植物生态学报 ›› 2017, Vol. 41 ›› Issue (3): 311-324.DOI: 10.17521/cjpe.2016.0267
王雪梅1,2, 闫帮国1,2,3, 赵广1,2, 史亮涛3, 刘刚才1, 方海东3,*()
出版日期:
2017-03-10
发布日期:
2017-04-12
通讯作者:
方海东
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Xue-Mei WANG1,2, Bang-Guo YAN1,2,3, Guang ZHAO1,2, Liang-Tao SHI3, Gang-Cai LIU1, Hai-Dong FANG3,*()
Online:
2017-03-10
Published:
2017-04-12
Contact:
Hai-Dong FANG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
了解不同气候下土壤微生物对植物生态化学计量特征的影响有利于理解未来温度变化下植物与土壤的相互关系。该文以车桑子(Dodonaea viscosa)为研究对象, 从云南省元谋县两个海拔区采集车桑子根际土壤样品, 并设定相应的两个温度处理, 通过微生物灭菌和接种处理, 测定了车桑子叶片养分及其所在的土壤特性, 研究了温度、微生物及温度与微生物的交互作用对车桑子的碳(C)、氮(N)、磷(P)化学计量特征的影响, 分析其N、P养分特征与土壤特性间的关系。研究结果表明: 相比于灭菌处理, 两个海拔区的土壤微生物对车桑子养分吸收都有促进作用, 对P的促进作用极为显著。温度对车桑子C、N、P化学计量特征无显著影响, 但温度与微生物的交互作用对车桑子的C、N、P化学计量特征有显著影响。这种交互作用主要体现在: 在接种高海拔区土壤微生物的处理中, 温度没有显著影响车桑子的C、N、P化学计量特征, 而在接种低海拔区土壤微生物的处理中, 相比于高温条件, 低温显著抑制了车桑子对N、P的养分吸收。土壤微生物对养分吸收的促进作用可能源于其中有益微生物(如丛枝菌根真菌)的直接促进作用, 而并非是通过土壤微生物的养分循环过程。由于接种微生物处理使车桑子从土壤中吸收了更多的N、P, 从而使该处理的土壤有效N、P显著低于灭菌处理。在元谋干热河谷未来气温变凉的情况下, 由于土壤微生物对植物的反馈作用, 该区车桑子的生长可能会受到一定的抑制。
王雪梅, 闫帮国, 赵广, 史亮涛, 刘刚才, 方海东. 云南元谋不同海拔土壤微生物对车桑子碳、氮、磷化学计量特征及土壤特性的影响. 植物生态学报, 2017, 41(3): 311-324. DOI: 10.17521/cjpe.2016.0267
Xue-Mei WANG, Bang-Guo YAN, Guang ZHAO, Liang-Tao SHI, Gang-Cai LIU, Hai-Dong FANG. Effects of microorganism on carbon, nitrogen and phosphorus of Dodonaea viscosa and the soils from different elevations in Yuanmou, Yunnan, China. Chinese Journal of Plant Ecology, 2017, 41(3): 311-324. DOI: 10.17521/cjpe.2016.0267
序号 No. | 微生物标记 Sign of microorganism | 高海拔区 High elevation | 低海拔区 Low elevation | 序号 No. | 微生物标记 Sign of microorganism | 高海拔区 High elevation | 低海拔区 Low elevation |
---|---|---|---|---|---|---|---|
1 | 13:0 | 0 | 0.144 3 | 20 | 16:0 iso | 0.725 0 | 0.601 9 |
2 | 14:0 | 0.176 6 | 0.193 1 | 21 | 16:1 2OH | 0.237 6 | 0.247 6 |
3 | 16:0 | 1.990 0 | 1.078 4 | 22 | 16:1 iso G | 0.079 4 | 0 |
4 | 17:0 | 0.133 7 | 0 | 23 | 16:1 w5c | 0.349 2 | 0.099 7 |
5 | 18:0 | 0.506 1 | 0.276 7 | 24 | 16:1 w9c | 0.074 1 | 0 |
6 | 19:0 | 1.250 0 | 1.250 0 | 25 | 17:0 10-methyl | 0.235 5 | 0.249 9 |
7 | 20:0 | 0.065 0 | 0 | 26 | 17:0 anteiso | 0.353 3 | 0.281 5 |
8 | 10:0 2OH | 0.098 0 | 0 | 27 | 17:0 cyclo | 0.299 3 | 0.127 2 |
9 | 11:0 iso | 0.101 3 | 0 | 28 | 17:0 iso | 0.299 1 | 0.230 2 |
10 | 11:0 iso 3OH | 0 | 0.508 3 | 29 | 17:1 w8c | 0.141 5 | 0 |
11 | 12:0 iso 3OH | 0 | 0.148 5 | 30 | 17:1 w9c | 0 | 0.115 3 |
12 | 13:0 iso | 0.139 4 | 0 | 31 | 18:0 10-methyl, TBSA | 0.470 5 | 0.302 5 |
13 | 14:0 iso | 0.038 8 | 0 | 32 | 18:0 iso | 0 | 0.118 3 |
14 | 14:1 w5c | 0.085 5 | 0 | 33 | 18:1 w5c | 0.289 0 | 0 |
15 | 15:0 3OH | 0.114 8 | 0 | 34 | 18:1 w7c 11-methyl | 0.143 1 | 0 |
