及其对人为干扰的响应[J]. 植物生态学报, 2013, 37(6): 542-550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19