植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 125-133.DOI: 10.3773/j.issn.1005-264x.2009.01.014
蒋馥蔚1, 江洪1,2,3,*(), 李巍4, 余树全3, 曾波1, 王艳红3
收稿日期:
2008-06-25
接受日期:
2008-09-07
出版日期:
2009-06-25
发布日期:
2009-01-30
通讯作者:
江洪
作者简介:
*E-mail: hongjiang.china@gmail.com基金资助:
JIANG Fu-Wei1, JIANG Hong1,2,3,*(), LI Wei4, YU Shu-Quan3, ZENG Bo1, WANG Yan-Hong3
Received:
2008-06-25
Accepted:
2008-09-07
Online:
2009-06-25
Published:
2009-01-30
Contact:
JIANG Hong
About author:
*E-mail: hongjiang.china@gmail.com摘要:
为了验证起源时间较长的植物具有较强适应性的假设, 人工模拟酸雨胁迫, 研究了在不同酸雨处理下不同起源时期的3种被子植物乐东拟单性木兰(Parakmeria lotungensi)、石栎(Lithocarpus glaber)和山核桃(Carya cathayensis)的光合生理适应特性。实验设置了酸雨对照处理(pH 5.6)、中度酸雨胁迫处理(pH 4.0)和重度酸雨胁迫处理(pH 2.5), 并测定了这3种植物的光合特性。研究结果显示: 1)在不同强度的酸雨处理下, 乐东拟单性木兰的光合能力大小趋势为pH 2.5 > pH 4.0 > pH 5.6, 石栎则为pH 5.6 > pH 4.0 > pH 2.5, 但山核桃在酸雨处理之间差异不显著; 2)在酸雨对照处理(pH 5.6)中, 石栎的光合能力相对较高, 其次是乐东拟单性木兰, 山核桃最小。但在重度和中度酸雨胁迫下(pH ≤ 4.0), 3种植物光合能力的大小趋势为乐东拟单性木兰 > 石栎 > 山核桃, 且酸雨胁迫越严重, 上述趋势越明显。研究结果表明: 在重度酸雨胁迫下, 起源时间较早的乐东拟单性木兰表现出较高的光合与适应能力。从应用的角度出发, 建议考虑将乐东拟单性木兰作为酸雨灾害严重地区植被构建的物种之一。
蒋馥蔚, 江洪, 李巍, 余树全, 曾波, 王艳红. 不同起源时期的3种被子植物对酸雨胁迫响应的光合生理生态特征. 植物生态学报, 2009, 33(1): 125-133. DOI: 10.3773/j.issn.1005-264x.2009.01.014
JIANG Fu-Wei, JIANG Hong, LI Wei, YU Shu-Quan, ZENG Bo, WANG Yan-Hong. PHOTOSYNTHETIC AND PHYSIOLOGICAL CHARACTERISTICS OF THREE ANGIOSPERMS OF DIFFERENT EVOLUTIONARY AGES UNDER ACID RAIN STRESS. Chinese Journal of Plant Ecology, 2009, 33(1): 125-133. DOI: 10.3773/j.issn.1005-264x.2009.01.014
图1 3种植物在不同酸雨处理下的最大净光合速率(Pnmax)、光饱和点(LSP)、光补偿点(LCP)、表观量子效率(AQE)和暗呼吸速率(Rd) (平均值 ± 标准误差) dxml: 乐东拟单性木兰 Parakmeria lotungensi sl: 石栎 Lithocarpus glaber sht: 山核桃 Carya cathayensis 柱体上的不同字母表示存在显著差异(p=0.05) Bars with the different letters are significantly different at p=0.05 level
Fig. 1 The maximum net photosynthetic rate (Pnmax), light saturation point (LSP), light compensation point (LCP), apparent quantum yield (AQE) and dark respiration rate (Rd) of Parakmeria lotungensi, Lithocarpus glaber and Carya cathayensis under different treatments of acid rain (mean ± SE)
图2 乐东拟单性木兰(A)、石栎(B)和山核桃(C)在各酸雨处理下的光响应曲线 Pn: 净光合速率 Net photosynthetic rate PPFD: 光合光量子通量密度 Photosynthetic photon quanta flux density
Fig. 2 The light response curves of Parakmeria lotungensi (A), Lithocarpus glaber (B) and Carya cathayensis (C) under different treatments of acid rain
项目 Item | 树种 Species | 重度酸雨胁迫 Severe acid rain (pH 2.5) | 中度酸雨胁迫 Moderate acid rain (pH 4.0) | 对照(CK) Control (pH 5.6) |
---|---|---|---|---|
最大净光合速率 Pnmax (μmol CO2·m-2·s-1) | 乐东拟单性木兰 Parakmeria lotungensi | 9.243±1.465a | 8.463±0.498a | 7.687±0.312ab |
石栎 Lithocarpus glaber | 7.225±0.569ab | 7.893±0.445a | 10.33±1.768a | |
