植物生态学报 ›› 2019, Vol. 43 ›› Issue (5): 427-436.DOI: 10.17521/cjpe.2019.0046
所属专题: 全球变化与生态系统; 生态化学计量; 微生物生态学
王攀1,朱湾湾1,牛玉斌1,樊瑾1,余海龙1,赖江山2,黄菊莹3,*()
收稿日期:
2019-03-05
接受日期:
2019-04-23
出版日期:
2019-05-20
发布日期:
2019-10-18
通讯作者:
黄菊莹; ORCID: 黄菊莹: 0000-0002-1351-7282
基金资助:
WANG Pan1,ZHU Wan-Wan1,NIU Yu-Bin1,FAN Jin1,YU Hai-Long1,LAI Jiang-Shan2,HUANG Ju-Ying3,*()
Received:
2019-03-05
Accepted:
2019-04-23
Online:
2019-05-20
Published:
2019-10-18
Contact:
HUANG Ju-Ying
Supported by:
摘要:
大气氮(N)沉降增加加速了土壤N循环, 引起微生物生物量碳(C):N:磷(P)生态化学计量关系失衡、植物种丧失和生态系统服务功能降低等问题。开展N添加下植物群落组成与微生物生物量生态化学计量特征关系的研究, 可为深入了解N沉降增加引起植物多样性降低的机理提供新思路。该文以宁夏荒漠草原为研究对象, 探讨了N添加下植物生物量和群落多样性的变化趋势, 分析了微生物生物量C:N:P生态化学计量特征独立及其与其他土壤因子共同对植物群落组成的影响。结果表明: N添加下猪毛菜(Salsola collina)生物量呈显著增加趋势, 牛枝子(Lespedeza potaninii)生物量呈逐渐降低趋势, 其他植物种生物量亦呈降低趋势但未达到显著水平; 沿N添加梯度, Shannon-Wiener多样性指数、Simpson优势度指数和Patrick丰富度指数均呈先略有增加后逐渐降低的趋势; N添加提高了微生物生物量N含量和N:P, 降低了微生物生物量C:N; 植物群落组成与微生物生物量N含量、微生物生物量C:N、微生物生物量N:P、土壤NO3 --N浓度、土壤NH4 +-N浓度以及土壤全P含量有较强的相关关系; 微生物生物量C:N:P生态化学计量特征对植物种群生物量和群落多样性变化的独立解释力较弱, 但却与其他土壤因子共同解释了较大变差, 意味着N添加下微生物生物量C:N:P生态化学计量特征对植物群落组成的影响与其他土壤因子高度相关。
王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响. 植物生态学报, 2019, 43(5): 427-436. DOI: 10.17521/cjpe.2019.0046
WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China. Chinese Journal of Plant Ecology, 2019, 43(5): 427-436. DOI: 10.17521/cjpe.2019.0046
图1 N处理对植物群落(A)和种群生物量(B)的影响(平均值+标准误差, n = 5)。N0、N1.25、N2.50、N5、N10和N20分别代表0、1.25、2.50、5、10和20 g·m-2·a-1的N施用量。不同小写字母表示N处理间指标差异显著(p < 0.05)。
Fig. 1 Effects of N addition on biomass of plant community (A) and individual species (B) (mean + SE, n = 5). N0, N1.25, N2.50, N5, N10, and N20 represent N addition level of 0, 1.25, 2.50, 5, 10, and 20 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences among N treatments (p < 0.05).
图2 N处理对植物群落多样性指数的影响(平均值+标准误差, n = 5)。N0、N1.25、N2.50、N5、N10和N20分别代表0、1.25、2.50、5、10和20 g·m-2·a-1的N施用量。不同小写字母表示N处理间指标差异显著(p < 0.05)。
Fig. 2 Effects of N treatments on plant community diversity (mean + SE, n = 5). N0, N1.25, N2.50, N5, N10, and N20 represent N addition level of 0, 1.25, 2.50, 5, 10, and 20 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences among N treatments (p < 0.05).
图3 N处理对微生物生物量C、N、P及其生态化学计量比的影响(平均值+标准误差, n = 5)。N0、N1.25、N2.50、N5、N10和N20分别代表0、1.25、2.50、5、10和20 g·m-2·a-1的N施用量。不同小写字母表示N处理间指标差异显著(p < 0.05)。
Fig. 3 Effects of N treatments on microbial biomass C, N, P, and their stoichiometric ratios (mean + SE, n = 5). N0, N1.25, N2.50, N5, N10, and N20 represent N addition level at 0, 1.25, 2.50, 5, 10, and 20 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences among N treatments (p < 0.05).
