植物生态学报 ›› 2012, Vol. 36 ›› Issue (7): 681-689.DOI: 10.3724/SP.J.1258.2012.00681
发布日期:
2012-07-10
通讯作者:
张勃
作者简介:
*E-mail: zbsonny@163.com
ZHANG Bo1,2,*(), SUN Shan3, FANG Qiang-En1, BAI Xiao-Ming1
Published:
2012-07-10
Contact:
ZHANG Bo
摘要:
被子植物虫媒传粉植物的物种分化通常被认为是花性状响应传粉环境(传粉者)的空间变异而发生适应性分化的结果。通过对鼠尾草属(Salvia) 3个物种(共4个居群)传粉互作系统的比较, 探索了花性状对不同传粉环境的进化响应。结果表明: 各居群的传粉者组成、主要传粉者类型及其大小各不相同, 杠杆状雄蕊及相关花部性状大小在不同居群间具有显著差异; 各居群均表现出腹部传粉和背部传粉2种传粉模式, 但背部传粉仍然是最有效的传粉方式; 居群间杠杆状雄蕊长度与传粉者体长表现出极显著的正相关, 然而花冠长与传粉者体长表现出负相关; 花冠口高度和柱头高度与传粉者胸厚也表现出一定的协同变异。鼠尾草属植物的杠杆状雄蕊及相关花部性状在传粉系统的进化过程中表现出高度的可塑性, 表明雄蕊杠杆传粉机制对传粉环境的变异非常敏感, 在该属植物的物种分化过程中具有关键作用。
张勃, 孙杉, 方强恩, 白小明. 鼠尾草属不同物种的雄蕊杠杆机制对传粉者空间变异的进化响应. 植物生态学报, 2012, 36(7): 681-689. DOI: 10.3724/SP.J.1258.2012.00681
ZHANG Bo, SUN Shan, FANG Qiang-En, BAI Xiao-Ming. Evolutionary response of staminal lever mechanism of different species in Salvia to spatial variation in pollinators. Chinese Journal of Plant Ecology, 2012, 36(7): 681-689. DOI: 10.3724/SP.J.1258.2012.00681
物种/居群 Species/Population | 毛地黄鼠尾草I S. digitaloides I | 毛地黄鼠尾草II S. digitaloides II | 近掌脉鼠尾草 S. subpalmatinervis | 圆苞鼠尾草 S. cyclostegia | |
---|---|---|---|---|---|
居群描述 Population description | |||||
地点 Location | 丽江干河坝 Ganheba in Lijiang | 丽江甘海子 Ganhaizi in Lijiang | 中甸纳帕海 Napahai in Zhongdian | 丽江文海 Wenhai in Lijiang | |
经纬度 Longitude/Latitude | 27°04.307′ N 100°14.683′ E | 27°00.897′ N 100°14.671′ E | 27°55.377′ N 99°38.060′ E | 27°00.447′ N 100°09.334′ E | |
海拔 Altitude (m) | 3 200 ± 10 | 2 660 ± 10 | 3 350 ± 10 | 3 160 ± 25 | |
花期 Flowering period | 7-9月 July-Sept. | 4-5月 Apr.-May | 7-8月 July-Aug. | 5月 May | |
花部性状 Floral trait (mm) | n = 86 | n = 33 | n = 53 | n = 36 | |
冠长 Corolla length | 32.14 ± 0.23a | 30.81 ± 0.30ab | 31.58 ± 0.42ab | 30.19 ± 0.37b | |
雄蕊杠杆长 Stamen lever length | 4.55 ± 0.05c | 5.25 ± 0.07b | 4.66 ± 0.08c | 5.83 ± 0.06a | |