山核桃 Carya cathayensis | 6.532±0.150b | 5.373±0.087b | 6.080±0.306b | |
光饱和点 LSP (μmol·m-2·s-1) | 乐东拟单性木兰 Parakmeria lotungensi | 356.67±85.35 | 189.50±17.51ab | 258.00±61.37a |
石栎 Lithocarpus glaber | 317.75±15.51 | 223.75±26.19a | 270.25±25.06a | |
山核桃 Carya cathayensis | 171.83±15.55 | 147.33±10.97b | 140.43±21.22b | |
光补偿点 LCP (μmol·m-2·s-1) | 乐东拟单性木兰 Parakmeria lotungensi | 16.33±1.408a | 17.23±2.178b | 31.53±6.155 |
石栎 Lithocarpus glaber | 29.17±11.836ab | 10.58±2.150b | 16.43±3.978 | |
山核桃 Carya cathayensis | 51.80±7.446b | 37.27±6.573a | 31.25±5.597 | |
表观量子效率 AQE (CO2·photon-1) | 乐东拟单性木兰 Parakmeria lotungensi | 0.043±0.014 | 0.050±0.003 | 0.040±0.011 |
石栎 Lithocarpus glaber | 0.041±0.010 | 0.040±0.007 | 0.040±0.004 | |
山核桃 Carya cathayensis | 0.056±0.004 | 0.049±0.004 | 0.059±0.007 | |
暗呼吸速率 Rd (μmol·m-2·s-1) | 乐东拟单性木兰 Parakmeria lotungensi | -0.501±0.144a | -0.852±0.105a | -1.130±0.182a |
石栎 Lithocarpus glaber | -1.438±0.648a | -0.459±0.147a | -0.655±0.164ab | |
山核桃 Carya cathayensis | -2.763±0.236b | -1.857±0.403b | -1.733±0.170b |
表1 同一酸雨处理下3种植物的光合特性比较(平均值±标准误差)
Table 1 Comparison of main photosynthetic parameters of three plants under the same treatment of acid rain (mean ± SE)
项目 Item | 树种 Species | 重度酸雨胁迫 Severe acid rain (pH 2.5) | 中度酸雨胁迫 Moderate acid rain (pH 4.0) | 对照(CK) Control (pH 5.6) |
---|---|---|---|---|
最大净光合速率 Pnmax (μmol CO2·m-2·s-1) | 乐东拟单性木兰 Parakmeria lotungensi | 9.243±1.465a | 8.463±0.498a | 7.687±0.312ab |
石栎 Lithocarpus glaber | 7.225±0.569ab | 7.893±0.445a | 10.33±1.768a | |
山核桃 Carya cathayensis | 6.532±0.150b | 5.373±0.087b | 6.080±0.306b | |
光饱和点 LSP (μmol·m-2·s-1) | 乐东拟单性木兰 Parakmeria lotungensi | 356.67±85.35 | 189.50±17.51ab | 258.00±61.37a |
石栎 Lithocarpus glaber | 317.75±15.51 | 223.75±26.19a | 270.25±25.06a | |
山核桃 Carya cathayensis | 171.83±15.55 | 147.33±10.97b | 140.43±21.22b | |
光补偿点 LCP (μmol·m-2·s-1) | 乐东拟单性木兰 Parakmeria lotungensi | 16.33±1.408a | 17.23±2.178b | 31.53±6.155 |
石栎 Lithocarpus glaber | 29.17±11.836ab | 10.58±2.150b | 16.43±3.978 | |
山核桃 Carya cathayensis | 51.80±7.446b | 37.27±6.573a | 31.25±5.597 | |
表观量子效率 AQE (CO2·photon-1) | 乐东拟单性木兰 Parakmeria lotungensi | 0.043±0.014 | 0.050±0.003 | 0.040±0.011 |
石栎 Lithocarpus glaber | 0.041±0.010 | 0.040±0.007 | 0.040±0.004 | |
山核桃 Carya cathayensis | 0.056±0.004 | 0.049±0.004 | 0.059±0.007 | |
暗呼吸速率 Rd (μmol·m-2·s-1) | 乐东拟单性木兰 Parakmeria lotungensi | -0.501±0.144a | -0.852±0.105a | -1.130±0.182a |
石栎 Lithocarpus glaber | -1.438±0.648a | -0.459±0.147a | -0.655±0.164ab | |
山核桃 Carya cathayensis | -2.763±0.236b | -1.857±0.403b | -1.733±0.170b |