16 | 15:0 anteiso | 0.482 6 | 0.250 1 | 35 | 18:1 w9c | 1.157 0 | 0.648 0 |
17 | 15:0 iso | 1.107 4 | 0.531 1 | 36 | 18:3 w6c (6,9,12) | 0.096 0 | 0 |
18 | 15:1 iso G | 0.060 3 | 0 | 37 | 19:0 cyclo w8c | 0.636 1 | 0.264 8 |
19 | 16:0 2OH | 0.060 2 | 0 |
表1 高海拔区和低海拔区车桑子根际土样的磷脂脂肪酸含量(nmol·g-1)
Table 1 Abundant of main microbial communities varieties phospholipid fatty acid (PLFA) in the rhizosphere soils of Dodonaea viscosa at two elevation zones (nmol·g-1)
序号 No. | 微生物标记 Sign of microorganism | 高海拔区 High elevation | 低海拔区 Low elevation | 序号 No. | 微生物标记 Sign of microorganism | 高海拔区 High elevation | 低海拔区 Low elevation |
---|---|---|---|---|---|---|---|
1 | 13:0 | 0 | 0.144 3 | 20 | 16:0 iso | 0.725 0 | 0.601 9 |
2 | 14:0 | 0.176 6 | 0.193 1 | 21 | 16:1 2OH | 0.237 6 | 0.247 6 |
3 | 16:0 | 1.990 0 | 1.078 4 | 22 | 16:1 iso G | 0.079 4 | 0 |
4 | 17:0 | 0.133 7 | 0 | 23 | 16:1 w5c | 0.349 2 | 0.099 7 |
5 | 18:0 | 0.506 1 | 0.276 7 | 24 | 16:1 w9c | 0.074 1 | 0 |
6 | 19:0 | 1.250 0 | 1.250 0 | 25 | 17:0 10-methyl | 0.235 5 | 0.249 9 |
7 | 20:0 | 0.065 0 | 0 | 26 | 17:0 anteiso | 0.353 3 | 0.281 5 |
8 | 10:0 2OH | 0.098 0 | 0 | 27 | 17:0 cyclo | 0.299 3 | 0.127 2 |
9 | 11:0 iso | 0.101 3 | 0 | 28 | 17:0 iso | 0.299 1 | 0.230 2 |
10 | 11:0 iso 3OH | 0 | 0.508 3 | 29 | 17:1 w8c | 0.141 5 | 0 |
11 | 12:0 iso 3OH | 0 | 0.148 5 | 30 | 17:1 w9c | 0 | 0.115 3 |
12 | 13:0 iso | 0.139 4 | 0 | 31 | 18:0 10-methyl, TBSA | 0.470 5 | 0.302 5 |
13 | 14:0 iso | 0.038 8 | 0 | 32 | 18:0 iso | 0 | 0.118 3 |
14 | 14:1 w5c | 0.085 5 | 0 | 33 | 18:1 w5c | 0.289 0 | 0 |
15 | 15:0 3OH | 0.114 8 | 0 | 34 | 18:1 w7c 11-methyl | 0.143 1 | 0 |
16 | 15:0 anteiso | 0.482 6 | 0.250 1 | 35 | 18:1 w9c | 1.157 0 | 0.648 0 |
17 | 15:0 iso | 1.107 4 | 0.531 1 | 36 | 18:3 w6c (6,9,12) | 0.096 0 | 0 |
18 | 15:1 iso G | 0.060 3 | 0 | 37 | 19:0 cyclo w8c | 0.636 1 | 0.264 8 |
19 | 16:0 2OH | 0.060 2 | 0 |
测定土壤 Measured soil | pH | 碱解氮 Available nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | 总磷Total phosphorus (g·kg-1) | 总钾 Total potassium (g·kg-1) |
---|---|---|---|---|---|---|---|---|
低海拔根际土 Rhizosphere soil from low elevation | 7.26 | 46.603 | 21.909 | 86.731 | 9.352 | 0.198 | 0.268 | 22.961 |
高海拔根际土 Rhizosphere soil from high elevation | 6.69 | 97.184 | 24.309 | 123.600 | 17.580 | 0.517 | 0.287 | 20.934 |
盆栽基土 Potting medium | 6.22 | 84.112 | 20.085 | 130.483 | 15.805 | 0.384 | 0.251 | 21.234 |
表2 高海拔区和低海拔区车桑子根际土以及盆栽基土的基本理化性质
Table 2 Physical and chemical properties of the two inoculated rhizosphere soils and the potting medium of Dodonaea viscosa from high elevation and low elevation
测定土壤 Measured soil | pH | 碱解氮 Available nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | 总磷Total phosphorus (g·kg-1) | 总钾 Total potassium (g·kg-1) |
