植物生态学报 ›› 2017, Vol. 41 ›› Issue (3): 325-336.DOI: 10.17521/cjpe.2016.0230
所属专题: 生态化学计量
黄菊莹1,*(), 余海龙2, 王丽丽2, 马凯博2, 康扬眉2, 杜雅仙2
出版日期:
2017-03-10
发布日期:
2017-04-12
通讯作者:
黄菊莹
作者简介:
* 通信作者Author for correspondence (E-mail:
Ju-Ying HUANG1,*(), Hai-Long YU2, Li-Li WANG2, Kai-Bo MA2, Yang-Mei KANG2, Ya-Xian DU2
Online:
2017-03-10
Published:
2017-04-12
Contact:
Ju-Ying HUANG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
大气氮(N)沉降增加加速了生态系统N循环, 导致生态系统磷(P)需求增加。开展不同N:P处理对荒漠草原植物生长和生态化学计量特征影响的研究, 不仅可为预测长期大气N沉降增加条件下植物和土壤的相互作用提供新思路, 而且可为全球变化背景下我国北方草地植被的可持续管理提供科学指导。该文通过2013-2014年针对甘草(Glycyrrhiza uralensis)设立的不同N:P的盆栽控制试验, 研究了不同N:P处理对甘草生物量和碳(C)、N、P化学计量学特征(叶片、根系和土壤)的影响, 比较了C:N:P化学计量学特征在叶片、根系和土壤3个库间的差异和联系, 探讨了土壤C:N:P化学计量比对甘草生长和养分摄取的指示作用。结果显示: N:P的适当减小降低了土壤和甘草(叶片和根系)的C:P和N:P, 提高了甘草地上和地下生物量, 说明适量的P添加提高了土壤P有效性和甘草P摄取能力、促进了甘草生长和生物量积累。但过低的N:P处理(高P添加)使土壤C:P和N:P显著下降, 抑制了甘草对N的摄取, 从而不利于甘草生长; 甘草叶片和根系(尤其叶片) C:N:P化学计量学特征均与土壤C:N:P化学计量学特征存在不同程度的相关性, 意味着土壤C、N、P及其计量关系的改变会直接作用于植物。以上结果表明, 适当的人为P添加可通过调节土壤和植物叶片C:N:P化学计量学特征, 缓解土壤和植物间P的供需压力, 从而减缓长期大气N沉降增加对荒漠草原群落结构的不利影响。
黄菊莹, 余海龙, 王丽丽, 马凯博, 康扬眉, 杜雅仙. 不同氮磷比处理对甘草生长与生态化学计量特征的影响. 植物生态学报, 2017, 41(3): 325-336. DOI: 10.17521/cjpe.2016.0230
Ju-Ying HUANG, Hai-Long YU, Li-Li WANG, Kai-Bo MA, Yang-Mei KANG, Ya-Xian DU. Effects of different nitrogen:phosphorus levels on the growth and ecological stoichiometry of Glycyrrhiza uralensis. Chinese Journal of Plant Ecology, 2017, 41(3): 325-336. DOI: 10.17521/cjpe.2016.0230
土壤有机碳 Soil organic carbon (g·kg-1) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤全磷 Soil total phosphorus (g·kg-1) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | 土壤速效磷 Soil available phosphorus (mg·kg-1) |
---|---|---|---|---|---|
1.8 | 0.2 | 0.3 | 1.2 | 8.3 | 13.8 |
表1 甘草移栽前土壤本底值
Table 1 Basic soil properties before Glycyrrhiza uralensis transplanting
土壤有机碳 Soil organic carbon (g·kg-1) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤全磷 Soil total phosphorus (g·kg-1) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | 土壤速效磷 Soil available phosphorus (mg·kg-1) |
---|---|---|---|---|---|
1.8 | 0.2 | 0.3 | 1.2 | 8.3 | 13.8 |
图1 不同氮(N)磷(P)比处理对甘草生物量和根冠比的影响(平均值±标准误差, n = 5)。N10P1、N10P2、N10P4、N10P8、N10P16和N10P32代表在统一施用10.0 g·m-2·a-1 N的基础上,分别施入1.0、2.0、4.0、8.0、16.0和32.0 g·m-2·a-1的P。不同小写字母表示N:P处理间指标差异显著(p < 0.05), 相同字母表示差异不显著(p > 0.05)。
Fig. 1 Effects of nitrogen (N):phosphorus (P) level on root and aboveground biomass and root/shoot ratio of Glycyrrhiza uralensis (mean ± SE, n = 5). N10P1, N10P2, N10P4, N10P8, N10P16, and N10P32 represent all pots treated with 10.0 g·m-2·a-1 amount of N but with different amounts of P: 1.0, 2.0, 4.0, 8.0, 16.0, and 32.0 g·m-2·a-1, respectively. Different lowercase letters indicate significant difference (p < 0.05) between indices within N:P levels. The same lowercase letters indicate insignificant differences (p > 0.05).
