植物生态学报 ›› 2010, Vol. 34 ›› Issue (12): 1424-1432.DOI: 10.3773/j.issn.1005-264x.2010.12.008
收稿日期:
2010-03-08
接受日期:
2010-07-07
出版日期:
2010-03-08
发布日期:
2010-12-28
通讯作者:
于振文
作者简介:
(E-mail: yuzw@sdau.edu.cn )
DUAN Wen-Xue(), YU Zhen-Wen**(
), ZHANG Yong-Li, WANG Dong
Received:
2010-03-08
Accepted:
2010-07-07
Online:
2010-03-08
Published:
2010-12-28
Contact:
YU Zhen-Wen
摘要:
在田间试验条件下, 以中穗型小麦(Triticum aestivum)品种‘山农15’和大穗型品种‘山农8355’为供试材料, 设置3个0-140 cm土层土壤相对含水量处理: W0 (拔节期65%, 开花期60%)、W1 (拔节期70%, 开花期70%)、W2 (拔节后8天70%, 开花后8天70%), 采用测墒补灌的方法补充土壤水分达到目标相对含水量, 对两个不同穗型小麦品种的耗水特性和干物质积累与分配进行了研究。结果表明: (1)两品种籽粒产量均以W0处理最低, ‘山农15’ W1和W2处理无显著差异, ‘山农8355’ W1处理显著高于W2处理; 两品种W1处理的水分利用效率和灌溉水利用效率均显著高于W2处理。‘山农15’ W1处理的籽粒产量和灌溉水利用效率分别显著低于和高于‘山农8355’的W1处理, 水分利用效率无显著差异; 两品种W2处理的籽粒产量、水分利用效率和灌溉水利用效率均无显著差异。(2)两品种总耗水量以W0处理最低, ‘山农15’ W1处理显著低于W2处理, ‘山农8355’两处理无显著差异; 两品种W1处理的土壤供水量及其占总耗水量的比例显著高于W2处理。‘山农15’ W1处理的总耗水量和灌水量占总耗水量的比例显著低于‘山农8355’, 土壤供水量占总耗水量的比例显著高于‘山农8355’; 两品种W2处理总耗水量, 土壤供水量及其占总耗水量的比例无显著差异。(3)两品种W1处理成熟期干物质积累量显著高于其他处理, W1处理提高了‘山农8355’开花后干物质积累量及其对籽粒的贡献率, 对‘山农15’无显著影响。‘山农15’ W1和W2处理成熟期干物质积累量显著低于‘山农8355’, 开花前贮藏同化物向籽粒的转运量和转运率、对籽粒的贡献率均显著高于‘山农8355’, 开花后干物质积累量及其对籽粒的贡献率低于‘山农8355’。综合考虑干物质积累与分配、籽粒产量、水分利用效率和灌溉水利用效率, W1处理是两品种节水高产的最佳土壤相对含水量处理。
段文学, 于振文, 张永丽, 王东. 测墒补灌对不同穗型小麦品种耗水特性和干物质积累与分配的影响. 植物生态学报, 2010, 34(12): 1424-1432. DOI: 10.3773/j.issn.1005-264x.2010.12.008
DUAN Wen-Xue, YU Zhen-Wen, ZHANG Yong-Li, WANG Dong. Effects of supplemental irrigation on water consumption characteristics and dry matter accumulation and distribution in different spike-type wheat cultivars based on testing soil moisture. Chinese Journal of Plant Ecology, 2010, 34(12): 1424-1432. DOI: 10.3773/j.issn.1005-264x.2010.12.008
品种 Cultivar | 处理 Treatment | 拔节期 Jointing stage | 开花期 Anthesis stage | |||||||
---|---|---|---|---|---|---|---|---|---|---|
目标相对含水量 TAWC (%) | 灌水后相对含水量 RWCAI (%) | 相对误差 RE (%) | 灌水量 IA (mm) | 目标相对 含水量 TAWC (%) | 灌水后相对 含水量 RWCAI (%) | 相对误差 RE (%) | 灌水量 IA (mm) | |||
‘山农15’ ‘Shannong 15’ | W0 | 65 | 64.81 | 0.29 | 0 | 60 | 60.71 | 1.18 | 0 | |
W1 | 70 | 67.31 | 3.84 | 20.48 | 70 | 66.87 | 4.47 | 63.43 | ||
W2 | 70 | 68.15 | 2.64 | 49.30 | 70 | 72.84 | 4.06 | 97.38 | ||
‘山农8355’ ‘Shannong 8355’ | W0 | 65 | 65.70 | 1.08 | 0 | 60 | 56.30 | 6.17 | 0 | |
W1 | 70 | 68.85 | 1.64 | 25.28 | 70 | 68.96 | 1.49 | 82.28 | ||
