植物生态学报 ›› 2012, Vol. 36 ›› Issue (7): 690-696.DOI: 10.3724/SP.J.1258.2012.00690
发布日期:
2012-07-10
通讯作者:
陈为峰
作者简介:
*E-mail: chwf@sdau.edu.cn
ZHANG Cheng-Xiang, CHEN Wei-Feng*()
Published:
2012-07-10
Contact:
CHEN Wei-Feng
摘要:
美人蕉(Canna indica)是我国城区普遍栽植兼具绿化、观赏和净化环境等重要价值的地被植物。为研究美人蕉对Cd的胁迫反应及积累特性, 使用盆栽方法对美人蕉进行不同含量水平Cd处理, 测定其生长过程中部分形态、生态、生理指标的变化和收获后体内Cd含量。结果表明, Cd含量小于1 mg·kg-1时对美人蕉生长影响不大, 大于5 mg·kg-1时抑制美人蕉生长。Cd含量小于5 mg·kg-1时延长了美人蕉的花期。随着Cd含量的增大, 美人蕉根系活力、叶绿素含量和含水量逐渐降低, 可溶性糖含量先升高后降低, 游离脯氨酸含量和细胞膜透性逐渐升高。Cd在美人蕉体内的分布为根系>地上部分, 随着Cd含量的增大, 美人蕉根系和地上部分Cd含量逐渐升高、富集系数和转运系数逐渐降低; Cd含量为20 mg·kg-1时美人蕉对Cd的积累量最大, 为5.89 mg·株-1。综合分析美人蕉的生长、生理生态变化及富集Cd的能力, 美人蕉适于土壤Cd含量小于1 mg·kg-1条件下的园林应用。
张呈祥, 陈为峰. 美人蕉对镉的胁迫反应及积累特性. 植物生态学报, 2012, 36(7): 690-696. DOI: 10.3724/SP.J.1258.2012.00690
ZHANG Cheng-Xiang, CHEN Wei-Feng. Stress responses of Canna indica to Cd and its accumulation of Cd. Chinese Journal of Plant Ecology, 2012, 36(7): 690-696. DOI: 10.3724/SP.J.1258.2012.00690
Cd2+处理浓度 Cd2+ treatment concentration (mg·kg-1) | 叶面积 Leaf area (cm2) | 分蘖数 Tiller number | 地上生物量 Shoot biomass (g) | 根系生物量 Root biomass (g) | 绿期 Green period (d) | 花期 Flowering period (d) |
---|---|---|---|---|---|---|
0 | 683.3 ± 20.77a | 6.7 ± 0.67ab | 80.2 ± 2.90a | 63.7 ± 1.42a | 201.0 ± 2.52a | 47.3 ± 1.45bc |
0.5 | 688.5 ± 36.09a | 7.0 ± 0.57a | 76.9 ± 0.29a | 57.7 ± 2.44b | 203.3 ± 7.45a | 48.7 ± 1.76bc |
1 | 658.3 ± 14.30a | 6.3 ± 0.88ab | 75.9 ± 0.09ab | 58.5 ± 1.04ab | 196.0 ± 6.51a | 49.7 ± 1.86b |
5 | 655.2 ± 36.03a | 5.7 ± 0.67ab | 74.7 ± 0.67ab | 57.6 ± 2.27b | 200.7 ± 4.37a | 54.0 ± 1.16a |
10 | 639.6 ± 9.01a | 5.0 ± 0.58ab | 70.9 ± 2.14b | 48.6 ± 2.81c | 190.3 ± 7.42a | 46.7 ± 0.88c |
20 | 623.0 ± 9.92a | 4.3 ± 0.67b | 64.5 ± 0.61c | 33.6 ± 1.68d | 184.3 ± 2.33a | 46.3 ± 1.45c |
表1 Cd处理下美人蕉的生长状况(平均值±标准误差)
Table 1 Growth status of Canna indica under treatment of Cd (mean ± SE)
Cd2+处理浓度 Cd2+ treatment concentration (mg·kg-1) | 叶面积 Leaf area (cm2) | 分蘖数 Tiller number | 地上生物量 Shoot biomass (g) | 根系生物量 Root biomass (g) | 绿期 Green period (d) | 花期 Flowering period (d) |
---|---|---|---|---|---|---|
0 | 683.3 ± 20.77a | 6.7 ± 0.67ab | 80.2 ± 2.90a | 63.7 ± 1.42a | 201.0 ± 2.52a | 47.3 ± 1.45bc |
0.5 | 688.5 ± 36.09a | 7.0 ± 0.57a | 76.9 ± 0.29a | 57.7 ± 2.44b | 203.3 ± 7.45a | 48.7 ± 1.76bc |