冠口高 Corolla entrance height | 5.30 ± 0.05c | 6.02 ± 0.10b | 5.37 ± 0.07c | 6.48 ± 0.10a | |
柱高 Stigma height | 5.53 ± 0.12b | 6.70 ± 0.17a | 4.36 ± 0.13c | 6.99 ± 0.21a | |
柱头探出距离 Style exertion | 3.95 ± 0.10b | 4.41 ± 0.17ab | 4.81 ± 0.13a | 4.47 ± 0.24ab |
表1 鼠尾草不同物种居群的概况和花部性状比较(平均值±标准误差)
Table 1 Floral traits and information of different populations in Salvia (mean ± SE)
物种/居群 Species/Population | 毛地黄鼠尾草I S. digitaloides I | 毛地黄鼠尾草II S. digitaloides II | 近掌脉鼠尾草 S. subpalmatinervis | 圆苞鼠尾草 S. cyclostegia | |
---|---|---|---|---|---|
居群描述 Population description | |||||
地点 Location | 丽江干河坝 Ganheba in Lijiang | 丽江甘海子 Ganhaizi in Lijiang | 中甸纳帕海 Napahai in Zhongdian | 丽江文海 Wenhai in Lijiang | |
经纬度 Longitude/Latitude | 27°04.307′ N 100°14.683′ E | 27°00.897′ N 100°14.671′ E | 27°55.377′ N 99°38.060′ E | 27°00.447′ N 100°09.334′ E | |
海拔 Altitude (m) | 3 200 ± 10 | 2 660 ± 10 | 3 350 ± 10 | 3 160 ± 25 | |
花期 Flowering period | 7-9月 July-Sept. | 4-5月 Apr.-May | 7-8月 July-Aug. | 5月 May | |
花部性状 Floral trait (mm) | n = 86 | n = 33 | n = 53 | n = 36 | |
冠长 Corolla length | 32.14 ± 0.23a | 30.81 ± 0.30ab | 31.58 ± 0.42ab | 30.19 ± 0.37b | |
雄蕊杠杆长 Stamen lever length | 4.55 ± 0.05c | 5.25 ± 0.07b | 4.66 ± 0.08c | 5.83 ± 0.06a | |
冠口高 Corolla entrance height | 5.30 ± 0.05c | 6.02 ± 0.10b | 5.37 ± 0.07c | 6.48 ± 0.10a | |
柱高 Stigma height | 5.53 ± 0.12b | 6.70 ± 0.17a | 4.36 ± 0.13c | 6.99 ± 0.21a | |
柱头探出距离 Style exertion | 3.95 ± 0.10b | 4.41 ± 0.17ab | 4.81 ± 0.13a | 4.47 ± 0.24ab |
图1 鼠尾草花部性状测量示意图。A, 花的侧面图。B, 雄蕊杠杆放大图。C, 花的正面图。ceh, 冠口高; cew, 冠口宽; cl, 花冠长; se, 柱头探出距离; sll, 雄蕊杠杆长度; sth, 柱头高度。
Fig. 1 Morphometrics of flower in Salvia. A, side view of a flower. B, enlarged view of stamen lever. C, front view of a flower. ceh, corolla entrance height; cew, corolla entrance width; cl, corolla length; se, style exsertion; sll, stamen lever length; sth, stigma height.