图2 不同氮(N)磷(P)比处理对甘草叶片碳(C)、N、P及其化学计量比的影响(平均值±标准误差, n = 5)。N10P1、N10P2、N10P4、N10P8、N10P16和N10P32代表在统一施用10.0 g·m-2·a-1 N的基础上, 分别施入1.0、2.0、4.0、8.0、16.0和32.0 g·m-2·a-1的P。不同小写字母表示N:P处理间指标差异显著(p < 0.05), 相同字母表示差异不显著(p > 0.05)。
Fig. 2 Effects of nitrogen (N):phosphorus (P) level on leaf carbon (C), N, P and their stoichiometry ratios of Glycyrrhiza uralensis (mean ± SE, n = 5). N10P1, N10P2, N10P4, N10P8, N10P16, and N10P32 represent all pots treated with 10.0 g·m-2·a-1 amount of N but with different amounts of P: 1.0, 2.0, 4.0, 8.0, 16.0, and 32.0 g·m-2·a-1, respectively. Different lowercase letters indicate significant difference (p < 0.05) between indices within N:P levels. The same lowercase letters indicate insignificant difference (p > 0.05).
图3 不同氮(N)磷(P)比处理对甘草根系碳(C)、N、P及其化学计量比的影响(平均值±标准误差, n = 5)。N10P1、N10P2、N10P4、N10P8、N10P16和N10P32代表在统一施用10.0 g·m-2·a-1 N的基础上, 分别施入1.0、2.0、4.0、8.0、16.0和32.0 g·m-2·a-1的P。不同小写字母表示N:P处理间指标差异显著(p < 0.05), 相同字母表示差异不显著(p > 0.05)。
Fig. 3 Effects of nitrogen (N): phosphorus (P) level on root carbon (C), N, P and their stoichiometry ratios of Glycyrrhiza uralensis (mean ± SE, n = 5). N10P1, N10P2, N10P4, N10P8, N10P16, and N10P32 represent all pots were treated with 10.0 g·m-2·a-1 amount of N but with differing amounts of P: 1.0, 2.0, 4.0, 8.0, 16.0, and 32.0 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences (p < 0.05) between indices within N:P levels. The same lowercase letters indicate insignificant differences (p > 0.05).
图4 不同氮(N)磷(P)比处理对土壤碳(C)、N、P含量的影响(平均值±标准误差, n = 5)。N10P1、N10P2、N10P4、N10P8、N10P16和N10P32代表在统一施用10.0 g·m-2·a-1 N的基础上, 分别施入1.0、2.0、4.0、8.0、16.0和32.0 g·m-2·a-1的P。不同小写字母表示N:P处理间指标差异显著(p < 0.05), 相同字母表示差异不显著(p > 0.05)。
Fig. 4 Effects of nitrogen (N):phosphorus (P) level on soil carbon (C), N, and P content (mean ± SE, n = 5). N10P1, N10P2, N10P4, N10P8, N10P16, and N10P32 represent all pots treated with 10.0 g·m-2·a-1 amount of N but with different amounts of P: 1.0, 2.0, 4.0, 8.0, 16.0, and 32.0 g·m-2·a-1, respectively. Different lowercase letters indicate significant difference (p < 0.05) between indices within N:P levels. The same lowercase letters indicate insignificant difference (p > 0.05).