1 | 658.3 ± 14.30a | 6.3 ± 0.88ab | 75.9 ± 0.09ab | 58.5 ± 1.04ab | 196.0 ± 6.51a | 49.7 ± 1.86b |
5 | 655.2 ± 36.03a | 5.7 ± 0.67ab | 74.7 ± 0.67ab | 57.6 ± 2.27b | 200.7 ± 4.37a | 54.0 ± 1.16a |
10 | 639.6 ± 9.01a | 5.0 ± 0.58ab | 70.9 ± 2.14b | 48.6 ± 2.81c | 190.3 ± 7.42a | 46.7 ± 0.88c |
20 | 623.0 ± 9.92a | 4.3 ± 0.67b | 64.5 ± 0.61c | 33.6 ± 1.68d | 184.3 ± 2.33a | 46.3 ± 1.45c |
图2 不同Cd处理条件下美人蕉净光合速率和蒸腾速率的日变化(平均值±标准误差)。
Fig. 2 Diurnal changes of net photosynthesis rate and transpiration rate of Canna indica under different treatment of Cd (mean ± SE).
Cd2+处理浓度 Cd2+ treatment concentration (mg·kg-1) | P (μmol) | WCO2 (g) | WO2 (g) | E (mol) | ΔT (℃) | Δf (%) |
---|---|---|---|---|---|---|
0 | 53.14 ± 3.54a | 1.87 ± 0.13a | 1.36 ± 0.09a | 22.90 ± 0.43a | 0.81 ± 0.02a | 1.81 ± 0.03a |
0.5 | 51.29 ± 2.70ab | 1.80 ± 0.09a | 1.31 ± 0.07ab | 22.40 ± 0.30ab | 0.79 ± 0.01ab | 1.76 ± 0.01ab |
1 | 51.33 ± 2.87ab | 1.81 ± 0.10a | 1.31 ± 0.07ab | 21.17 ± 1.05bc | 0.74 ± 0.04bc | 1.65 ± 0.09bc |
5 | 48.61 ± 2.86ab | 1.71 ± 0.10ab | 1.25 ± 0.07ab | 20.03 ± 0.41cd | 0.70 ± 0.01c | 1.57 ± 0.03cd |
10 | 44.80 ± 1.77bc | 1.58 ± 0.06bc | 1.15 ± 0.05bc | 19.79 ± 0.28d | 0.70 ± 0.01c | 1.55 ± 0.03cd |
20 | 41.69 ± 1.06c | 1.47 ± 0.04c | 1.07 ± 0.03c | 18.36 ± 0.34e | 0.65 ± 0.02d | 1.44 ± 0.03d |
表2 Cd处理下美人蕉的生态效应(平均值±标准误差)
Table 2 Ecological effects of Canna indica under treatment of Cd (mean ± SE)
Cd2+处理浓度 Cd2+ treatment concentration (mg·kg-1) | P (μmol) | WCO2 (g) | WO2 (g) | E (mol) | ΔT (℃) | Δf (%) |
---|---|---|---|---|---|---|
0 | 53.14 ± 3.54a | 1.87 ± 0.13a | 1.36 ± 0.09a | 22.90 ± 0.43a | 0.81 ± 0.02a | 1.81 ± 0.03a |
0.5 | 51.29 ± 2.70ab | 1.80 ± 0.09a | 1.31 ± 0.07ab | 22.40 ± 0.30ab | 0.79 ± 0.01ab | 1.76 ± 0.01ab |
1 | 51.33 ± 2.87ab | 1.81 ± 0.10a | 1.31 ± 0.07ab | 21.17 ± 1.05bc | 0.74 ± 0.04bc | 1.65 ± 0.09bc |
5 | 48.61 ± 2.86ab | 1.71 ± 0.10ab | 1.25 ± 0.07ab | 20.03 ± 0.41cd | 0.70 ± 0.01c | 1.57 ± 0.03cd |
10 | 44.80 ± 1.77bc | 1.58 ± 0.06bc | 1.15 ± 0.05bc | 19.79 ± 0.28d | 0.70 ± 0.01c | 1.55 ± 0.03cd |
20 | 41.69 ± 1.06c | 1.47 ± 0.04c | 1.07 ± 0.03c | 18.36 ± 0.34e | 0.65 ± 0.02d | 1.44 ± 0.03d |
Cd2+处理浓度 Cd2+ treatment concentration (mg·kg-1) | 叶绿素a/b Chlorophyll a/b | 叶绿素含量 Chlorophyll content (mg·g-1) | 根系活力 Root activity (μg·g-1·h-1) | 细胞膜透性 Permeability of cell membrane | 含水量 Water content (%) | 游离脯氨酸含量 Free proline content (μg·g-1) | 可溶性糖含量 Soluble sugar content (μg·g-1) |