[1] | Anderson PD, Houpis JLJ, Helms JA, Momen B (1997). Seasonal variation of gas exchange and pigmentation in branches of three grafted clones of mature Ponderosa pine exposed to ozone and acid rain. Environmental Pollution, 3, 253-263. |
[2] |
Bini C, Bresolin F (1998). Soil acidification by acid rain in forest ecosystems: a case study in northern Italy. Science of the Total Environment, 222, 1-15.
DOI URL |
[3] | Binkley D, Driscoll CT, Allen HL, Schoeneberger P, Mc AD (1989). Acid Deposition and Forest Soils—Context and Case Studies of the Southeastern United States. Springer-Verlag, New York, 470. |
[4] | Bodt SD, Maere S (2005). Genome duplication and the origin of angiosperms. Trends in Ecology and Evolution, 11, 591-596. |
[5] | Cai XA (蔡锡安), Sun GC (孙谷畴), Zhao P (赵平), Zeng XP (曾小平) (2004). The effects of soil water content on photosynthesis in leaves of Kmeria septentrionalis seedlings. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 12, 207-212. (in Chinese with English abstract) |
[6] | Cai YL (蔡永立), Da LJ (达良俊) (2002). Ecological leaf anatomy of six evergreen species of Fagaceae in the eastern subtropical area of China. Chinese Journal of Applied & Environmental Biology (应用与环境生物学报), 8, 460-466. (in Chinese with English abstract) |
[7] | Fan HB (樊后保), Hang YZ (黄玉梓), Yuan YH (袁颖红), Li YY (李燕燕), Huang RZ (黄荣珍), Fan HY (樊海燕) (2007). Carbon cycling of forest ecosystems in response to global nitrogen deposition. Acta Ecologica Sinica (生态学报), 7, 2997-3009. (in Chinese with English abstract) |
[8] | Feng ZW (冯宗炜) (1993). The Impact of Acid Rain on Ecosystems (酸雨对生态系统的影响). Science and Technology Press, Beijing, 10-20. (in Chinese) |
[9] | Ge Y (葛滢), Chang J (常杰), Chen ZH (陈增鸿), Pan XD (潘晓东), Liu K (刘珂) (1999). The relationship between photosynthesis of Lithocarpus glaber and environmental factors. Journal of Zhejiang Forestry Science and Technology (浙江林业科技), 2, 30-35. (in Chinese) |
[10] | Guo CY (郭传友) (2004). Ecological and Genetic Diversity Studies on Carya cathayensis and C. dabieshanensis (山核桃及大别山山核桃生态及遗传多样性研究). PhD dissertation, Nanjing Forestry University, Nanjing. (in Chinese with English abstract) |
[11] | Guo ZF (郭正府), Liu JQ (刘嘉麒) (2002). The research progress of volcano movement and climate change. Advances in Earth Science (地球科学进展), 4, 595-604. (in Chinese) |
[12] | Ke SX (柯世省), Jin ZX (金则新), Chen XT (陈贤田) (2002). Photo-ecological characteristics of six broad-leaved species including Heptacodium miconioides in the Tiantai Mountain in Zhejiang Province. Acta Phytoecologica Sinica (植物生态学报), 26, 363-371. (in Chinese with English abstract) |