指标 Index | 土壤有机C Soil organic C (g·kg-1) | 土壤全N Soil total N (g·kg-1) | 土壤全P Soil total P (g·kg-1) | 土壤速效P Soil available P (mg·kg-1) | 土壤C:N Csoil:Nsoil | 土壤C:P Csoil:Psoil | 土壤N:P Nsoil:Psoil |
---|---|---|---|---|---|---|---|
地上生物量 Aboveground biomass (g·plant-1) | ns | ns | ns | 0.51* | ns | ns | 0.05 |
地下生物量 Belowground biomass (g·plant-1) | ns | ns | ns | ns | 0.50* | ns | ns |
叶片全C Leaf total C (mg·g-1) | ns | ns | ns | ns | ns | ns | ns |
叶片全N Leaf total N (mg·g-1) | ns | -0.56* | ns | ns | 0.69** | 0.50* | ns |
叶片全P Leaf total P (mg·g-1) | ns | ns | 0.77** | ns | ns | -0.70** | -0.75** |
叶片C:N Cleaf:Nleaf | ns | ns | ns | ns | -0.56* | ns | ns |
叶片C:P Cleaf:Pleaf | ns | ns | -0.63** | ns | ns | 0.58* | 0.64** |
叶片N:P Nleaf:Pleaf | ns | ns | -0.80** | -0.49* | 0.57* | 0.85** | 0.79** |
根系全C Root total C (mg·g-1) | ns | ns | ns | 0.62** | ns | ns | -0.53* |
根系全N Root total N (mg·g-1) | ns | ns | -0.50* | ns | ns | ns | ns |
根系全P Root total P (mg·g-1) | ns | ns | ns | ns | ns | ns | ns |
根系C:N Croot:Nroot | ns | ns | 0.66** | ns | ns | -0.58* | -0.70** |
根系C:P Croot:Proot | ns | ns | ns | ns | ns | ns | ns |
根系N:P Nroot:Proot | ns | ns | -0.57* | ns | ns | 0.65** | 0.67** |
表2 甘草与土壤碳(C)、氮(N)、磷(P)含量及其化学计量比间的相关系数
Table 2 Correlation coefficients between carbon (C), nitrogen (N), phosphorus (P ) and their stoichiometry ratios in Glycyrrhiza uralensis and in soils
指标 Index | 土壤有机C Soil organic C (g·kg-1) | 土壤全N Soil total N (g·kg-1) | 土壤全P Soil total P (g·kg-1) | 土壤速效P Soil available P (mg·kg-1) | 土壤C:N Csoil:Nsoil | 土壤C:P Csoil:Psoil | 土壤N:P Nsoil:Psoil |
---|---|---|---|---|---|---|---|
地上生物量 Aboveground biomass (g·plant-1) | ns | ns | ns | 0.51* | ns | ns | 0.05 |
地下生物量 Belowground biomass (g·plant-1) | ns | ns | ns | ns | 0.50* | ns | ns |
叶片全C Leaf total C (mg·g-1) | ns | ns | ns | ns | ns | ns | ns |
叶片全N Leaf total N (mg·g-1) | ns | -0.56* | ns | ns | 0.69** | 0.50* | ns |
叶片全P Leaf total P (mg·g-1) | ns | ns | 0.77** | ns | ns | -0.70** | -0.75** |