居群Population | 传粉者 Pollinator assemblage | 传粉者大小 Pollinator’s body size (mm) | 相对频次 Frequency | 单花访花时间 Visit time per flower (s) | 访花率指数 Visitation rate index | 传粉方式 Pollination mode | ||
---|---|---|---|---|---|---|---|---|
体长 Body length | 胸厚 Body thickness | 喙长 Tongue length | ||||||
毛地黄鼠尾草I S. digitaloides Population I | ||||||||
Bombus friseanus ? | 15.97 ± 0.55 | 4.97 ± 0.08 | 4.33 ± 0.16 | 0.65 | 15.50 ± 1.92 | 2.36 | D/V | |
B. personatus | 20.54 ± 0.91 | 5.27 ± 0.06 | 10.71 ± 1.21 | 0.09 | 2.55 ± 0.22 | 2.12 | D | |
B. infrequens | 15.16 ± 0.76 | 4.40 ± 0.18 | 4.96 ± 0.82 | 0.26 | 17.1 ± 1.23 | 0.91 | D | |
毛地黄鼠尾草II S. digitaloides Population II | ||||||||
Psithyrus sp. ? | 23.11 ± 1.41 | 7.43 ± 0.27 | 5.17 ± 0.07 | 0.57 | 8.68 ± 0.90 | 3.94 | D | |
B. lepidus | 13.55 ± 0.46 | 4.46 ± 0.16 | 3.70 ± 0.37 | 0.20 | 15.57 ± 1.20 | 0.77 | D/V | |
B. infrequens | 14.78 | 4.46 | 3.02 | < 0.20 | - | - | D | |
近掌脉鼠尾草 S. subpalmatinervis | ||||||||
B. friseanus ? | 16.60 ± 0.28 | 5.06 ± 0.12 | 4.49 ± 0.3 | 0.87 | 13.58 ± 0.91 | 3.84 | D/V | |
B. personatus | 18.76 ± 1.32 | 5.28 ± 0.04 | 10.30 ± 1 | 0.10 | 4.21 ± 0.40 | 1.42 | D | |
B. atrocinctus | 18.00 ± 0.15 | 5.96 ± 0.15 | 5.38 ± 0.09 | < 0.03 | - | - | D | |
圆苞鼠尾草 S. cyclostegia | ||||||||
B. friseanus | 14.14 ± 0.32 | 4.36 ± 0.16 | 4.44 ± 0.42 | 0.05 | 11.77 ± 0.75 | 0.24 | V/D | |
B. personatus ? | 27.29 ± 0.96 | 7.22 ± 0.09 | 12.49 ± 1.01 | 0.90 | 3.53 ± 0.15 | 15.30 | D | |
B. remotus | 17.61 ± 0.14 | 6.03 ± 0.08 | 6.29 ± 0.48 | 0.05 | 10.89 ± 1.54 | 0.28 | D |
表2 鼠尾草各居群的传粉者组成、体型指标、访花模式和访花效率(平均值±标准误差)
Table 2 Pollinator assemblage and body morphometrics, modes and efficiency of pollination of different pollinator in each population of Salvia (mean ± SE)
居群Population | 传粉者 Pollinator assemblage | 传粉者大小 Pollinator’s body size (mm) | 相对频次 Frequency | 单花访花时间 Visit time per flower (s) | 访花率指数 Visitation rate index | 传粉方式 Pollination mode | ||
---|---|---|---|---|---|---|---|---|
体长 Body length | 胸厚 Body thickness | 喙长 Tongue length | ||||||
毛地黄鼠尾草I S. digitaloides Population I | ||||||||
Bombus friseanus ? | 15.97 ± 0.55 | 4.97 ± 0.08 | 4.33 ± 0.16 | 0.65 | 15.50 ± 1.92 | 2.36 | D/V | |
B. personatus | 20.54 ± 0.91 | 5.27 ± 0.06 | 10.71 ± 1.21 | 0.09 | 2.55 ± 0.22 | 2.12 | D | |
B. infrequens | 15.16 ± 0.76 | 4.40 ± 0.18 | 4.96 ± 0.82 | 0.26 | 17.1 ± 1.23 | 0.91 | D | |
毛地黄鼠尾草II S. digitaloides Population II | ||||||||
Psithyrus sp. ? | 23.11 ± 1.41 | 7.43 ± 0.27 | 5.17 ± 0.07 | 0.57 | 8.68 ± 0.90 | 3.94 | D | |