---|---|---|---|---|---|---|---|
0 | 3.45 ± 0.25a | 1.59 ± 0.15a | 5.74 ± 0.19a | 0.27 ± 0.01c | 84.1 ± 1.30a | 87.4 ± 12.80d | 2 198.6 ± 39.80bc |
0.5 | 3.54 ± 0.23a | 1.54 ± 0.02a | 5.48 ± 0.31ab | 0.30 ± 0.05c | 82.5 ± 1.18a | 155.7 ± 8.32cd | 2 089.6 ± 41.38bc |
1 | 4.30 ± 0.54a | 1.52 ± 0.20a | 5.48 ± 0.51ab | 0.40 ± 0.02b | 81.2 ± 2.58a | 175.3 ± 4.07bcd | 2 385.4 ± 36.92b |
5 | 5.12 ± 0.31a | 1.30 ± 0.09a | 5.30 ± 0.15ab | 0.41 ± 0.01b | 82.4 ± 1.18a | 243.2 ± 31.26abc | 3 068.6 ± 131.90a |
10 | 4.59 ± 0.52a | 1.31 ± 0.06a | 4.72 ± 0.27ab | 0.45 ± 0.02ab | 74.4 ± 1.63b | 256.5 ± 41.32ab | 2 330.6 ± 330.21b |
20 | 4.60 ± 0.10a | 1.26 ± 0.16a | 4.49 ± 0.42ab | 0.51 ± 0.01a | 74.2 ± 2.09b | 273.0 ± 37.17a | 1 752.2 ± 101.85c |
表3 Cd处理下美人蕉部分生理和生化指标的变化(平均值±标准误差)
Table 3 Changes of some physiological and biochemical indexes of Canna indica under treatment of Cd (mean ± SE)
Cd2+处理浓度 Cd2+ treatment concentration (mg·kg-1) | 叶绿素a/b Chlorophyll a/b | 叶绿素含量 Chlorophyll content (mg·g-1) | 根系活力 Root activity (μg·g-1·h-1) | 细胞膜透性 Permeability of cell membrane | 含水量 Water content (%) | 游离脯氨酸含量 Free proline content (μg·g-1) | 可溶性糖含量 Soluble sugar content (μg·g-1) |
---|---|---|---|---|---|---|---|
0 | 3.45 ± 0.25a | 1.59 ± 0.15a | 5.74 ± 0.19a | 0.27 ± 0.01c | 84.1 ± 1.30a | 87.4 ± 12.80d | 2 198.6 ± 39.80bc |
0.5 | 3.54 ± 0.23a | 1.54 ± 0.02a | 5.48 ± 0.31ab | 0.30 ± 0.05c | 82.5 ± 1.18a | 155.7 ± 8.32cd | 2 089.6 ± 41.38bc |
1 | 4.30 ± 0.54a | 1.52 ± 0.20a | 5.48 ± 0.51ab | 0.40 ± 0.02b | 81.2 ± 2.58a | 175.3 ± 4.07bcd | 2 385.4 ± 36.92b |
5 | 5.12 ± 0.31a | 1.30 ± 0.09a | 5.30 ± 0.15ab | 0.41 ± 0.01b | 82.4 ± 1.18a | 243.2 ± 31.26abc | 3 068.6 ± 131.90a |
10 | 4.59 ± 0.52a | 1.31 ± 0.06a | 4.72 ± 0.27ab | 0.45 ± 0.02ab | 74.4 ± 1.63b | 256.5 ± 41.32ab | 2 330.6 ± 330.21b |
20 | 4.60 ± 0.10a | 1.26 ± 0.16a | 4.49 ± 0.42ab | 0.51 ± 0.01a | 74.2 ± 2.09b | 273.0 ± 37.17a | 1 752.2 ± 101.85c |
Cd2+处理浓度 Cd2+ treatment concentration (mg·kg-1) | Cd积累浓度 Cd accumulation concentration (mg·kg-1) | 富集系数 Accumulator factor | 转运系数 Translocation factor | Cd积累量 Cd accumulation (μg·株-1) | ||||
---|---|---|---|---|---|---|---|---|
地上部分 Shoot | 根系 Root | 地上部分 Shoot | 根系 Root | 地上部分 Shoot | 根系 Root | |||