叶片C:N Cleaf:Nleaf | ns | ns | ns | ns | -0.56* | ns | ns |
叶片C:P Cleaf:Pleaf | ns | ns | -0.63** | ns | ns | 0.58* | 0.64** |
叶片N:P Nleaf:Pleaf | ns | ns | -0.80** | -0.49* | 0.57* | 0.85** | 0.79** |
根系全C Root total C (mg·g-1) | ns | ns | ns | 0.62** | ns | ns | -0.53* |
根系全N Root total N (mg·g-1) | ns | ns | -0.50* | ns | ns | ns | ns |
根系全P Root total P (mg·g-1) | ns | ns | ns | ns | ns | ns | ns |
根系C:N Croot:Nroot | ns | ns | 0.66** | ns | ns | -0.58* | -0.70** |
根系C:P Croot:Proot | ns | ns | ns | ns | ns | ns | ns |
根系N:P Nroot:Proot | ns | ns | -0.57* | ns | ns | 0.65** | 0.67** |
指标 Index | 地上生物量 Aboveground biomass (g·plant-1) | 地下生物量 Belowground biomass (g·plant-1) | 总生物量 Total biomass (g·plant-1) | 根冠比 Root/shoot ratio |
---|---|---|---|---|
土壤有机C Soil organic C (g·kg-1) | 0.18 | 0.35 | 0.32 | -0.37 |
土壤全N Soil total N (g·kg-1) | -0.01 | -0.33 | -0.23 | -0.21 |
土壤全P Soil total P (g·kg-1) | -0.27 | -0.39 | -0.39 | 0.01 |
土壤速效P Soil available P (mg·kg-1) | 0.51* | 0.18 | 0.35 | -0.05 |
土壤C:N Csoil:Nsoil | 0.12 | 0.50* | 0.40 | 0.04 |
土壤C:P Csoil:Psoil | -0.00 | 0.19 | 0.13 | 0.18 |
土壤N:P Nsoil:Psoil | 0.05 | 0.07 | 0.07 | 0.13 |
叶片全C Leaf total C (mg·g-1) | 0.07 | -0.08 | -0.03 | -0.33 |
叶片全N Leaf total N (mg·g-1) | 0.25 | 0.35 | 0.35 | -0.27 |
叶片全P Leaf total P (mg·g-1) | -0.07 | -0.31 | -0.25 | -0.25 |
叶片C:N Cleaf:Nleaf | -0.18 | -0.21 | -0.22 | 0.27 |
叶片C:P Cleaf:Pleaf | 0.02 | 0.22 | 0.16 | 0.41 |
叶片N:P Nleaf:Pleaf | 0.07 | 0.29 | 0.23 | 0.15 |
根系全C Root total C (mg·g-1) | 0.39 | 0.39 | 0.44 | -0.68 |
根系全N Root total N (mg·g-1) | 0.49* | 0.21 | 0.36 | -0.58 |
根系全P Root total P (mg·g-1) | 0.43 | 0.19 | 0.32 | -0.55 |
根系C:N Croot:Nroot | -0.22 | -0.03 | -0.12 | 0.10 |
根系C:P Croot:Proot | -0.29 | -0.05 | -0.17 | 0.39 |
根系N:P Nroot:Proot | -0.07 | -0.04 | -0.06 | 0.18 |
表3 碳(C):氮(N):磷(P)化学计量学特征与甘草生物量和根冠比的相关系数
Table 3 Correlation coefficients between carbon (C):nitrogen (N):phosphorus (P) ecological stoichiometry and the biomass or root/shoot ratio of Glycyrrhiza uralensis