W2 | 70 | 66.36 | 5.20 | 44.16 | 70 | 67.36 | 3.78 | 101.77 |
表1 不同处理灌水量及灌水后土壤相对含水量(0-140 cm平均值)
Table 1 The irrigation amount and average relative water content at 0-140 cm soil layers after irrigation of different treatments
品种 Cultivar | 处理 Treatment | 拔节期 Jointing stage | 开花期 Anthesis stage | |||||||
---|---|---|---|---|---|---|---|---|---|---|
目标相对含水量 TAWC (%) | 灌水后相对含水量 RWCAI (%) | 相对误差 RE (%) | 灌水量 IA (mm) | 目标相对 含水量 TAWC (%) | 灌水后相对 含水量 RWCAI (%) | 相对误差 RE (%) | 灌水量 IA (mm) | |||
‘山农15’ ‘Shannong 15’ | W0 | 65 | 64.81 | 0.29 | 0 | 60 | 60.71 | 1.18 | 0 | |
W1 | 70 | 67.31 | 3.84 | 20.48 | 70 | 66.87 | 4.47 | 63.43 | ||
W2 | 70 | 68.15 | 2.64 | 49.30 | 70 | 72.84 | 4.06 | 97.38 | ||
‘山农8355’ ‘Shannong 8355’ | W0 | 65 | 65.70 | 1.08 | 0 | 60 | 56.30 | 6.17 | 0 | |
W1 | 70 | 68.85 | 1.64 | 25.28 | 70 | 68.96 | 1.49 | 82.28 | ||
W2 | 70 | 66.36 | 5.20 | 44.16 | 70 | 67.36 | 3.78 | 101.77 |
品种 Cultivar | 处理 Treatment | 总耗水量 TWCA (mm) | 播种-拔节期 Sowing to jointing | 拔节期-开花期 Jointing to anthesis | 开花期-成熟 Anthesis to maturity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA (mm) | CP (%) | CD (mm) | CA (mm) | CP (%) | CD (mm) | CA (mm) | CP (%) | CD (mm) | |||||
‘山农15’ ‘Shannong 15’ | W0 | 386.63c | 149.36a | 38.63a | 0.87a | 95.89c | 24.80c | 3.31d | 141.38d | 36.57c | 3.29d | ||
W1 | 469.33b | 149.36a | 31.82b | 0.87a | 129.06a | 27.50ab | 4.45a | 190.91c | 40.68b | 4.44c | |||
W2 | 493.91a | 149.36a | 30.24b | 0.87a | 134.91a | 27.32b | 4.65a | 209.63b | 42.44b | 4.88b | |||
‘山农8355’ ‘Shannong 8355’ | W0 | 402.64c | 151.10a | 37.53a | 0.88a | 116.20b | 28.86a | 4.01b | 135.34d | 33.61d | 3.15d | ||
W1 | 486.76a | 151.10a | 31.04b | 0.88a | 132.79a | 27.28b | 4.58a | 202.87b | 41.68b | 4.72b | |||
W2 | 494.25a | 151.10a | 30.57b | 0.88a | 114.57b | 23.18d | 3.95c | 228.57a | 46.25a | 5.32a |
表2 不同处理对总耗水量、阶段耗水量、耗水模系数和日耗水量的影响
Table 2 Effects of different treatments on total water consumption amount (TWCA), water consumption amount of growth period, water consumption percentage and water consumption amount per day
品种 Cultivar | 处理 Treatment | 总耗水量 TWCA (mm) | 播种-拔节期 Sowing to jointing | 拔节期-开花期 Jointing to anthesis | 开花期-成熟 Anthesis to maturity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA (mm) | CP (%) | CD (mm) | CA (mm) | CP (%) | CD (mm) | CA (mm) | CP (%) | CD (mm) | |||||