图4 土壤因子与植物种群生物量(A)以及群落多样性指数(B)的冗余分析(RDA)。Sc、Am、As和Lp分别代表猪毛菜、草木樨状黄耆、猪毛蒿和牛枝子。H和D分别代表Shannon-Wiener多样性指数和Simpson优势度指数。MBC、MBN、MBP、C:Nm、C:Pm和N:Pm分别代表微生物生物量C含量、N含量、P含量、C:N、C:P和N:P。TOC、TN、TP、C:Ns、C:Ps、N:Ps、NH4+-N、NO3--N和AP分别代表土壤有机C含量、全N含量、全P含量、C:N、C:P、N:P、NH4+-N浓度、NO3--N浓度和速效P浓度。
Fig. 4 RDA of plant biomass (A) and community diversity (B) explained by soil factors. Sc, Am, As, and Lp represent Salsola collina, Astragalus melilotoides, Artemisia scoparia, and Lespedeza potaninii, respectively. H and D represent Shannon-Wiener diversity index and Simpson dominance index, respectively. MBC, MBN, MBP, C:Nm, C:Pm, and N:Pm represent microbial biomass C content, N content, P content, C:N, C:P, and N:P, respectively. TOC, TN, TP, C:Ns, C:Ps, N:Ps, NH4+-N, NO3--N, and AP represent soil organic C content, total N content, total P content, C:N, C:P, N:P, NH4+-N concentration, NO3--N concentration, and available P concentration, respectively.
图5 土壤因子组合对植物种群生物量(A)和群落多样性指数(B)的变差分解。小于0的数值未显示。单个圆圈内数字代表该土壤因子组合能解释的变差, 圆圈重合部分内数字代表几个土壤因子组合共同解释的变差。X1组包括微生物生物量C含量、N含量、P含量、C:N、C:P和N:P; X2组包括土壤有机C含量、全N含量、全P含量、C:N、C:P和N:P; X3组包括土壤NO3--N浓度、NH4+-N浓度和速效P浓度。
Fig. 5 Variation partitioning of plant population biomass (A) and community diversity index (B) by soil factor groups. Values < 0 not shown. Data in one circle represent the variation individually explained by the soil factor group, data in the overlapped part of circles represent the variation jointly explained by soil factor groups. X1 group includes microbial biomass C content, N content, P content, C:N, C:P, and N:P; X2 group includes soil organic C content, total N content, total P content, C:N, C:P, N:P; X3 group includes soil NH4+-N, NO3--N, and available P concentrations, respectively.
1 | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358-372. |
2 | Cao CY, Shao JF, Jiang DM, Cui Z (2011). Effects of fence enclosure on soil nutrients and biological activities in highly degraded grasslands. Journal of Northeastern University (Natural Science), 32, 427-430, 451. |
[ 曹成有, 邵建飞, 蒋德明, 崔振 (2011). 围栏封育对重度退化草地土壤养分和生物活性的影响. 东北大学学报(自然科学版), 32, 427-430, 451.] | |
3 | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
4 | Duan L, Hao JM, Xie SD, Zhou ZP (2002). Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method. Journal of Environmental Science, 23(2), 7-12. |
[ 段雷, 郝吉明, 谢绍东, 周中平 (2002). 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷. 环境科学, 23(2), 7-12.] | |
5 | Fang Y, Xun F, Bai WM, Zhang WH, Li LH (2012). Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLOS ONE, 7, e47369. DOI: 10.1371/journal.pone.0047369. |
6 | Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener R, Stevenson D, Amann M, Voss M (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B-Biological Sciences, 368, 20130164. DOI: 10.1098/rstb.2013.0164. |
7 | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153-226. |
8 | Goulding KWT (1990). Nitrogen deposition to land from the atmosphere. Soil Use Manage, 6, 61-63. |
9 | Gu FX, Huang M, Zhang YD, Yan HM, Li J, Guo R, Zhong XL (2016). Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961— 2010. Acta Ecologica Sinica, 36, 3591-3600. |
[ 顾峰雪, 黄玫, 张远东, 闫慧敏, 李洁, 郭瑞, 钟秀丽 (2016). 1961-2010年中国区域氮沉降时空格局模拟研究. 生态学报, 36, 3591-3600.] | |
10 | He YT, Qi YC, Dong YS, Peng Q, Xiao SS, Liu XC (2010). Advances in the influence of external nitrogen input on soil microbiological characteristics of grass land ecosystem. Advances in Earth Science, 25, 877-885. |
[ 何亚婷, 齐玉春, 董云社, 彭琴, 肖胜生, 刘欣超 (2010). 外源氮输入对草地土壤微生物特性影响的研究进展. 地球科学进展, 25, 877-885.] | |
11 | Hessen DO, Elser JJ (2010). Elements of ecology and evolution. Oikos, 109, 3-5. |
12 | Heuck C, Weig A, Spohn M (2015). Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 85, 119-129. |
13 | Huang JY, Yu HL (2016). Responses of growth of four desert species to different N addition levels. Chinese Journal of Plant Ecology, 40, 165-176. |