B. lepidus | 13.55 ± 0.46 | 4.46 ± 0.16 | 3.70 ± 0.37 | 0.20 | 15.57 ± 1.20 | 0.77 | D/V | |
B. infrequens | 14.78 | 4.46 | 3.02 | < 0.20 | - | - | D | |
近掌脉鼠尾草 S. subpalmatinervis | ||||||||
B. friseanus ? | 16.60 ± 0.28 | 5.06 ± 0.12 | 4.49 ± 0.3 | 0.87 | 13.58 ± 0.91 | 3.84 | D/V | |
B. personatus | 18.76 ± 1.32 | 5.28 ± 0.04 | 10.30 ± 1 | 0.10 | 4.21 ± 0.40 | 1.42 | D | |
B. atrocinctus | 18.00 ± 0.15 | 5.96 ± 0.15 | 5.38 ± 0.09 | < 0.03 | - | - | D | |
圆苞鼠尾草 S. cyclostegia | ||||||||
B. friseanus | 14.14 ± 0.32 | 4.36 ± 0.16 | 4.44 ± 0.42 | 0.05 | 11.77 ± 0.75 | 0.24 | V/D | |
B. personatus ? | 27.29 ± 0.96 | 7.22 ± 0.09 | 12.49 ± 1.01 | 0.90 | 3.53 ± 0.15 | 15.30 | D | |
B. remotus | 17.61 ± 0.14 | 6.03 ± 0.08 | 6.29 ± 0.48 | 0.05 | 10.89 ± 1.54 | 0.28 | D |
图2 花部性状与主要传粉者体型大小在居群间的变异关系。A, 花冠长与传粉者体长的变异关系(r = -0.97, p = 0.024)。B, 雄蕊杠杆长与传粉者体长的变异关系(r = 0.99, p = 0.004)。C, 花冠口高与传粉者胸厚的变异关系(r = 0.92, p = 0.08)。D, 柱头高度与传粉者胸厚的变异关系(r = 0.89, p = 0.10)。
Fig. 2 Variation relationship of floral traits to body size of main pollinator’s among populations. A, relationship between corolla length and pollinator’s body length (r = -0.97, p = 0.024). B, relationship between staminal lever length and pollinator’s body length (r = 0.99, p = 0.004). C, relationship between corolla entrance height and pollinator’s body thickness (r = 0.92, p = 0.08). D, relationship between stigma height and pollinator’s body thickness (r = 0.89, p = 0.10).
图3 鼠尾草各居群不同传粉者的传粉模式。毛地黄鼠尾草(干河坝)居群I: 背部传粉(A、C)和腹部传粉(B); 毛地黄鼠尾草(甘海子)居群II: 背部传粉(D); 圆苞鼠尾草居群: 背部传粉(E)和腹部传粉(F); 近掌脉鼠尾草居群: 背部传粉(G、I)和腹部传粉(H)。
Fig. 3 Pollination modes of different pollinators in each population of Salvia. Population I of S. digitaloides in Ganheba: dorsal pollinations by bigger Bombus friseanus (A) and B. personatus (C), and ventral pollinations by smaller B. friseanus (B); population II of S. digitaloides in Dongbagu: dorsal pollination by Psithyrus sp. (D); population of S. cyclostegia: dorsal pollinations by B. personatus (E) and ventral pollinations by smaller B. friseanus (F); population of S. subpalmatinervis: dorsal pollinations by bigger B. friseanus (G) and B. personatus (I), and ventral pollinations by smaller B. friseanus (H).
[1] | Aigner PA (2001). Optimality modeling and fitness trade-offs: When should plants become pollinator specialists? Oikos, 95, 177-184. |
[2] |
Armbruster WS (1985). Patterns of character divergence and the evolution of reproductive ecotypes of Dalechampia scandens (Euphorbiaceae). Evolution, 39, 733-752.