0 | 0.90 ± 0.01e | 1.22 ± 0.10e | 10.8 ± 0.08a | 14.70 ± 1.24a | 0.74 ± 0.06a | 71.98 ± 3.15e | 77.97 ± 8.05e | |
0.5 | 2.23 ± 0.02de | 3.17 ± 0.02de | 4.47 ± 0.03b | 6.35 ± 0.05b | 0.71 ± 0.01a | 171.78 ± 1.76de | 183.03 ± 6.63de | |
1 | 3.56 ± 0.07d | 5.48 ± 0.14d | 3.56 ± 0.67c | 5.48 ± 0.15bc | 0.65 ± 0.03ab | 270.36 ± 5.02d | 320.62 ± 12.88d | |
5 | 15.69 ± 0.15c | 26.66 ± 0.33c | 3.14 ± 0.03d | 5.33 ± 0.07bc | 0.59 ± 0.01bc | 1 172.05 ± 15.78c | 1 534.92 ± 54.22c | |
10 | 27.08 ± 0.25b | 50.16 ± 0.80b | 2.71 ± 0.02e | 5.02 ± 0.08bc | 0.54 ± 0.01cd | 1 918.41 ± 50.23b | 2 431.68 ± 103.96b | |
20 | 43.91 ± 1.64a | 91.20 ± 2.42a | 2.20 ± 0.08f | 4.56 ± 0.2c | 0.48 ± 0.03d | 2 830.75 ± 106.62a | 3 059.70 ± 76.23a |
表4 在美人蕉体内Cd的积累和分布情况(平均值±标准误差)
Table 4 Accumulation and distributing of Cd in Canna indica (mean ± SE)
Cd2+处理浓度 Cd2+ treatment concentration (mg·kg-1) | Cd积累浓度 Cd accumulation concentration (mg·kg-1) | 富集系数 Accumulator factor | 转运系数 Translocation factor | Cd积累量 Cd accumulation (μg·株-1) | ||||
---|---|---|---|---|---|---|---|---|
地上部分 Shoot | 根系 Root | 地上部分 Shoot | 根系 Root | 地上部分 Shoot | 根系 Root | |||
0 | 0.90 ± 0.01e | 1.22 ± 0.10e | 10.8 ± 0.08a | 14.70 ± 1.24a | 0.74 ± 0.06a | 71.98 ± 3.15e | 77.97 ± 8.05e | |
0.5 | 2.23 ± 0.02de | 3.17 ± 0.02de | 4.47 ± 0.03b | 6.35 ± 0.05b | 0.71 ± 0.01a | 171.78 ± 1.76de | 183.03 ± 6.63de | |
1 | 3.56 ± 0.07d | 5.48 ± 0.14d | 3.56 ± 0.67c | 5.48 ± 0.15bc | 0.65 ± 0.03ab | 270.36 ± 5.02d | 320.62 ± 12.88d | |
5 | 15.69 ± 0.15c | 26.66 ± 0.33c | 3.14 ± 0.03d | 5.33 ± 0.07bc | 0.59 ± 0.01bc | 1 172.05 ± 15.78c | 1 534.92 ± 54.22c | |
10 | 27.08 ± 0.25b | 50.16 ± 0.80b | 2.71 ± 0.02e | 5.02 ± 0.08bc | 0.54 ± 0.01cd | 1 918.41 ± 50.23b | 2 431.68 ± 103.96b | |
20 | 43.91 ± 1.64a | 91.20 ± 2.42a | 2.20 ± 0.08f | 4.56 ± 0.2c | 0.48 ± 0.03d | 2 830.75 ± 106.62a | 3 059.70 ± 76.23a |
[1] | Baker AJM, Brooks RR (1989). Terrestrial higher plants which hyper accumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 811-826. |
[2] | Baker AJM, Reeves RD, Hajar ASM (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytologist, 127, 61-68. |
[3] | Bao SD (鲍士旦) (2000). Analysis of Soil Agricultural Chemical (土壤农化分析) China Agriculture Press, Beijing. (in Chinese) |