---|---|---|---|---|---|---|---|---|
低海拔根际土 Rhizosphere soil from low elevation | 7.26 | 46.603 | 21.909 | 86.731 | 9.352 | 0.198 | 0.268 | 22.961 |
高海拔根际土 Rhizosphere soil from high elevation | 6.69 | 97.184 | 24.309 | 123.600 | 17.580 | 0.517 | 0.287 | 20.934 |
盆栽基土 Potting medium | 6.22 | 84.112 | 20.085 | 130.483 | 15.805 | 0.384 | 0.251 | 21.234 |
变量 Variables | 微生物 Microorganism | 温度 Temperature | 微生物×温度 Microorganism × temperature | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
C | 3.611 | 0.039 | 4.620 | 0.040 | 7.789 | 0.002 |
N | 4.396 | 0.021 | 0.673 | 0.418 | 5.557 | 0.009 |
P | 9.353 | 0.001 | 0.065 | 0.801 | 46.909 | <0.001 |
C:N | 5.610 | 0.009 | 0.428 | 0.518 | 6.123 | 0.006 |
C:P | 15.642 | <0.001 | 2.168 | 0.151 | 47.482 | <0.001 |
N:P | 8.354 | 0.001 | 3.194 | 0.084 | 27.180 | <0.001 |
表3 温度和土壤微生物处理对车桑子叶片碳(C)、氮(N)、磷(P)含量及化学计量比的双因素方差分析
Table 3 Statistical results of a two-way analysis of variance (ANOVA) with temperature and soil microbial treatments on carbon (C), nitrogen (N), phosphorus (P) contents
变量 Variables | 微生物 Microorganism | 温度 Temperature | 微生物×温度 Microorganism × temperature | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
C | 3.611 | 0.039 | 4.620 | 0.040 | 7.789 | 0.002 |
N | 4.396 | 0.021 | 0.673 | 0.418 | 5.557 | 0.009 |
P | 9.353 | 0.001 | 0.065 | 0.801 | 46.909 | <0.001 |
C:N | 5.610 | 0.009 | 0.428 | 0.518 | 6.123 | 0.006 |
C:P | 15.642 | <0.001 | 2.168 | 0.151 | 47.482 | <0.001 |
N:P | 8.354 | 0.001 | 3.194 | 0.084 | 27.180 | <0.001 |
温度 Temperature | 微生物 Microorganism | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | C:P | N:P | |
---|---|---|---|---|---|---|---|---|
高温 High temperature | M0 | 589.39 ± 2.01 | 11.96 ± 0.84 | 0.33 ± 0.05 | 50.38 ± 3.198 | 1 974.60 ± 260.02 | 40.63 ± 6.84 | |
ML | 569.98 ± 8.14 | 12.82 ± 0.72 | 1.19 ± 0.09 | 45.26 ± 2.90 | 497.93 ± 46.54 | 11.00 ± 0.64 | ||
MH | 561.17 ± 8.61 | 12.33 ± 0.51 | 0.85 ± 0.08 | 45.97 ± 2.30 | 691.80 ± 59.56 | 15.14 ± 1.35 | ||
低温 Low temperature | M0 | 543.07 ± 5.22 | 11.18 ± 0.61 | 0.95 ± 0.12 | 49.22 ± 2.53 | 617.88 ± 72.96 | 12.55 ± 1.42 | |
ML | 584.75 ± 8.96 | 10.31 ± 0.58 | 0.38 ± 0.03 | 57.69 ± 3.52 | 1 579.20 ± 118.97 | 27.62 ± 2.01 | ||
MH | 551.70 ± 10.60 | 14.26 ± 0.72 | 1.09 ± 0.06 | 39.22 ± 2.24 | 516.02 ± 33.55 | 13.26 ± 0.77 |
表4 不同温度和土壤微生物处理下车桑子叶片碳(C)、氮(N)、磷(P)含量及化学计量比(平均值±标准误差, n = 6)
Table 4 The carbon (C), nitrogen (N), phosphorus (P) contents and their stoichiometry under different treatments (mean ± SE, n = 6)
温度 Temperature | 微生物 Microorganism | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | C:P | N:P | |
---|---|---|---|---|---|---|---|---|