‘山农15’ ‘Shannong 15’ | W0 | 386.63c | 149.36a | 38.63a | 0.87a | 95.89c | 24.80c | 3.31d | 141.38d | 36.57c | 3.29d | ||
W1 | 469.33b | 149.36a | 31.82b | 0.87a | 129.06a | 27.50ab | 4.45a | 190.91c | 40.68b | 4.44c | |||
W2 | 493.91a | 149.36a | 30.24b | 0.87a | 134.91a | 27.32b | 4.65a | 209.63b | 42.44b | 4.88b | |||
‘山农8355’ ‘Shannong 8355’ | W0 | 402.64c | 151.10a | 37.53a | 0.88a | 116.20b | 28.86a | 4.01b | 135.34d | 33.61d | 3.15d | ||
W1 | 486.76a | 151.10a | 31.04b | 0.88a | 132.79a | 27.28b | 4.58a | 202.87b | 41.68b | 4.72b | |||
W2 | 494.25a | 151.10a | 30.57b | 0.88a | 114.57b | 23.18d | 3.95c | 228.57a | 46.25a | 5.32a |
品种 Cultivar | 处理 Treatment | 灌水量 Irrigation amount (mm) | 灌水量占总 耗水量比例 RRT (%) | 降水量 Precipitation amount (mm) | 降水量占总 耗水量比例 RPT (%) | 土壤供水量 Soil water Amount (mm) | 土壤供水量占总 耗水量比例 RST (%) |
---|---|---|---|---|---|---|---|
‘山农15’ ‘Shannong 15’ | W0 | 0.00 | 0.00 | 142.80 | 36.93a | 243.83b | 63.07a |
W1 | 83.91 | 17.88c | 142.80 | 30.43b | 242.62b | 51.69b | |
W2 | 146.68 | 29.70a | 142.80 | 28.91c | 204.43c | 41.39d | |
‘山农8355’ ‘Shannong 8355’ | W0 | 0.00 | 0.00 | 142.80 | 35.47a | 259.84a | 64.53a |
W1 | 107.56 | 22.09b | 142.80 | 29.34bc | 236.40b | 48.57c | |
W2 | 145.93 | 29.53a | 142.80 | 28.89c | 205.52c | 41.58d |
表3 不同处理对小麦耗水来源及其比例的影响
Table 3 Effects of different treatments on the ratio of different water resource to water consumption amount
品种 Cultivar | 处理 Treatment | 灌水量 Irrigation amount (mm) | 灌水量占总 耗水量比例 RRT (%) | 降水量 Precipitation amount (mm) | 降水量占总 耗水量比例 RPT (%) | 土壤供水量 Soil water Amount (mm) | 土壤供水量占总 耗水量比例 RST (%) |
---|---|---|---|---|---|---|---|
‘山农15’ ‘Shannong 15’ | W0 | 0.00 | 0.00 | 142.80 | 36.93a | 243.83b | 63.07a |
W1 | 83.91 | 17.88c | 142.80 | 30.43b | 242.62b | 51.69b | |
W2 | 146.68 | 29.70a | 142.80 | 28.91c | 204.43c | 41.39d | |
‘山农8355’ ‘Shannong 8355’ | W0 | 0.00 | 0.00 | 142.80 | 35.47a | 259.84a | 64.53a |
W1 | 107.56 | 22.09b | 142.80 | 29.34bc | 236.40b | 48.57c | |
W2 | 145.93 | 29.53a | 142.80 | 28.89c | 205.52c | 41.58d |
图1 不同处理对不同生育时期干物质积累量的影响。W0、W1、W2同表1。
Fig. 1 Effects of different treatments on dry matter accumulation at different growth stages. W0, W1, W2 see Table 1.