[13] | Ke SX (柯世省), Jin ZX (金则新), Lin HQ (林恒琴), Zhang WB (张文标) (2004). Photosynthetic ecophysiological characteristics of Lithocarpus harlandii in Tiantai Mountain of Zhejiang Province, China. Chinese Journal of Ecology (生态学杂志), 23, 1-5. (in Chinese with English abstract) |
[14] | Krassilov VA (2003). Terrestrial Paleoecology and Global Change. Pensoft Publishers, Sofia, Bulgaria, 286-292. |
[15] | Lange OL, Heber U, Schulze ED, Ziegler H (1989). Atmospheric Pollutants and Plant Metabolism: A study of Spruce (Piceaabies) on Acid Soils. Springer-Verlag, New York, 238-252. |
[16] | Leng Q (冷琴), Yang H (杨洪) (2001). Origin of angiosperm: opinion to old problems. Science Communication (科学通讯), 5, 364-369. (in Chinese) |
[17] | Li XX (李星学), Zhou ZY (周志炎), Guo SX (郭双兴) (1981). Development and Evolvement of Vegetable Kingdom (植物界的发展与演化). Science Press, Beijing. (in Chinese) |
[18] | Li ZG (李志国), Weng ML (翁忙玲), Jiang W (姜武), Jiang WB (姜卫兵) (2007). Effect of simulated acid rain on the physiological index of Parakmeria lotungens seedlings. Chinese Journal of Ecology (生态学杂志), 26, 3-4. (in Chinese) |
[19] | Ma M (马淼), Li B (李博), Chen JK (陈家宽) (2006). Convergent adaptation of desert plants to their arid habitats. Acta Ecologica Sinica (生态学报), 11, 3861-3869. (in Chinese with English abstract) |
[20] |
Momen B, Anderson PD, Helms JA (1999). Temperature dependency of acid-rain effect on photosynthesis of Pinus ponderosa. Forest Ecology and Management, 113, 223-230.
DOI URL |
[21] | Qi ZM (齐泽民), Wang XD (王玄德), Song GY (宋光煜) (2004). The research progress of the effect of acid rain on plant. World Science-Technology Research and Development (世界科技研究与发展), 2, 36-41. (in Chinese with English abstract) |
[22] | Qi ZM (齐泽民), Zhong ZC (钟章成) (2006). Effects of simulated acid rain on the photosynthesis, physiology and growth of Eucommia ulmoides Oliv. Journal of Southwest China Normal University (Natural Science Edition) (西南师范大学学报(自然科学版)), 2, 151-156. (in Chinese) |
[23] | Qiu DL (邱栋梁), Liu XH (刘星辉), Guo SZ (郭素枝) (2002a). Regulation functions of calcium on photosynthesis of Dimocarpus longana Lour. cv. Wulon- gling under simulated acid rain stress. Chinese Journal of Applied Ecology (应用生态学报), 13, 1072-1076. (in Chinese with English abstract) |
[24] | Qiu DL (邱栋梁), Liu XH (刘星辉), Guo SZ (郭素枝) (2002b). Effects of simulated acid rain stress on gas exchange and chlorophyll a fluorescence parameters in leaves of longan. Acta Phytoecologica Sinica (植物生态学报), 26, 441-446. (in Chinese with English abstract) |
[25] | Xu ZZ (许振柱), Zhou GS (周广胜) (2007). Relationship between carbon and nitrogen and environmental regulation in plants under global change—from molecule to ecosystem. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 738-741. (in Chinese with English abstract) |