高温 High temperature | M0 | 589.39 ± 2.01 | 11.96 ± 0.84 | 0.33 ± 0.05 | 50.38 ± 3.198 | 1 974.60 ± 260.02 | 40.63 ± 6.84 | |
ML | 569.98 ± 8.14 | 12.82 ± 0.72 | 1.19 ± 0.09 | 45.26 ± 2.90 | 497.93 ± 46.54 | 11.00 ± 0.64 | ||
MH | 561.17 ± 8.61 | 12.33 ± 0.51 | 0.85 ± 0.08 | 45.97 ± 2.30 | 691.80 ± 59.56 | 15.14 ± 1.35 | ||
低温 Low temperature | M0 | 543.07 ± 5.22 | 11.18 ± 0.61 | 0.95 ± 0.12 | 49.22 ± 2.53 | 617.88 ± 72.96 | 12.55 ± 1.42 | |
ML | 584.75 ± 8.96 | 10.31 ± 0.58 | 0.38 ± 0.03 | 57.69 ± 3.52 | 1 579.20 ± 118.97 | 27.62 ± 2.01 | ||
MH | 551.70 ± 10.60 | 14.26 ± 0.72 | 1.09 ± 0.06 | 39.22 ± 2.24 | 516.02 ± 33.55 | 13.26 ± 0.77 |
图1 不同温度和微生物处理下车桑子总生物量(平均值±标准误差, n = 6)。M0, 土壤灭菌处理; ML, 接种低海拔根际土处理; MH, 接种高海拔根际土处理。
Fig. 1 Total biomass of Dodonaea viscosa under different treatments (mean ± SE, n = 6). M0, autoclaved treatment; ML, inoculated rhizosphere soil from low elevation; MH, inoculated rhizosphere soil from high elevation.
变量 Variables | 微生物 Microorganism | 温度 Temperature | 微生物×温度 Microorganism × temperature | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
pH值 pH value | 103.493 | <0.001 | 0.688 | 0.413 | 4.071 | 0.027 |
微生物生物量C Microbial biomass C | 68.654 | <0.001 | 2.326 | 0.138 | 15.937 | <0.001 |
微生物生物量N Microbial biomass N | 449.038 | <0.001 | 0.323 | 0.574 | 31.891 | <0.001 |
铵态氮 Ammonium N | 213.066 | <0.001 | 29.048 | <0.001 | 30.128 | <0.001 |
硝态氮 Nitrate N | 106.857 | <0.001 | 0.182 | 0.673 | 6.240 | 0.005 |
有效磷 Available P | 170.607 | <0.001 | 5.110 | 0.031 | 57.256 | 0.001 |
有效钾 Available K | 26.448 | <0.001 | 68.391 | <0.001 | 6.154 | 0.006 |
表5 温度和土壤微生物接种处理对土壤特性双因素方差分析
Table 5 Statistical results of a two-way analysis of variance (ANOVA) with temperature and soil microbial treatments on soil properties
变量 Variables | 微生物 Microorganism | 温度 Temperature | 微生物×温度 Microorganism × temperature | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
pH值 pH value | 103.493 | <0.001 | 0.688 | 0.413 | 4.071 | 0.027 |
微生物生物量C Microbial biomass C | 68.654 | <0.001 | 2.326 | 0.138 | 15.937 | <0.001 |
微生物生物量N Microbial biomass N | 449.038 | <0.001 | 0.323 | 0.574 | 31.891 | <0.001 |
铵态氮 Ammonium N | 213.066 | <0.001 | 29.048 | <0.001 | 30.128 | <0.001 |
硝态氮 Nitrate N | 106.857 | <0.001 | 0.182 | 0.673 | 6.240 | 0.005 |
有效磷 Available P | 170.607 | <0.001 | 5.110 | 0.031 | 57.256 | 0.001 |
有效钾 Available K | 26.448 | <0.001 | 68.391 | <0.001 | 6.154 | 0.006 |
图2 不同温度和微生物处理下土壤pH值特征(平均值±标准误差, n = 6)。M0, 土壤灭菌处理; ML, 接种低海拔根际土处理; MH, 接种高海拔根际土处理。
Fig. 2 Changes in soil pH value in different treatments (mean ± SE, n = 6). M0, autoclaved treatment; ML, inoculated rhizosphere soil from low elevation; MH, inoculated rhizosphere soil from high elevation.