[ 黄菊莹, 余海龙 (2016). 四种荒漠草原植物的生长对不同氮添加水平的响应. 植物生态学报, 40, 165-176.] | |
14 | Huang JY, Yu HL, Liu JL, Ma F, Han L (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38, 5362-5373. |
[ 黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊 (2018). 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响. 生态学报, 38, 5362-5373.] | |
15 | Jiang J, Song MH (2010). Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 34, 979-988. |
[ 蒋婧, 宋明华 (2010). 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 34, 979-988.] | |
16 | Lan ZC, Jenerette GD, Zhan SX, Li WH, Zheng SX, Bai YF (2015). Testing the scaling effects and mechanisms of N-induced biodiversity loss: Evidence from a decade-long grassland experiment. Journal of Ecology, 103, 750-760. |
17 | LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379. |
18 | Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Fierer N (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 112, 10967-10972. |
19 | Li H, Yang S, Xu ZW, Yan QY, Li XB, van Nostrand JD, He ZL, Yao F, Han XG, Zhou JZ, Deng Y, Jiang Y (2017). Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biology & Biochemistry, 104, 18-29. |
20 | Li Y, Niu SL, Yu GR (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Global Change Biology, 22, 934-942. |
21 | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhance nitrogen deposition over China. Nature, 494, 459-462. |
22 | Lu QQ, Bai JH, Zhang GL, Zhao QQ, Wu JJ (2018). Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China. Physics and Chemistry of the Earth, 104, 9-17. |
23 | Makino W, Cotner JB, Sterner RW, Elser JJ (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17, 121-130. |
24 | Mao QG, Lu XK, Chen H, Mo JM (2015). Responses of terrestrial plant diversity to elevated mineral element inputs. Acta Ecologica Sinica,35, 5884-5897. |
[ 毛庆功, 鲁显楷, 陈浩, 莫江明 (2015). 陆地生态系统植物多样性对矿质元素输入的响应. 生态学报, 35, 5884-5897.] | |
25 | Mayor JR, Mack MC, Schuur EAG (2015). Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions. Soil Biology & Biochemistry, 88, 247-256. |
26 | Song MH, Yu FH, Ouyang H, Cao GM, Xu XL, Cornelissen JHC (2012). Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biology, 18, 3100-3111. |
27 | Soong JL, Maranon-Jimenez S, Cotrufo MF, Boeckx P, Bode S, Guenet B, Peñuelas J, Richter A, Stahl C, Verbruggen E, Janssens IA (2018). Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropical soil incubation. Soil Biology & Biochemistry, 122, 141-149. |
28 | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements From Molecules to the Biosphere. Princeton University Press, Princeton. |
29 | Su XL, Li YB, Yang B, Li Q (2018). Effects of plant diversity on soil microbial community in a subtropical forest. Chinese Journal of Ecology, 37, 2254-2261. |
[ 宿晓琳, 李英滨, 杨波, 李琪 (2018). 植物多样性对亚热带森林土壤微生物群落的影响. 生态学杂志, 37, 2254-2261.] | |
30 | Tang ZS, Deng L, An H, Yan WM, Shangguan ZP (2017). The effect of nitrogen addition on community structure and productivity in grasslands: A meta-analysis. Ecological Engineering, 99, 31-38. |
31 | Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, Li X, Wang ZW, Ma YB, Han XG, Zhang WH (2016). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74. |
32 | van der Heijden MGA, Bardgett RD, van Straalen NM (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310. |
33 | Wang CJ, Wang QQ, Xu H, Gao HJ, Zhu P, Xu MG, Zhang WJ (2018). Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland. Acta Ecologica Sinica, 38, 3848-3858. |
[ 王传杰, 王齐齐, 徐虎, 高洪军, 朱平, 徐明岗, 张文菊 (2018). 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征. 生态学报, 38, 3848-3858.] | |
34 | Wang J, Wang SS, Qiao XG, Li A, Xue JG, Hasi M, Zhang XY, Huang JH (2016). Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland. Chinese Journal of Plant Ecology, 40, 980-990. |
[ 王晶, 王珊珊, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉 (2016). 氮添加对内蒙古退化草原生产力的短期影响. 植物生态学报, 40, 980-990.] | |