[26] | Xu DC (徐德才) (1995). Contamination and prevention of acid rain—the current of acid rain and prevention countermeasure in Zhejiang Province. Energy Environmental Protection (能源环境保护), 4, 25-28. (in Chinese) |
[27] | Yan CL (严重玲), Li RZ (李瑞智), Zhong ZC (钟章成) (1995). Effect of simulated acid rain on ecophysiological characteristics of mung bean and maize. Chinese Journal of Applied Ecology (应用生态学报), 6, 124-131. (in Chinese with English abstract) |
[28] | Yang Y (杨永), Fu DZ (傅德志), Wang Q (王祺) (2004) . Origin of flowers: hypotheses and evidence. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 12, 2366-2380. (in Chinese with English abstract) |
[29] | Zhang B (张冰) (2000). The geographical distribution and origin of Magnolia. Ecological Science (生态科学), 3, 33-36. (in Chinese) |
[30] | Zhang GS (张光生), Liu Y (刘英), Zhou Q (周青) (2006). Responses of 9 species of herbaceous ornamental to acid rain in chlorophyll content and membrane permeability. Journal of Ecology and Rural Environment (生态与农村环境学报), 22, 83-87. (in Chinese with English abstract) |
[31] | Zhou Q (周青), Huang XH (黄晓华), Liu XL (刘小林) (2002). Stress effects of simulated acid rain on three woody plants. Chinese Journal of Environmental Science (环境科学), 5, 42-46. (in Chinese with English abstract) |
[1] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 邹金莲, 张志强. 性选择与性冲突理论在植物繁殖生态学中的应用与进展[J]. 植物生态学报, 2022, 46(9): 984-994. |
[3] | 黄艳波, 魏宇昆, 王琦, 肖月娥, 叶喜阳. 舌瓣鼠尾草退化杠杆雄蕊的相关花部特征及传粉机制[J]. 植物生态学报, 2015, 39(7): 753-761. |
[4] | 杨海水, 王琪, 郭伊, 熊艳琴, 许明敏, 戴亚军. 丛枝菌根真菌群落与植物系统发育的相关性分析[J]. 植物生态学报, 2015, 39(4): 383-387. |
[5] | 林威鹏, 彭莉, 肖桃艳, 蔡昆争. 植物亲缘识别的研究进展[J]. 植物生态学报, 2015, 39(11): 1110-1121. |
[6] | 吉乃提汗·马木提, 谭敦炎. 被子植物雌全同株性系统: 系统演化、性表达与进化意义[J]. 植物生态学报, 2014, 38(1): 76-90. |
[7] | 张勃, 孙杉, 方强恩, 白小明. 鼠尾草属不同物种的雄蕊杠杆机制对传粉者空间变异的进化响应[J]. 植物生态学报, 2012, 36(7): 681-689. |
[8] | 刘佳, 项文化, 徐晓, 陈瑞, 田大伦, 彭长辉, 方晰. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8): 938-945. |
[9] | 余香琴, 冯玉龙, 李巧明. 外来入侵植物飞机草的研究进展与展望[J]. 植物生态学报, 2010, 34(5): 591-600. |
[10] | 张霜, 张育新, 马克明. 保护性的蚂蚁-植物相互作用及其调节机制研究综述[J]. 植物生态学报, 2010, 34(11): 1344-1353. |
[11] | 谭敦炎, 张洋, 王爱波. 被子植物地下结实和地上/下两型结实的生态适应意义[J]. 植物生态学报, 2010, 34(1): 72-88. |
[12] | 张志强, 李庆军. 花寿命的进化生态学意义[J]. 植物生态学报, 2009, 33(3): 598-606. |
[13] | 龚春梅, 宁蓬勃, 王根轩, 梁宗锁. C3和C4植物光合途径的适应性变化和进化[J]. 植物生态学报, 2009, 33(1): 206-221. |
[14] | 张凤萍, 彭艳琼, 杨大荣. 钝叶榕果实内繁殖的两种榕小蜂与寄主榕树间的协同进化[J]. 植物生态学报, 2008, 32(4): 768-775. |
[15] | 赵学杰, 谭敦炎. 种子植物的选择性败育及其进化生态意义[J]. 植物生态学报, 2007, 31(6): 1007-1018. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19