图3 不同温度和微生物处理下土壤微生物生物量(平均值±标准误差, n = 6)。A, 微生物生物量碳。B, 微生物生物量氮。M0, 土壤灭菌处理; ML, 接种低海拔根际土处理; MH, 接种高海拔根际土处理。
Fig. 3 Characteristics of soil microbial biomass by treatments (mean ± SE, n = 6). A, Microbial biomass carbon. B, Microbial biomass nitrogen. M0, autoclaved treatment; ML, inoculated rhizosphere soil from low elevation; MH, inoculated rhizosphere soil from high elevation.
图4 不同温度和微生物处理下土壤有效养分含量(平均值±标准误差, n = 6)。A, 铵态氮。B, 硝态氮。C, 有效磷。D, 有效钾。M0, 土壤灭菌处理; ML, 接种低海拔根际土处理; MH, 接种高海拔根际土处理。
Fig. 4 Amount of available nutrient in soils under different treatments (mean ± SE, n = 6). A, Ammonium nitrogen. B, Nitrate nitrogen. C, Available phosphorus. D, Available potassium. M0, autoclaved treatment; ML, inoculated rhizosphere soil from low elevation; MH, inoculated rhizosphere soil from high elevation.
温度 Temperature | 叶片养分 Leaf nutrient | pH | 微生物生物量C Microbial biomass C | 微生物生物量N Microbial biomass N | 铵态氮 Ammonium N | 硝态氮 Nitrate N | 有效磷 Available P | 速效钾 Available K |
---|---|---|---|---|---|---|---|---|
高温 High temperature | 叶片N Leaf N | -0.065 | -0.182 | -0.184 | -0.061 | -0.077 | -0.217 | 0.289 |
叶片P Leaf P | -0.555* | -0.730** | -0.825*** | -0.735** | -0.725** | -0.734** | 0.870*** | |
低温 Low temperature | 叶片N Leaf N | -0.638** | -0.196 | -0.221 | -0.320 | -0.186 | -0.235 | -0.165 |
叶片P Leaf P | -0.176 | 0.367 | 0.319 | 0.199 | 0.304 | 0.288 | -0.366 |
表6 不同温度条件下车桑子叶片氮(N)、磷(P)与土壤特性之间的相关系数(n = 18)
Table 6 Correlation coefficients between leaf nitrogen (N), phosphorus (P) concentration and soil properties under two temperatures (n = 18)
温度 Temperature | 叶片养分 Leaf nutrient | pH | 微生物生物量C Microbial biomass C | 微生物生物量N Microbial biomass N | 铵态氮 Ammonium N | 硝态氮 Nitrate N | 有效磷 Available P | 速效钾 Available K |
---|---|---|---|---|---|---|---|---|
高温 High temperature | 叶片N Leaf N | -0.065 | -0.182 | -0.184 | -0.061 | -0.077 | -0.217 | 0.289 |
叶片P Leaf P | -0.555* | -0.730** | -0.825*** | -0.735** | -0.725** | -0.734** | 0.870*** | |
低温 Low temperature | 叶片N Leaf N | -0.638** | -0.196 | -0.221 | -0.320 | -0.186 | -0.235 | -0.165 |
叶片P Leaf P | -0.176 | 0.367 | 0.319 | 0.199 | 0.304 | 0.288 | -0.366 |
[1] | Ågren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology Evolution and Systematics, 39, 153-170. |
[2] | Alphei J, Scheu S (1993). Effects of biocidal treatments on biological and nutritional properties of a mull-structured woodland soil. Geoderma, 56, 435-448. |
[3] | Averill C, Hawkes CV (2016). Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters, 19, 937. |
[4] | Bardgett RD, Manning P, Morriën E, Vries FTD (2013). Hierarchical responses of plant-soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology, 101, 334-343. |
[5] | Bardgett RD, Streeter TC, Cole L, Hartley IR (2002). Linkages between soil biota, nitrogen availability, and plant nitrogen uptake in a mountain ecosystem in the Scottish Highlands. Applied Soil Ecology, 19, 121-134. |
[6] | Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD (2014). Rhizosphere stoichiometry: Are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytologist, 201, 505-517. |
[7] | Berns AE, Philipp H, Narres HD, Burauel P, Vereecken H, Tappe W (2008). Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. European Journal of Soil Science, 59, 540-550. |
[8] | Bi YL, Chen SL, Kong WP, Feng YB (2014). Effects of microorganism inoculation on growth of soybean and its rhizosphere soil. Ecological Science, 33, 121-126. (in Chinese with English abstract)[毕银丽, 陈书琳, 孔维平, 冯颜博 (2014). 接种微生物对大豆生长及其根际土壤的影响. 生态科学, 33, 121-126.] |
[9] | Bin ZJ, Zhang RY, Zhang WP, Xu DH (2015). Effects of nitrogen, phosphorus and silicon addition on leaf carbon, nitrogen, and phosphorus concentration of Elymus nutans of alpine meadow on Qinghai-Tibetan Plateau, China. Acta Ecologica Sinica, 35, 4699-4706. (in Chinese with English abstract)[宾振钧, 张仁懿, 张文鹏, 徐当会 (2015). 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响. 生态学报, 35, 4699-4706.] |