[4] | Bernal MP, Grath SP (1994). Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant and Soil, 166, 83-92. |
[5] | Bruner LL, Keever GJ, Kessler JR Jr, Gilliam CH (2001). Growth retardant application of Canna × generalis ‘Florence Vaughan’. Journal of Environmental Horticulture, 19, 114-119. |
[6] | Chamberlain AC (1983). Fallout of lead and uptake by crops. Atmospheric Environment, 17, 693-706. |
[7] | Chen Y, Burris JS (1990). Role of carbohydrates in desiccation tolerance and membrane behavior in maturing maize seed. Corp Science, 30, 971-975. |
[8] | Huang GT (黄国涛) (2005). Studies on Evaluation and Germ Plasm Innovation for Some Plant Resources of Canna. (美人蕉属(Canna)植物引种与品种分类研究) PhD dissertation, Nanjing Agricultural University, Nanjing. (in Chinese with English abstract) |
[9] | Huang YX (黄运湘), Liao BH (廖柏寒), Xiao LT (肖浪涛), Liu SC (刘素纯), Wang ZK (王志坤) (2006). Effects of Cd2+ on seedling growth and phytohormone contents of Glycine max . Environmental Science (环境科学), 27, 1398-1401. (in Chinese with English abstract) |
[10] | Huff A (1982). Peroxidase-catalysed oxidation of chlorophyll by hydrogen peroxide. Phytochemistry, 21, 261-265. |
[11] | Li ZP (李章平), Chen YC (陈玉成), Yang XC (杨学春), Wei SQ (魏世强) (2006). Heavy metals contamination of street dusts in core zone of Chongqing Municipality. Journal of Soil and Water Conservation (水土保持学报), 20, 114-116. (in Chinese with English abstract) |
[12] | Liu FJ (刘富俊), Li YX (黎云祥), Liao YM (廖咏梅), Chen JS (陈劲松), Quan QM (权秋梅), Gong XY (龚新越) (2011). Effects of clonal integration on growth of stoloniferous herb Centella asiatica suffering from heterogeneous heavy metal Cd 2+ stress . Chinese Journal of Plant Ecology (植物生态学报), 35, 864-871. (in Chinese with English abstract) |
[13] | Liu WD (刘维东) (2006). Studies on Ecological Effect and Selection of Roof Greening Plants in Chengdu City. (成都市屋顶绿化植物的选择及其生态效益研究) Master de- gree dissertation, Sichuan Agricultural University, Cheng- du. (in Chinese with English abstract) |
[14] | Lu Y (卢瑛), Gong ZT (龚子同), Zhang GL (张甘霖), Zhang B (张波) (2004). Heavy metal concentration in Nanjing urban soils and their affecting factors. Chinese Journal of Applied Ecology (应用生态学报), 15, 123-126. (in Chinese with English abstract) |
[15] |
Moya JI, Ros R, Picazo I (1993). Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynthesis Research, 36, 75-80.