指标 Index | 地上生物量 Aboveground biomass (g·plant-1) | 地下生物量 Belowground biomass (g·plant-1) | 总生物量 Total biomass (g·plant-1) | 根冠比 Root/shoot ratio |
---|---|---|---|---|
土壤有机C Soil organic C (g·kg-1) | 0.18 | 0.35 | 0.32 | -0.37 |
土壤全N Soil total N (g·kg-1) | -0.01 | -0.33 | -0.23 | -0.21 |
土壤全P Soil total P (g·kg-1) | -0.27 | -0.39 | -0.39 | 0.01 |
土壤速效P Soil available P (mg·kg-1) | 0.51* | 0.18 | 0.35 | -0.05 |
土壤C:N Csoil:Nsoil | 0.12 | 0.50* | 0.40 | 0.04 |
土壤C:P Csoil:Psoil | -0.00 | 0.19 | 0.13 | 0.18 |
土壤N:P Nsoil:Psoil | 0.05 | 0.07 | 0.07 | 0.13 |
叶片全C Leaf total C (mg·g-1) | 0.07 | -0.08 | -0.03 | -0.33 |
叶片全N Leaf total N (mg·g-1) | 0.25 | 0.35 | 0.35 | -0.27 |
叶片全P Leaf total P (mg·g-1) | -0.07 | -0.31 | -0.25 | -0.25 |
叶片C:N Cleaf:Nleaf | -0.18 | -0.21 | -0.22 | 0.27 |
叶片C:P Cleaf:Pleaf | 0.02 | 0.22 | 0.16 | 0.41 |
叶片N:P Nleaf:Pleaf | 0.07 | 0.29 | 0.23 | 0.15 |
根系全C Root total C (mg·g-1) | 0.39 | 0.39 | 0.44 | -0.68 |
根系全N Root total N (mg·g-1) | 0.49* | 0.21 | 0.36 | -0.58 |
根系全P Root total P (mg·g-1) | 0.43 | 0.19 | 0.32 | -0.55 |
根系C:N Croot:Nroot | -0.22 | -0.03 | -0.12 | 0.10 |
根系C:P Croot:Proot | -0.29 | -0.05 | -0.17 | 0.39 |
根系N:P Nroot:Proot | -0.07 | -0.04 | -0.06 | 0.18 |
图5 不同氮(N)磷(P)比处理对土壤碳(C):N:P化学计量比的影响(平均值±标准误差, n = 5)。N10P1、N10P2、N10P4、N10P8、N10P16和N10P32代表在统一施用10.0 g·m-2·a-1 N的基础上, 分别施入1.0、2.0、4.0、8.0、16.0和32.0 g·m-2·a-1的P。不同小写字母表示N:P处理间指标差异显著(p < 0.05), 相同字母表示差异不显著(p > 0.05)。
Fig. 5 Effects of nitrogen (N): phosphorus (P) level on soil carbon (C) :N:P stoichiometry ratio (mean ± SE, n = 5). N10P1, N10P2, N10P4, N10P8, N10P16, and N10P32 represent all pots treated with 10.0 g·m-2·a-1 amount of N but with different amounts of P: 1.0, 2.0, 4.0, 8.0, 16.0, and 32.0 g·m-2·a-1, respectively. Different lowercase letters indicate significant difference (p < 0.05) between indices within N:P levels. The same lowercase letters indicate insignificant difference (p > 0.05).