[10] | Bowman WD, Damm M (2015). Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability. Arctic, Antarctic, and Alpine Research, 35, 144-149. |
[11] | Brinkman EP, Putten WHVD, Bakker EJ, Verhoeven KJF (2010). Plant-soil feedback: Experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063-1073. |
[12] | Brown ME (2003). Seed and root bacterization. Annual Review of Phytopathology, 12, 181-197. |
[13] | Chapman SK, Langley JA, Hart SC, Koch GW (2006). Plants actively control nitrogen cycling: Uncorking the microbial bottleneck. New Phytologist, 169, 27-34. |
[14] | Defossez E, Courbaud B, Marcais B, Thuiller W, Granda E, Kunstler G (2011). Do interactions between plant and soil biota change with elevation? A study on Fagus sylvatica. Biology Letters, 7, 699-701. |
[15] | Ding WR, Lü XX, Ming QZ (2011). Hydrothermal analysis of environment of Yuanmou dry-hot river valley in Jinsha River, upper Yangtze River, China. China Rural Water and Hydropower, (2), 39-42. (in Chinese with English abstract)[丁文荣, 吕喜玺, 明庆忠 (2011). 变化环境下的元谋干热河谷区水热响应分析. 中国农村水利水电, (2), 39-42.] |
[16] | Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943. |
[17] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[18] | Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392, 127-138. |
[19] | Farzaneh M, Vierheilig H, Lössl A, Kaul HP (2011). Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant, Soil & Environment, 57, 465-470. |
[20] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266. |
[21] | Han W, Fang J, Guo D, Zhang Y (2005). Leaf N and P stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
[22] | Harrington MG, Gadek PA (2009). A species well travelled — The Dodonaea viscosa (Sapindaceae) complex based on phylogenetic analyses of nuclear ribosomal ITS and ETSf sequences. Journal of Biogeography, 36, 2313-2323. |
[23] | Huang JY, Song CC, Song YY, Liu DY, Wan ZM, Liao YJ (2008). Influence of freshwater marsh tillage on microbial biomass and dissolved organic carbon and nitrogen. Environmental Science, 29, 1380-1387. (in Chinese with English abstract)[黄靖宇, 宋长春, 宋艳宇, 刘德燕, 万忠梅, 廖玉静 (2008). 湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响. 环境科学, 29, 1380-1387.] |
[24] | Jaeger CH, Monson RK, Fisk MC, Schmidt SK (1999). Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology, 80, 1883-1891. |
[25] | Jiang J, Song MH (2010). Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 34, 979-988. (in Chinese with English abstract)[蒋婧, 宋明华 (2010). 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 34, 979-988.] |
[26] | Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999). Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology, 80, 1828-1843. |
[27] | Lau JA, Lennon JT (2011). Evolutionary ecology of plant-microbe interactions: Soil microbial structure alters selection on plant traits. New Phytologist, 192, 215-224. |
[28] | Lau JA, Lennon JT (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. Proceedings of the National Academy of Sciences of the United States of America, 109, 14058-14062. |
[29] | Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 32, 1768-1771. |
[30] | Li JP, Li T, Zhao ZW (2003). Diversity of arbuscular mycorrhizal fungi in the hot-dry valley of Jinsha River. Mycosystema, 22, 604-612. (in Chinese with English abstract)[李建平, 李涛, 赵之伟 (2003). 金沙江干热河谷 (元谋段)丛枝菌根真菌多样性研究. 菌物学报, 22, 604-612.] |
[31] | Li K (1993). Yuanmou County Annals. The Peoples Press of Yunnan, Kunming.(in Chinese) [李坤 (1993). 元谋县志. 云南人民出版社, 昆明.] |
[32] | Liang Y, Jiang Y, Wang F, Wen C, Deng Y, Xue K, Qin Y, Yang Y, Wu L, Zhou J, Sun B (2015). Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. The ISME Journal, 9, 2561-2572. |
[33] | Liu YF, Chen SL, Li YC, Chen S, Guo ZW, Yang QP (2015). Effect of long-term flooded conditions on nutrient stoi¬chiometric characteristics of Phyllostachys rivalis rhizome roots. Acta Botanica Boreali-Occidentalia Sinica, 35, 350-355. (in Chinese with English abstract)[刘玉芳, 陈双林, 李迎春, 陈珊, 郭子武, 杨清平 (2015). 长期淹水对河竹鞭根养分化学计量特征的影响. 西北植物学报, 35, 350-355.] |