品种 Cultivar | 处理 Treatment | 开花前营养器官 贮藏同化物转运量 DMTAA (kg·hm-2) | 开花前营养器官 贮藏同化物转运率 DMTRA (%) | 开花后贮藏同化物转 运量对籽粒的贡献率 CDMTAATG (%) | 开花后干物质 积累量 DMAAA (kg·hm-2) | 开花后干物质同化 量对籽粒的贡献率 CDMAAATG (%) |
---|---|---|---|---|---|---|
‘山农15’ ‘Shannong 15’ | W0 | 2 844.08b | 27.66a | 34.90a | 5 304.34c | 65.10c |
W1 | 2 570.09c | 21.49c | 25.61b | 7 464.21b | 74.39b | |
W2 | 2 647.07c | 23.52b | 26.12b | 7 486.36b | 73.88b | |
‘山农8355’ ‘Shannong 8355’ | W0 | 3 063.60a | 28.45a | 36.14a | 5 412.51c | 63.86c |
W1 | 1 271.54e | 11.06d | 12.06d | 9 275.12a | 87.94a | |
W2 | 2 393.63d | 20.58c | 23.65c | 7 727.67b | 76.35b |
表4 不同处理对开花后干物质分配量和开花后积累量的影响
Table 4 Effects of different treatments on dry matter distribution amount and accumulation amount after anthesis
品种 Cultivar | 处理 Treatment | 开花前营养器官 贮藏同化物转运量 DMTAA (kg·hm-2) | 开花前营养器官 贮藏同化物转运率 DMTRA (%) | 开花后贮藏同化物转 运量对籽粒的贡献率 CDMTAATG (%) | 开花后干物质 积累量 DMAAA (kg·hm-2) | 开花后干物质同化 量对籽粒的贡献率 CDMAAATG (%) |
---|---|---|---|---|---|---|
‘山农15’ ‘Shannong 15’ | W0 | 2 844.08b | 27.66a | 34.90a | 5 304.34c | 65.10c |
W1 | 2 570.09c | 21.49c | 25.61b | 7 464.21b | 74.39b | |
W2 | 2 647.07c | 23.52b | 26.12b | 7 486.36b | 73.88b | |
‘山农8355’ ‘Shannong 8355’ | W0 | 3 063.60a | 28.45a | 36.14a | 5 412.51c | 63.86c |
W1 | 1 271.54e | 11.06d | 12.06d | 9 275.12a | 87.94a | |
W2 | 2 393.63d | 20.58c | 23.65c | 7 727.67b | 76.35b |
品种 Cultivar | 处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 WUE (kg·hm-2·mm-1) | 灌溉水利用效率 IWUE (kg·hm-2·mm-1) |
---|---|---|---|---|
‘山农15’ ‘Shannong 15’ | W0 | 7 597.45c | 19.65a | |
W1 | 8 991.93b | 19.16ab | 107.16a | |
W2 | 8 926.53b | 18.07c | 60.86c | |
‘山农8355’ ‘Shannong 8355’ | W0 | 7 913.30c | 19.65a | |
W1 | 9 529.20a | 19.58a | 88.59b | |
W2 | 9 119.40b | 18.45bc | 62.49c |
表5 不同处理对籽粒产量和水分利用效率的影响
Table 5 Effects of different treatments on grain yield and water use efficiency
品种 Cultivar | 处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 WUE (kg·hm-2·mm-1) | 灌溉水利用效率 IWUE (kg·hm-2·mm-1) |
---|---|---|---|---|
‘山农15’ ‘Shannong 15’ | W0 | 7 597.45c | 19.65a | |
W1 | 8 991.93b | 19.16ab | 107.16a | |
W2 | 8 926.53b | 18.07c | 60.86c | |
‘山农8355’ ‘Shannong 8355’ | W0 | 7 913.30c | 19.65a | |
W1 | 9 529.20a | 19.58a | 88.59b | |
W2 | 9 119.40b | 18.45bc | 62.49c |
[1] | Cha FN (查菲娜), Ma DY (马冬云), Guo TC (郭天财), Song X (宋晓), Yue YJ (岳艳军), Xie YX (谢迎新) (2007). Dynamic changes of soil enzyme activity in rhizosphere of two spike-type winter wheat cultivars with different planting densities. Journal of Soil and Water Conservation (水土保持学报), 21, 104-107. (in Chinese with English abstract) |
[2] | Dai ZM (戴忠民), Wang ZL (王振林), Gao FJ (高凤菊), Li WY (李文阳), Yan SH (闫素辉), Cai RG (蔡瑞国), Zhang M (张敏), Yin YP (尹燕枰) (2007). Characterization of starch accumulation and activities of enzymes involved in starch synthesis in grains of wheat cultivars differing in spike types field-grown in irrigation and rainfed conditions. Acta Agronomica Sinica (作物学报), 33, 682-685. (in Chinese with English abstract) |
[3] | Despo KP, Gagianas AA (1991). Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agronomy Journal, 83, 864-870. |
[4] | Dong BT (董宝锑), Zhang ZB (张正斌), Liu MY (刘孟雨) (2007). Water use characteristics of different wheat varieties and their responses to different irrigation scheduling. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 23(9), 27-33. (in Chinese with English abstract) |
[5] | Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I (2008). Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy, 28, 138-147. |
[6] | Fang QX (房全孝), Chen YH (陈雨海), Li QQ (李全起), Yu SZ (于舜章), Luo Y (罗毅), Yu Q (于强), Ouyang Z (欧阳竹) (2006). Effects of soil moisture on radiation utilization during late growth stages and water use efficiency of winter wheat. Acta Agronomica Sinica (作物学报), 32, 861-866. (in Chinese with English abstract) |