[1] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. (in Chinese).[鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京.] |
[2] | Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30-59. |
[3] | Chen FS, Hu XF, Ge G (2007). Leaf N:P stoichiometry and nutrient resorption efficiency of Ophiopogon japonicus in Nanchang City. Acta Prataculturae Sinica, 16(4), 47-54. (in Chinese with English abstract)[陈伏生, 胡小飞, 葛刚 (2007). 城市地被植物麦冬叶片氮磷和养分再吸收效率. 草业学报, 16(4), 47-54.] |
[4] | Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715. |
[5] | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[6] | Crews TE, Farrington H, Vitousek PM (2000). Changes in a symbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii. Ecosystems, 3, 386-395. |
[7] | Cross AF, Schlesinger WH (2001). Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry, 52, 155-172. |
[8] | Crous JW, Morris AR, Scholes MC (2008). Growth and foliar nutrient response to recent applications of phosphorus (P) and potassium (K) and to residual P and K fertiliser applied to the previous rotation of Pinus patula at Usutu, Swaziland. Forest Ecology Management, 256, 712-721. |
[9] | Delgado-Baquerizo M, Maestre FT, Gallardol A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García- Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceicão AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672-676. |
[10] | Duan L, Hao JM, Xie SD, Zhou ZP (2002). Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method. Journal of Environmental Science, 23(2), 7-12. (in Chinese with English abstract).[段雷, 郝吉明, 谢绍东, 周中平 (2002). 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷. 环境科学, 23(2), 7-12.] |
[11] | Fritz C, van Dijk G, Smolders AJP, Pancotto VA, Elzenga TJTM, Roelofs JGM, Grootjans AP (2012). Nutrient additions in pristine Patagonian Sphagnum bog vegetation: Can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biology, 14, 491-499. |
[12] | Guo ZW, Chen SL, Yang QP, Li YC (2012). Responses of N and P stoichiometry on mulching management in the stand of Phyllostachys praecox. Acta Ecologica Sinica, 32, 6361-6368. (in Chinese with English abstract)[郭子武, 陈双林, 杨清平, 李迎春 (2012). 雷竹林土壤和叶片N、P化学计量特征对林地覆盖的响应. 生态学报, 32, 6361-6368.] |
[13] | Güsewell S (2005). Responses of wetland graminoids to the relative supply of nitrogen and phosphorus. Plant Ecology, 176, 35-55. |
[14] | He LY, Hu ZM, Guo Q, Li SG, Bai WM, Li LH (2015). Influence of nitrogen and phosphorus addition on the aboveground biomass in Inner Mongolia temperate steppe, China. Chinese Journal of Applied Ecology, 26, 2291-2297. (in Chinese with English abstract)[何利元, 胡中民, 郭群, 李胜功, 白文明, 李凌浩 (2015). 氮磷添加对内蒙古温带草地地上生物量的影响. 应用生态学报, 26, 2291-2297.] |
[15] | Huang JY, Yu HL (2016). Responses of growth of four desert species to different N addition levels. Chinese Journal of Plant Ecology, 40, 165-176. (in Chinese with English abstract)[黄菊莹, 余海龙 (2016). 4个荒漠草原物种的生长对不同氮添加水平的响应. 植物生态学报, 40, 165-176.] |
[16] | Huang JY, Yu HL, Lin H, Zhang Y, Searle EB, Yuan ZY (2016). Phosphorus amendment mitigates nitrogen addition-induced phosphorus limitation in two plant species in a desert steppe, China. Plant and Soil, 399, 221-232. |
[17] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[18] | Jones AG, Power SA (2012). Field-scale evaluation of effects of nitrogen deposition on the functioning of heathland ecosystems. Journal of Ecology, 100, 331-342. |
[19] | Li XB, Chen L, LI GQ, An H (2013). Influence of enclosure on Glyeyrrhiza uralensis community and distribution pattern in arid and semi-arid areas. Acta Ecologica Sinica, 33, 3995-4001. (in Chinese with English abstract)[李学斌, 陈林, 李国旗, 安慧 (2013). 干旱半干旱地区围栏封育对甘草群落特征及其分布格局的影响. 生态学报, 33, 3995-4001.] |
[20] | Li XB, Zhao ZF, Chen L, An H, Li GQ, Liu BR (2012). The status and countermeasures of development on licorices industry of Ningxia. Ecological Economy, 12, 132-135. (in Chinese with English abstract)[李学斌, 赵志锋, 陈林, 安慧, 李国旗, 刘秉儒 (2012). 宁夏甘草产业发展现状及对策研究. 生态经济, 12, 132-135.] |
[21] | Liu C, Wang Y, Wang N, Wang GX (2012). Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: A review. Chinese Journal of Plant Ecology, 36, 1205-1216. (in Chinese with English abstract)[刘超, 王洋, 王楠, 王根轩 (2012). 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 36, 1205-1216.] |