[34] | Lu RK (2000). Analysis Methods of Soil Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing, (in Chinese)[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] |
[35] | Miransari M (2011). Soil microbes and plant fertilization. Applied Microbiology and Biotechnology, 92, 875-885. |
[36] | Niu DC, Dong XY, Fu H (2011). Seasonal dynamics of carbon, nitrogen and phosphorus stoichiometry in Stipa bungeana. Pratacultural Science, 28, 915-920. (in Chinese with English abstract)[牛得草, 董晓玉, 傅华 (2011). 长芒草不同季节碳氮磷生态化学计量特征. 草业科学, 28, 915-920.] |
[37] | Olander L, Vitousek P (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biog¬eo¬chemistry, 49, 175-191. |
[38] | Peng SL (2014). Responses of Soil Microbial Communities to Water and Temperature Changes in Yuanmou Dry-Hot Valley. PhD dissertation, University of Chinese Academy of Sciences, Beijing. 111-113. (in Chinese with English abstract)[彭思利 (2014). 元谋干热河谷土壤微生物群落对水热变化的响应. 博士学位论文, 中国科学院大学, 北京. 111-113.] |
[39] | Pernilla Brinkman E, van der Putten WH, Bakker EJ, Verhoeven KJ (2010). Plant-soil feedback: Experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063-1073. |
[40] | Qi SH, Wang JB (2007). The primary analysis of climate change in dry-hot valley of Yuanmou, China. Journal of Meteorological Research and Application, 28, 125-127. (in Chinese with English abstract)[起树华, 王建彬 (2007). 元谋干热河谷气候生态环境变化的初步分析. 气象研究与应用, 28, 125-127.] |
[41] | Qu L, Huang Y, Ma K, Zhang Y, Bierec A (2015). Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China. Soil Biology & Biochemistry, 94, 1-9. |
[42] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[43] | Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39, 223-235. |
[44] | Sardans J, Rivas-Ubach A, Peñuelas J (2012). Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecology and Management, 262, 2024-2034. |
[45] | Shaw LJ, Beatonb Y, Glover LA, Killham K, Meharg AA (1999). Re-inoculation of autoclaved soil as a non-sterile treatment for xenobiotic sorption and biodegradation studies. Applied Soil Ecology, 11, 217-226. |
[46] | Shen RF, Zhao XQ (2015). Role of soil microbes in the acquisition of nutrients by plants. Acta Ecologica Sinica, 35, 6584-6591. (in Chinese with English abstract)[沈仁芳, 赵学强 (2015). 土壤微生物在植物获得养分中的作用. 生态学报, 35, 6584-6591.] |
[47] | Shi XM, Qi JH, Song L, Liu WY, Huang JB, Li S, Lu HZ, Chen X (2015). C, N and P stoichiometry of two dominant seedlings and their responses to nitrogen additions in the montane moist evergreen broad-leaved forest in Ailao Mountains, Yunnan. Chinese Journal of Plant Ecology, 39, 962-970. (in Chinese with English abstract)[石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦 (2015). 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应. 植物生态学报, 39, 962-970.] |
[48] | Song YT, Zhou DW, Li Q, Wang P, Huang YX (2012). Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China. Chinese Journal of Plant Ecology, 36, 222-230. (in Chinese with English abstract)[宋彦涛, 周道玮, 李强, 王平, 黄迎新 (2012). 松嫩草地80种草本植物叶片氮磷化学计量特征. 植物生态学报, 36, 222-230.] |
[49] | Steinauer K, Tilman D, Wragg PD, Cesarz S, Cowles JM, Pritsch K, Reich PB, Weisser WW, Eisenhauer N (2015). Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology, 96, 99-112. |
[50] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534. |
[51] | Treseder KK, Vitousek PM (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82, 946-954. |
[52] | Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013). Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101, 265-276. |
[53] | van Grunsven RHA, van der Putten WH, Bezemer TM, Berendse F, Veenendaal EM (2010). Plant-soil interactions in the expansion and native range of a poleward shifting plant species. Global Change Biology, 16, 380-385. |
[54] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15. |
[55] | Wang GB, Ruan HH, Tang YF, He R (2009). A review on the dynamics of soil microbial biomass in forest ecosystems. Journal of Anhui Agricultural University, 36, 100-104. (in Chinese with English abstract)[王国兵, 阮宏华, 唐燕飞, 何容 (2009). 森林土壤微生物生物量动态变化研究进展. 安徽农业大学学报, 36, 100-104.] |