[7] | Feng W (冯伟), Ding J (丁军), Guo TC (郭天财), Xie YX (谢迎新), Wang CY (王晨阳), Zhu YJ (朱云集) (2009). Effects of irrigation and nitrogen on yield and model analysis in winter wheat with two spike-types. Acta Agriculturae Boreali-Occidentalis Sinica (西北农业学报), 18(2), 64-69. (in Chinese with English abstract) |
[8] | Feng W (冯伟), Luo Y (罗毅), Guo TC (郭天财), Wang YH (王永华), Wang CY (王晨阳), Zhu YJ (朱云集) (2008). Effect of irrigation on carbon and nitrogen metabolism and grain filling in winter wheat with different spike-types. Journal of Triticeae Crops (麦类作物学报), 28, 1036-1041. (in Chinese with English abstract) |
[9] | Hu YJ (胡延吉), Lan JH (兰进好), Zhao TF (赵坦芳), Gao FZ (高法振) (2000). Canopy architecture and photosynthetic characteristics in two winter wheat cultivars with different spike type. Acta Agronomica Sinica (作物学报), 26, 905-912. (in Chinese with English abstract) |
[10] | Li JM, Inanaga S, Li ZH, Eneji AE (2005). Optimizing irrigation scheduling for winter wheat in the North China Plain. Agricultural Water Management, 76, 8-23. |
[11] | Li YS (李运生), Wang L (王菱), Liu SP (刘士平), Wang JS (王吉顺) (2002). The influence of different amounts of water supplied at different depths in soil-root interface on root distribution and yield of winter wheat. Acta Ecologica Sinica (生态学报), 22, 1680-1687. (in Chinese with English abstract) |
[12] | Liao LJ, Zhang L, Bengtsson L (2008). Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation. Irrigation and Drainage Systems, 22, 253— 270. |
[13] | Liu WD (刘万代), Yin J (尹钧), Zhu GJ (朱高纪) (2007). Effects of leaf removal on dry matter accumulation and grain yield in different spike-type wheat varieties. Scientia Agricultura Sinica (中国农业科学), 40, 1353-1360. (in Chinese with English abstract) |
[14] | Luo HY (骆洪义), Ding FJ (丁方军) (1995). Laboratory of Pedology (土壤学实验). Chengdu Science and Technology University Press, Chengdu. 91. (in Chinese) |
[15] | Mao DY (马冬云), Guo TC (郭天财), Cha FN (查菲娜), Wang CY (王晨阳), Zhu YJ (朱云集), Wang YH (王永华) (2007). Effects of planting density on activities of nitrogen metabolism enzymes in flag leaves and grain protein content in winter wheat with two spike types. Acta Agronomica Sinica (作物学报), 33, 514-517. (in Chinese with English abstract) |
[16] | Nielsen DC, Vigil MF (2005). Legume green fallow effect on soil water content at wheat planting and wheat yield. Agronomy Journal, 97, 684-689. |
[17] | Peng ZP (彭正萍), Li CJ (李春俭), Men MX (门明新) (2004). Effects of P deficiency on photosynthetic characters and yield in two wheat cultivars with different spike types. Acta Agronomica Sinica (作物学报), 30, 739-744. (in Chinese with English abstract) |
[18] | Pheleung PC, Siddique KHM (1991). Contribution of stem dry matter to grain yield in wheat cultivars. Australian Journal of Plant Physiology, 18, 53-64. |
[19] | Rajala A, Hakala K, Mäkelä P, Muurinen S, Peltonen-Sainio P (2009). Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crops Research, 114, 263-271. |
[20] | Rizza F, Badeck FW, Cattivelli L, Lidestri O, Fonzo ND, Stanca AM (2004). Use of a water stress index to identify barley genotypes adapted to rained and irrigated conditions. Crop Science, 44, 2127-2137. |
[21] | Shan L (山仑), Kang SZ (康绍忠), Wu PT (吴普特) (2004). Water-Saving Agriculture in China (中国节水农业). China Agriculture Press, Beijing. 229-230. (in Chinese) |
[22] |
Shao HB, Liang ZS, Shao MG, Sun SM, Hu ZM (2005). Investigation on dynamic changes of photosynthetic characteristics of 10 wheat ( Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficit. Colloids and Surfaces B: Biointerfaces, 43, 221-227.