URL PMID |
[16] | Romanowska E, Wróblewska B, Drożak A, Zienkiewicz M, Siedlecka M (2008). Effect of Pb ions on superoxide dismutase and catalase activities in leaves of pea plants grown in high and low irradiance. Biologia Plantarum, 52, 80-86. |
[17] | Smimoff N (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125, 27-58. |
[18] | Somashekaraiah BV, Padmaja K, Prasad RK (1992). Phytotoxicity of cadmium ions on germinating seedlings of mung bean ( Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiologia Plantarum, 85, 85-89. |
[19] | Stobart AK, Grifiths WT, Ameen-Bukhari I, Sherwood RP (1985). The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley . Physiologia Plantarum, 63, 293-298. |
[20] | Wu FZ (吴福忠), Yang WQ (杨万勤), Zhang J (张健), Zhou LQ (周利强) (2010). Effects of cadmium stress on growth and nutrient accumulation, distribution and utilization in Osmanthus fragrans var. thunbergii. Chinese Journal of Plant Ecology (植物生态学报), 34, 1220-1226. (in Chinese with English abstract) |
[21] | Xia JB (夏江宝), Zhang GC (张光灿), Sun JK (孙景宽), Liu X (刘霞) (2011). Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity. Chinese Journal of Plant Ecology (植物生态学报), 35, 322-329. (in Chinese with English abstract) |
[22] | Yan AL (燕傲蕾), Wu TT (吴亭亭), Wang YB (王友保), Zhang XQ (张旭情) (2010). The characteristics of cadmium tolerance and accumulation in three kinds of ornamental plants. Acta Ecologica Sinica (生态学报), 30, 2491-2498. (in Chinese with English abstract) |
[23] | Yang SH (杨士弘) (2003). City Ecological Environment (城市生态环境学), Science Press, Beijing. (in Chinese). |
[24] | Zhang YH (张彦海) (2009). Dynamic Pilot Study on Purification N, P of Lin Jiang River Water with Canna indica Floating-Bed Technology. (美人蕉浮床技术去除临江河氮、磷的动态试验研究) Master degree dissertation, Chongqing University, Chongqing. (in Chinese with English abstract) |
[25] | Zhou QX (周启星), Wei SH (魏树和), Diao CY (刁春燕) (2007). Basic principles and researching progresses in ecological remediation of contaminated soils. Journal of Agro-Environment Science (农业环境科学学报), 26, 419-424. (in Chinese with English abstract) |
[26] | Zou Q (邹琦) (2007). Techniques of Plant Physiological Experiment (植物生理学实验指导), China Agriculture Press, Beijing. (in Chinese) |
[27] | Zurayk R, Sukkariyah B, Baalbaki R (2001). Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water, Air, and Soil Pollution, 127, 373-388. |
[1] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[2] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[3] | 陈良华, 赖娟, 胡相伟, 杨万勤, 张健, 王小军, 谭灵杰. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488. |
[4] | 熊淑萍,张娟娟,杨阳,刘娟,王晓航,吴延鹏,马新明. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析[J]. 植物生态学报, 2013, 37(7): 601-610. |
[5] | 王海翠, 胡林林, 李敏, 陈为峰, 王莹, 周佳佳. 多环芳烃(PAHs)对油菜生长的影响及其积累效应[J]. 植物生态学报, 2013, 37(12): 1123-1131. |
[6] | 丁继军,潘远智,李丽,刘柿良,崔明峰,高佩刚. 外源谷胱甘肽对石竹幼苗镉毒害的缓解效应[J]. 植物生态学报, 2013, 37(10): 950-960. |
[7] | 刘富俊, 黎云祥, 廖咏梅, 陈劲松, 权秋梅, 龚新越. 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响[J]. 植物生态学报, 2011, 35(8): 864-871. |
[8] | 陈洁, 汤亮, 刘小军, 曹卫星, 朱艳. 基于植株碳流的水稻籽粒淀粉积累模拟模型[J]. 植物生态学报, 2011, 35(4): 431-440. |
[9] | 高奔, 宋杰, 刘金萍, 隋娜, 范海, 王宝山. 盐胁迫对不同生境盐地碱蓬光合及离子积累的影响[J]. 植物生态学报, 2010, 34(6): 671-677. |
[10] | 唐罗忠, 刘志龙, 虞木奎, 方升佐, 赵丹, 王子寅. 两种立地条件下麻栎人工林地上部分养分的积累和分配[J]. 植物生态学报, 2010, 34(6): 661-670. |
[11] | 段文学, 于振文, 张永丽, 王东. 测墒补灌对不同穗型小麦品种耗水特性和干物质积累与分配的影响[J]. 植物生态学报, 2010, 34(12): 1424-1432. |
[12] | 毛子军, 贾桂梅, 刘林馨, 赵甍. 温度增高、CO2浓度升高、施氮对蒙古栎幼苗非结构碳水化合物积累及其分配的综合影响[J]. 植物生态学报, 2010, 34(10): 1174-1184. |
[13] | 吴福忠, 杨万勤, 张健, 周利强. 镉胁迫对桂花生长和养分积累、分配与利用的影响[J]. 植物生态学报, 2010, 34(10): 1220-1226. |
[14] | 梁胜伟, 胡新文, 段瑞军, 符少萍, 郭建春. 海马齿对无机汞的耐性和吸附积累[J]. 植物生态学报, 2009, 33(4): 638-645. |
[15] | 李剑, 马建华, 宋博. 郑汴路路旁土壤-小麦系统重金属积累及其健康风险评价[J]. 植物生态学报, 2009, 33(3): 624-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19