[56] | Wang XM, Yan BG, Liu GC, Fang HD (2016). Spatial variation in seed dormancy and germination of Dodonaea viscose in Yuanmou dry-hot valley, China. Journal of Tropical and Subtropical Botany, 24, 375-380. (in Chinese with English abstract)[王雪梅, 闫帮国, 刘刚才, 方海东 (2016). 元谋干热河谷车桑子种子休眠与萌芽的空间变异特征研究. 热带亚热带植物学报, 24, 375-380.] |
[57] | Wang ZN, Yang HM (2013). Responses of ecological stoi¬chiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors. Pratacultural Science, 30, 927-934. (in Chinese with English abstract)[王振南, 杨惠敏 (2013). 植物碳氮磷生态化学计量对非生物因子的响应. 草业科学, 30, 927-934.] |
[58] | Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 34, 23-28. (in Chinese with English abstract)[吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.] |
[59] | Wu Y, Yu X, Wang H, Ding N, Xu J (2010). Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipid fatty acid (PLFA) analysis. Journal of Soils and Sediments, 10, 223-230. |
[60] | Xu X, Ouyang H, Richter A, Wanek W, Cao G, Kuzyakov Y (2011). Spatio-temporal variations determine plant-micr¬obe competition for inorganic nitrogen in an alpine meadow. Journal of Ecology, 99, 563-571. |
[61] | Yan K, Fu DG, He F, Duan CQ (2011). Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China. Chinese Journal of Plant Ecology, 35, 353-361. (in Chinese with English abstract)[阎凯, 付登高, 何峰, 段昌群 (2011). 滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征. 植物生态学报, 35, 353-361.] |
[62] | Yan ZB, Kim NY, Han TS, Fang JY, Han WX (2013). Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana. Chinese Journal of Plant Ecology, 37, 551-557. (in Chinese with English abstract)[严正兵, 金南瑛, 韩廷申, 方精云, 韩文轩 (2013). 氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响. 植物生态学报, 37, 551-557.] |
[63] | Zeng DH, Chen GS (2005). Ecological stoichiometry: A science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. (in Chinese with English abstract)[曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.] |
[64] | Zhan XH, Jiang YH (1999). Advances in researches on mechanism of microbial inoculants on promoting plant growth. Plant Nutrition and Fertilizer Science, 5, 97-105. (in Chinese with English abstract)[占新华, 蒋延惠 (1999). 微生物制剂促进植物生长机理的研究进展. 植物营养与肥料学报, 5, 97-105.] |
[65] | Zhang AM, Li NK, Zhao GY, Zhang SF (2015). Research progress on the phosphate-solubilizing and potassium-solubilizing microorganisms. Journal of Hebei University (Natural Science Edition), 35, 442-448. (in Chinese with English abstract)[张爱民, 李乃康, 赵钢勇, 张双凤 (2015). 土壤中解磷、解钾微生物研究进展. 河北大学学报(自然科学版), 35, 442-448.] |
[66] | Zhang QY, Sun HL, Li SC, Hu X, Pang L (2013). Different environmental conditions on germination characteristics of Dodonaea viscosa (L.) Jacq. Seed, 32, 12-14. (in Chinese with English abstract)[张琼瑛, 孙海龙, 李绍才, 胡兴, 庞亮 (2013). 不同环境条件对车桑子萌发的影响. 种子, 32, 12-14.] |
[67] | Zhang W, Zhao J, Pan F, Li D, Chen H, Wang K (2015). Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant and Soil, 391, 77-91. |
[68] | Zhao ZW, Ren LC, Li T, Li JP (2003). Arbuscular mycorrhizas in the dry-hot valley of Jinsha River. Acta Botanica Yunnanica, 25, 199-204. (in Chinese with English abstract)[赵之伟, 任立成, 李涛, 李建平 (2003). 金沙江干热河谷(元谋段)的丛枝菌根. 云南植物研究, 25, 199-204.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[4] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[5] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[6] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[7] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[8] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[9] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[10] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[11] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[12] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[13] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[14] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[15] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19