[22] | Liu P, Huang JH, Sun OJX (2010). Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 162, 771-780. |
[23] | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462. |
[24] | Liu Y, Zhang J, Chen YM, Chen L, Liu Q (2013). Effect of nitrogen and phosphorus fertilization on biomass allocation and C:N:P stoichiometric characteristics of Eucalyptus grandis seedlings. Chinese Journal of Plant Ecology, 37, 933-941. (in Chinese with English abstract)[刘洋, 张健, 陈亚梅, 陈磊, 刘强 (2013). 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响. 植物生态学报, 37, 933-941.] |
[25] | Mayor JR, Wright SJ, Turner BL (2014). Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102, 36-44. |
[26] | Naples BK, Fisk MC (2010). Belowground insights into nutrient limitation in northern hardwood forests. Biogeochemistry, 97, 109-121. |
[27] | Phoenix GK, Booth RE, Leake JR, Read DJ, Grime JP, Lee JA (2004). Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytologist, 161, 279-289. |
[28] | Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008). Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an Ombrotrophic Bog. Plant Ecology, 196, 111-121. |
[29] | Shi XM, Qi JH, Song L, Liu WY, Huang JB, Li S, Lu HZ, Chen X (2015). C, N and P stoichiometry of two dominant seedlings and their responses to nitrogen additions in the montane moist evergreen broad-leaved forest in Ailao Mountains, Yunnan. Chinese Journal of Plant Ecology, 39, 962-970. (in Chinese with English abstract)[石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦 (2015). 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应. 植物生态学报, 39, 962-970.] |
[30] | Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151. |
[31] | Wardle DA, Gundale MJ, Jaderlund A, Nilsson MC (2013). Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology, 94, 904-919. |
[32] | Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166. (in Chinese with English abstract)[杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.] |
[33] | Yang YH, Fang JY, Ji CJ, Datta A, Li P, Ma WH, Mohammat A, Shen HH, Hu HF, Knapp BO, Smith P (2014). Stoichiometric shifts in surface soils over broad geographical scales: Evidence from China’s grasslands. Global Ecology and Biogeography, 23, 947-955. |
[34] | Yu Q, Wu HH, He NP, Lü XT, Wang ZP, Elser JJ, Wu JG, Han XG (2012). Testing the growth-rate hypothesis in vascular plants with above- and below-ground biomass. PLOS ONE, 7, e32162. doi: 10.1371/journal.pone.0032162. |
[35] | Yuan ZY, Chen HYH (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5, 465-469. |
[36] | Zhao YF, Xu FL, Wang WL, Wang LL, Wang GX, Sun PY, Bai XF (2014). Seasonal variation in contents of C, N and P and stoichiometry characteristics in fine roots, stems and needles of Larix principis-rupprechtii. Chinese Bulletin of Botany, 49, 560-568. (in Chinese with English abstract)[赵亚芳, 徐福利, 王渭玲, 王玲玲, 王国兴, 孙鹏跃, 白小芳 (2014). 华北落叶松根茎叶碳氮磷含量及其化学计量学特征的季节变化. 植物学报, 49 , 560-568.] |
[37] | Zhu FF, Yoh M, Gilliam FS, Lu XK, Mo JM (2013). Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: Insights from fine root responses to nutrient additions. PLOS ONE, 8, e82661. doi:10.1371/journal.pone.0082661. |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[4] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[5] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[6] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[7] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[8] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[9] | 叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响[J]. 植物生态学报, 2020, 44(9): 951-961. |
[10] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[11] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[12] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[13] | 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响[J]. 植物生态学报, 2019, 43(5): 427-436. |
[14] | 曹登超, 高霄鹏, 李磊, 桂东伟, 曾凡江, 匡文浓, 尹明远, 李言言, 艾力•甫拉提. 氮磷添加对昆仑山北坡高山草地N2O排放的影响[J]. 植物生态学报, 2019, 43(2): 165-173. |
[15] | 冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响[J]. 植物生态学报, 2019, 43(11): 1010-1020. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19