URL PMID |
[3] | Barrett SCH, Wilken DH, Cole WW (2000). Heterostyly in the Lamiaceae: the case of Salvia brandegeei. Plant Systematics and Evolution, 223, 211-219. |
[4] | Campbell DR (2008). Pollinator shifts and the origin and loss of plant species. Annals of the Missouri Botanical Garden, 95, 264-274. |
[5] | Claßen-Bockhoff R, Crone M, Baikova E (2004a). Stamen development in Salvia L.: homology reinvestigated. International Journal of Plant Sciences, 165, 475-498. |
[6] | Claßen-Bockhoff R, Speck T, Tweraser E, Wester P, Thimm S, Reith M (2004b). The staminal lever mechanism in Salvia L. (Lamiaceae): A key innovation for adaptive radiation? Organisms, Diversity and Evolution, 4, 189-205. |
[7] | Claßen-Bockhoff R, Wester P, Tweraser E (2003). The stam- inal lever mechanism in Salvia L. (Lamiaceae): a review. Plant Biology, 5, 33-41. |
[8] | Darwin CR (1862). On the Various Contrivances by Which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing. Murray London. |
[9] | Darwin CR (1876). The Effects of Cross and Self Fertilization in the Vegetable Kingdom. John Murray London. |
[10] | Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004). Pollination syndromes and floral specializa- tion. Annual Review of Ecology, Evolution and Systematics, 35, 375-403. |
[11] | Fenster CB, Dudash MR (2001). Spatiotemporal variation in the role of hummingbirds as pollinators of Silene vir- ginica. Ecology, 82, 844-851. |
[12] | Fishbein M, Venable DL (1996). Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology, 77, 1061-1073. |
[13] | Gegear RJ, Laverty TM (2001). The effect of variation among floral traits on the flower constancy of pollinators. In: Chittka L, Thomson JD eds. Cognitive Ecology of Pollina- tion: Animal Behavior and Floral Evolution, Cambridge University Press, Cambridge, UK. 1-20. |
[14] | Harder LD, Johnson SD (2009). Darwin’s beautiful contriv- ances: evolutionary and functional evidence for floral adaptation. New Phytologist, 183, 530-545. |
[15] | Harder LD, Thomson JD (1989). Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. The American Naturalist, 133, 323-344. |
[16] | Herrera CM, Castellanos MC, Medrano M (2006). Geographi- cal context of floral evolution: towards an improved research programme in floral diversification. In: Harder LD, Barrett SCH eds. Ecology and Evolution of Flowers, Oxford University Press, Oxford. 278-294. |
[17] | Huang SQ, Guo YH (2000). New advances in pollination biology and the studies in China. Chinese Science Bulletin, 45, 1441-1447. |
[18] |
Mitchell RJ, Irwin RE, Flanagan RJ, Karron JD (2009). Ecology and evolution of plant-pollinator interactions. Annals of Botany, 103, 1355-1363.
DOI URL PMID |
[19] |
Ohashi K (2002). Consequences of floral complexity for bum- blebee-mediated geitonogamous self-pollination in Salvia nipponica Miq. (Labiatae). Evolution, 56, 2414-2423.
DOI URL PMID |
[20] |
Olsen KM (1997). Pollination effectiveness and pollinator importance in a population of Heterotheca subaxillaris (Asteraceae). Oecologia, 109, 114-121.
DOI URL PMID |
[21] |
Pauw A, Stofberg J, Waterman RJ (2009). Flies and flowers in Darwin’s race. Evolution, 63, 268-279.
URL PMID |
[22] | R Development Core Team. R: A Language and Envi- ronment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 http://www.R-project.org/.Cited,6 April 2012. |
[23] |
Reith M, Baumann G, Claßen-Bockhoff R, Speck T (2007). New insights into the functional morphology of the lever mechanism of Salvia pratensis (Lamiaceae) Annals of Botany, 100, 393-400.
DOI URL PMID |
[24] |
Schemske DW, Horvitz CC (1989). Temporal variation in selection on a floral character. Evolution, 43, 461-465.
DOI URL PMID |
[25] | Sprengel CK (1793). Das Entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. , F. Vieweg Berlin. |
[26] |
Stebbins GL (1970). Adaptive radiation of reproductive char- acteristics in angiosperms, I: pollination mechanisms. Annual Review of Ecology and Systematics, 1, 307-326.
DOI URL |
[27] | Stebbins GL (1974). Flowering Plants: Evolution Above the Species Level. Belknap Press of Harvard University. Cambridge, USA: |
[28] |
Talavera S, Bastida F, Ortiz PL, Arista M (2001). Pollinator attendance and reproductive success in Cistus libanotis L. (Cistaceae). International Journal of Plant Science, 162, 343-352.
DOI URL |
[29] |
Tandon R, Shivanna KR, Ram HYM (2003). Reproductive biology of Butea monosperma (Fabaceae). Annals of Botany, 92, 715-723.
