植物生态学报 ›› 2011, Vol. 35 ›› Issue (2): 203-213.DOI: 10.3724/SP.J.1258.2011.00203
所属专题: 稳定同位素生态学
樊廷录1, 马明生2,*(), 王淑英2, 李尚中2, 赵刚2
收稿日期:
2010-03-03
接受日期:
2010-06-01
出版日期:
2011-03-03
发布日期:
2011-01-21
通讯作者:
马明生
作者简介:
*E-mail: mamingsh@yahoo.cn
FAN Ting-Lu1, MA Ming-Sheng2,*(), WANG Shu-Ying2, LI Shang-Zhong2, ZHAO Gang2
Received:
2010-03-03
Accepted:
2010-06-01
Online:
2011-03-03
Published:
2011-01-21
Contact:
MA Ming-Sheng
摘要:
以我国北方12个冬小麦(Triticum aestivum)品种(系)和美国德克萨斯州3个冬小麦品种(系)为供试材料, 在甘肃陇东黄土高原旱作和拔节期有限补灌条件下, 比较研究了不同基因型冬小麦之间产量、水分利用效率(WUE)和灌浆期旗叶稳定碳同位素比值(δ13C)的差异, 以及δ13C值与产量和WUE的关系。旨在通过分析δ13C值与产量和WUE的关系, 明确δ13C值在评价植物WUE方面的可靠性, 为抗旱节水品种的筛选提供理论依据。结果表明: 不论旱作还是有限补灌, 不同基因型冬小麦之间产量、WUE、旗叶δ13C值存在显著差异, 随着灌浆过程的进行, 旗叶δ13C值呈缓慢增大的趋势, 而且旗叶δ13C值旱作高于有限补灌。不论旱作还是补灌条件, 旗叶δ13C值在4个测定时期的平均值与籽粒产量、WUE呈显著正相关关系(R2= 0.527 3-0.691 3)。小麦拔节期补灌100 mm水分后, 不同基因型小麦表现出明显的水分超补偿效应。说明冬小麦灌浆期旗叶δ13C值在旱作条件下和在补灌条件下均可较好地评价WUE, 可将冬小麦灌浆期旗叶δ13C值作为筛选高效用水品种的参考指标之一。
樊廷录, 马明生, 王淑英, 李尚中, 赵刚. 不同基因型冬小麦旗叶的稳定碳同位素比值及其与产量和水分利用效率的关系. 植物生态学报, 2011, 35(2): 203-213. DOI: 10.3724/SP.J.1258.2011.00203
FAN Ting-Lu, MA Ming-Sheng, WANG Shu-Ying, LI Shang-Zhong, ZHAO Gang. Stable carbon isotope ratio (δ13C) in flag leaves of different genotypes of winter wheat and its relation to yield and water use efficiency. Chinese Journal of Plant Ecology, 2011, 35(2): 203-213. DOI: 10.3724/SP.J.1258.2011.00203
品种 Variety | 遗传背景 Genetic background |
---|---|
母本×父本 Female parent × Male parent | |
‘陇鉴196’ ‘Longjian 196’ | [‘64035’ × ‘太原89’] × ‘秦麦4号’ [‘64035’ × ‘Taiyuan 89’] × ‘Qinmai 4’ |
‘陇鉴127’ ‘Longjian 127’ | [‘7402’ × ‘吕419’]F1 × ‘7415’ [‘7402’ × ‘Lü 419’]F1 × ‘7415’ |
‘陇鉴385’ ‘Longjian 385’ | ‘贵农22’ × ‘陇鉴29’ ‘Guinong 22’ × ‘Longjian 29’ |
‘陇育216’ ‘Longyu 216’ | ‘陇东3号’ × [‘82(348)’ × ‘9002-1-1’]F3 ‘Longdong 3’ × [‘82(348)’ × ‘9002-1-1’]F3 |
‘陇原061’ ‘Longyuan 061’ | ‘西峰20’ × ‘保丰6号’ ‘Xifeng 20’ × ‘Baofeng 6’ |
‘定鉴3号’ ‘Dingjian 3’ | ‘84WR(21)’ × ‘洛8912’ ‘84WR(21)’ × ‘Luo 8912’ |
‘宁麦5号’ ‘Ningmai 5 ’ | ‘XS117-0-29’ × ‘庆农3号’ ‘XS117-0-29’ × ‘Qingnong 3’ |
‘西峰27’ ‘Xifeng 27’ | ‘83183-1-3-1’ × ‘CA837’ |
‘太原10604’ ‘Taiyuan 10604’ | ‘太原610’× ‘太原851’ ‘Taiyuan 610’ × ‘Taiyuan 851’ |
‘05旱鉴27’ ‘05Hanjian 27’ | ‘京411’ × ‘鲁麦12’ ‘Jing 411’ × ‘Lumai 12’ |
‘长6878’ ‘Chang 6878’ | ‘临旱5175’ × ‘晋麦63’ ‘Linhan 5175’ × ‘Jinmai 63’ |
‘9550’ | ‘长武131’ × ‘8672-26-1’ ‘Changwu 131’ × ‘8672-26-1’ |
表1 不同基因型冬小麦的遗传背景
Table 1 The genetic background of different genotypes of winter wheat variety
品种 Variety | 遗传背景 Genetic background |
---|---|
母本×父本 Female parent × Male parent | |
‘陇鉴196’ ‘Longjian 196’ | [‘64035’ × ‘太原89’] × ‘秦麦4号’ [‘64035’ × ‘Taiyuan 89’] × ‘Qinmai 4’ |