DOI URL PMID |
[23] | Shi Y (石岩), Lin Q (林琪), Wei DB (位东斌), Yu ZW (于振文), Yu SL (余松烈) (1997). Effect of soil water stress on law of water consumption and yield in winter wheat. Acta Agriculturae Boreali-Sinica (华北农学报), 12(2), 76-81. (in Chinese with English abstract) |
[24] | Singh AK, Jain GL (2000). Effect of sowing time, irrigation and nitrogen on grain yield and quality of durum wheat (Triticum durum). Indian Journal of Agricultural Sciences, 70, 532-533. |
[25] | Sun HY, Liu CM, Zhang XY, Shen YJ, Zhang YQ (2006). Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management, 85, 211-218. |
[26] | Tao YF (陶毓汾), Wang LX (王立祥), Han SF (韩仕峰) (1993). Water Production Potential and Development of Dryland Field in Northern China (中国北方旱农地区水分生产潜力与开发). China Meteorological Press, Beijing. 63-157. (in Chinese) |
[27] | Virgona JW, Barlow EWR (1989). Drought stress induces changes in the non-structural carbohydrate composition of wheat system. Australian Journal of Physiology, 18, 239-247. |
[28] | Wang KW (王克武), Wang ZP (王志平), Zheng YL (郑雅莲), Zhang N (张娜), Zhu QY (朱青艳) (2009). Selection of wheat varieties with high WUE and study on laws of their water consumption. Agricultural Research in the Arid Areas (干旱地区农业研究), 27(2), 69-73. (in Chinese with English abstract) |
[29] | Wang TD (王天铎) (1991). Agricultural use of water resources in North China Plain. Research of Agricultural Modernization (农业现代化研究), 12(4), 33-37. (in Chinese) |
[30] |
Wei YL (魏艳丽), Wang H (王辉), Feng Y (冯毅), Zhang LL (张玲丽), Min DH (闵东红), Li XJ (李学军), Sun DJ (孙道杰) (2008). Effects of leaf removal on accumulation and transfer of dry matter in different spike-type wheat varieties. Journal of Triticeae Crops (麦类作物学报), 28, 507-512. (in Chinese with English abstract)
DOI URL |
[31] | Xin NQ (信迺诠) (1986). An equilibrium method for the calculation of farmland evaporation capacity. Agricultural Research in the Arid Areas (干旱地区农业研究), ( 2), 33-39. (in Chinese with English abstract) |
[32] | Zhang BC, Li FM, Huang GB, Cheng ZY, Zhang YH (2006). Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agricultural Water Management, 79, 28-42. |
[1] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[2] | 郭增江, 于振文, 石玉, 赵俊晔, 张永丽. 拔节期与开花期测墒补灌对小麦旗叶荧光特性和水分利用效率的影响[J]. 植物生态学报, 2014, 38(7): 757-766. |
[3] | 黄彩霞, 柴守玺, 赵德明, 康燕霞. 灌溉对干旱区冬小麦干物质积累、分配和产量的影响[J]. 植物生态学报, 2014, 38(12): 1333-1344. |
[4] | 樊廷录, 马明生, 王淑英, 李尚中, 赵刚. 不同基因型冬小麦旗叶的稳定碳同位素比值及其与产量和水分利用效率的关系[J]. 植物生态学报, 2011, 35(2): 203-213. |
[5] | 范雪梅, 姜东, 戴廷波, 荆奇, 曹卫星. 花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J]. 植物生态学报, 2006, 30(1): 71-77. |
[6] | 曹靖, 张福锁. 低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响[J]. 植物生态学报, 2000, 24(6): 731-735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19