URL PMID |
[30] | Thompson JN (1994). The Coevolutionary Process. University of Chicago Press, Chicago. |
[31] |
Walker JB, Sytsma KJ (2007). Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Annals of Botany, 100, 375-391.
DOI URL PMID |
[32] | Wang LL (王林林), Zhao MF (赵明富), Wang Y (王赟), Duan YW (段元文), Yang YP (杨永平) (2011). A preliminary study on geographical variations in floral traits of Halenia elliptica (Gentianaceae) based on herbaria. Plant Diversity and Resources (植物分类与资源学报), 33, 503-508. (in Chinese with English abstract) |
[33] | Wester P, Claßen-Bockhoff R (2006). Bird pollination in South African Salvia species. Flora-Morphology, Distribution, Functional Ecology of Plants, 201, 396-406. |
[34] |
Whittall JB, Hodges SA (2007). Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature, 447, 706-709.
URL PMID |
[35] | Zhang B (张勃), Sun S (孙杉), Zhang ZQ (张志强), Li QJ (李庆军) (2010). A review of the evolutionary and ecological significance of lever-like stamens. Chinese Journal of Plant Ecology (植物生态学报), 34, 89-99. (in Chinese with English abstract) |
[36] | Zhang B, Claßen-Bockhoff R, Zhang ZQ, Sun S, Luo YJ, Li QJ (2011). Functional implications of the staminal lever mechanism in Salvia cyclostegia (Lamiaceae). Annals of Botany, 107, 621-628. |
[1] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[2] | 哈里布努尔, 古丽扎尔·阿不都克力木, 热依拉穆·麦麦提吐尔逊, 艾沙江·阿不都沙拉木. 黑果枸杞两种花型的花部综合征与传粉特性[J]. 植物生态学报, 2022, 46(9): 1050-1063. |
[3] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[4] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[5] | 张迪, 都业勤, 王磊, 陈鑫, 闫兴富, 唐占辉. 两种生境间大花百合不同性别表型开花及传粉特征的差异[J]. 植物生态学报, 2022, 46(5): 580-592. |
[6] | 阿依古丽•阿卜杜热伊木, 焦芳芳, 张爱勤. 异型花柱植物喀什补血草的传粉者功能群与花粉转移效率[J]. 植物生态学报, 2021, 45(1): 51-61. |
[7] | 张亭, 王波, 苗白鸽, 彭艳琼. 榕树隐头花序挥发物组成及其传粉榕小蜂寄主识别行为[J]. 植物生态学报, 2017, 41(5): 549-558. |
[8] | 黄艳波, 魏宇昆, 王琦, 肖月娥, 叶喜阳. 舌瓣鼠尾草退化杠杆雄蕊的相关花部特征及传粉机制[J]. 植物生态学报, 2015, 39(7): 753-761. |
[9] | 吴云, 刘玉蓉, 彭瀚, 杨勇, 刘光立, 操国兴, 张强. 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究[J]. 植物生态学报, 2015, 39(1): 1-13. |
[10] | 田润炜,陆嘉惠,李学禹,余营,谢良碧,秦忠立. 光果甘草二体雄蕊的发育及其适应意义[J]. 植物生态学报, 2013, 37(7): 641-649. |
[11] | 任明迅. 两性花的雄蕊运动: 多样性和适应意义[J]. 植物生态学报, 2010, 34(7): 867-875. |
[12] | 张霜, 张育新, 马克明. 保护性的蚂蚁-植物相互作用及其调节机制研究综述[J]. 植物生态学报, 2010, 34(11): 1344-1353. |
[13] | 张勃, 孙杉, 张志强, 李庆军. 杠杆状雄蕊及其进化生态学意义[J]. 植物生态学报, 2010, 34(1): 89-99. |
[14] | 侯勤正, 段元文, 司庆文, 杨慧玲. 青藏高原晚期开花植物线叶龙胆的传粉生态学[J]. 植物生态学报, 2009, 33(6): 1156-1164. |
[15] | 张志强, 李庆军. 花寿命的进化生态学意义[J]. 植物生态学报, 2009, 33(3): 598-606. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19