35 | Xue YF, Zong N, He NP, Tian J, Zhang YQ (2018). Influence of long-term enclosure and free grazing on soil microbial community structure and carbon metabolic diversity of alpine meadow. Chinese Journal of Applied Ecology, 29, 2705-2712. |
[ 薛亚芳, 宗宁, 何念鹏, 田静, 张永清 (2018). 长期围封和自由放牧对高寒草甸土壤微生物群落结构及碳源代谢多样性的影响. 应用生态学报, 29, 2705-2712.] | |
36 | Yang Q, Wang W, Zeng H (2018). Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China. Chinese Journal of Plant Ecology, 42, 430-441. |
[ 杨倩, 王娓, 曾辉 (2018). 氮添加对内蒙古退化草地植物群落多样性和生物量的影响. 植物生态学报, 42, 430-441.] | |
37 | Yu HL, He NP, Wang QF, Zhu JX, Gao Y, Zhang YH, Jia YL, Yu GR (2017). Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environmental Pollution, 231, 182-190. |
38 | Yue K, Fornara DA, Yang W, Peng Y, Li Z, Wu FZ, Peng CH (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: A global synthesis. Global Change Biology, 23, 2450-2463. |
39 | Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015). The application of ecological stoichiometry to plant-microbial- soil organic matter transformations. Ecological Monographs, 85, 133-155. |
40 | Zhan SX, Wang Y, Zhu ZC, Li WH, Bai YF (2017). Nitrogen enrichment alters plant N:P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. Environmental and Experimental Botany, 134, 21-32. |
41 | Zhang JJ, Xu DM (2013). Niche characteristics of dominant plant populations in desert steppe of Ningxia with different enclosure times. Acta Agrestia Sinica, 21(1), 73-78. |
[ 张晶晶, 许冬梅 (2013). 宁夏荒漠草原不同封育年限优势种群的生态位特征. 草地学报, 21(1), 73-78.] | |
42 | Zhang JT (2004). Quantitative Ecology. Science Press, Beijing. |
[ 张金屯 (2004). 数量生态学. 科学出版社, 北京.] | |
43 | Zhang YH, Lü XT, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG (2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520-3529. |
44 | Zhao H, Sun J, Xu XL, Qin XJ (2017a). Stoichiometry of soil microbial biomass carbon and microbial biomass nitrogen in China’s temperate and alpine grasslands. European Journal of Soil Biology, 83, 1-8. |
45 | Zhao YH, Zhang L, Chen YF, Liu XJ, Xu W, Pan YP, Duan L (2017b). Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment, 153, 32-40. |
46 | Zhou XB, Zhang YM, Wang SS, Zhang BC (2010). Combined effects of simulated nitrogen deposition and drought stress on growth and photosynthetic physiological responses of two annual desert plants in Junggar Basin, China. Chinese Journal of Plant Ecology, 34, 1394-1403. |
[ 周晓兵, 张元明, 王莎莎, 张丙昌 (2010). 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响. 植物生态学报, 34, 1394-1403.] | |
47 | Zhou ZH, Wang CK (2016). Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession. Chinese Journal of Plant Ecology, 40, 1257-1266. |
[ 周正虎, 王传宽 (2016). 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化. 植物生态学报, 40, 1257-1266.] | |
48 | Zhou ZH, Wang CK, Jin Y (2017). Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils. Biology and Fertility of Soils, 53, 397-406. |
[1] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[2] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[3] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[4] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[5] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[6] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[7] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[8] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[9] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[10] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[11] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[12] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[13] | 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 1127-1139. |
[14] | 裴广廷, 孙建飞, 贺同鑫, 胡宝清. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2021, 45(1): 74-84. |
[15] | 哈努拉•塔斯肯, 蔡慧颖, 金光泽. 树冠结构对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2021, 45(1): 38-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19