‘陇鉴127’ ‘Longjian 127’ | [‘7402’ × ‘吕419’]F1 × ‘7415’ [‘7402’ × ‘Lü 419’]F1 × ‘7415’ |
‘陇鉴385’ ‘Longjian 385’ | ‘贵农22’ × ‘陇鉴29’ ‘Guinong 22’ × ‘Longjian 29’ |
‘陇育216’ ‘Longyu 216’ | ‘陇东3号’ × [‘82(348)’ × ‘9002-1-1’]F3 ‘Longdong 3’ × [‘82(348)’ × ‘9002-1-1’]F3 |
‘陇原061’ ‘Longyuan 061’ | ‘西峰20’ × ‘保丰6号’ ‘Xifeng 20’ × ‘Baofeng 6’ |
‘定鉴3号’ ‘Dingjian 3’ | ‘84WR(21)’ × ‘洛8912’ ‘84WR(21)’ × ‘Luo 8912’ |
‘宁麦5号’ ‘Ningmai 5 ’ | ‘XS117-0-29’ × ‘庆农3号’ ‘XS117-0-29’ × ‘Qingnong 3’ |
‘西峰27’ ‘Xifeng 27’ | ‘83183-1-3-1’ × ‘CA837’ |
‘太原10604’ ‘Taiyuan 10604’ | ‘太原610’× ‘太原851’ ‘Taiyuan 610’ × ‘Taiyuan 851’ |
‘05旱鉴27’ ‘05Hanjian 27’ | ‘京411’ × ‘鲁麦12’ ‘Jing 411’ × ‘Lumai 12’ |
‘长6878’ ‘Chang 6878’ | ‘临旱5175’ × ‘晋麦63’ ‘Linhan 5175’ × ‘Jinmai 63’ |
‘9550’ | ‘长武131’ × ‘8672-26-1’ ‘Changwu 131’ × ‘8672-26-1’ |
基因型 Genotype | δ13C值 δ13C value (‰) | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 WUE (kg·hm-2·mm-1) | |||
---|---|---|---|---|---|---|
5月6日 May 6 | 5月16日 May 16 | 5月31日 May 31 | 6月10日 June 10 | |||
‘陇鉴196’ ‘Longjian 196’ | -26.7 ± 0.11 | -26.6 ± 0.13 | -26.4 ± 0.15 | -26.2 ± 0.17 | 2 495 ± 103.37e | 11.3 ± 0.52d |
‘陇鉴127’ ‘Longjian 127’ | -26.8 ± 0.18 | -26.3 ± 0.21 | -26.3 ± 0.10 | -26.0 ± 0.19 | 1 826 ± 110.18k | 8.2 ± 0.37j |
‘陇鉴385’ ‘Longjian 385’ | -26.9 ± 0.09 | -26.8 ± 0.14 | -26.4 ± 0.14 | -26.1 ± 0.11 | 2 110 ± 89.03h | 8.8 ± 0.35i |
‘陇育216’ ‘Longyu 216’ | -26.5 ± 0.15 | -25.9 ± 0.11 | -26.0 ± 0.16 | -25.9 ± 0.15 | 2 480 ± 97.41e | 11.1 ± 0.26e |
‘陇原061’ ‘Longyuan 061’ | -25.4 ± 0.19 | -24.9 ± 0.09 | -24.8 ± 0.10 | -24.8 ± 0.13 | 2 786 ± 124.26b | 12.6 ± 0.64b |
‘定鉴3号’ ‘Dingjian 3’ | -25.0 ± 0.11 | -24.7 ± 0.21 | -24.7 ± 0.12 | -24.6 ± 0.13 | 2 936 ± 105.98a | 12.8 ± 0.33a |
‘宁麦5号’ ‘Ningmai 5’ | -25.5 ± 0.18 | -25.5 ± 0.19 | -25.4 ± 0.12 | -25.2 ± 0.05 | 2 645 ± 78.34c | 12.0 ± 0.07c |
‘西峰27’ ‘Xifeng 27’ | -26.6 ± 0.15 | -26.4 ± 0.09 | -26.2 ± 0.18 | -26.2 ± 0.15 | 2 191 ± 83.90i | 9.4 ± 0.13h |
‘太原10604’ ‘Taiyuan 10604’ | -26.5 ± 0.18 | -26.4 ± 0.13 | -26.4 ± 0.14 | -26.4 ± 0.09 | 2 451 ± 93.33f | 11.1 ± 0.28e |
‘05旱鉴27’ ‘05Hanjian 27’ | -27.4 ± 0.10 | -26.8 ± 0.12 | -26.8 ± 0.11 | -26.4 ± 0.19 | 2 240 ± 79.56g | 10.1 ± 0.17g |
‘长6878’ ‘Chang 6878’ | -26.6 ± 0.08 | -26.3 ± 0.09 | -26.1 ± 0.13 | -25.9 ± 0.10 | 2 190 ± 77.18j | 9.5 ± 0.30h |
‘9550’ | -25.8 ± 0.16 | -25.5 ± 0.12 | -25.4 ± 0.07 | -25.4 ± 0.21 | 2 551 ± 100.60d | 11.4 ± 0.43d |
‘1R2’ | -26.2 ± 0.13 | -26.1 ± 0.08 | -26.0 ± 0.16 | -25.7 ± 0.11 | 2 285 ± 81.23j | 10.3 ± 0.19f |
‘1R8’ | -27.2 ± 0.12 | -26.9 ± 0.20 | -26.8 ± 0.13 | -26.2 ± 0.07 | 2 110 ± 79.47i | 8.7 ± 0.21i |
‘1R17’ | -25.9 ± 0.14 | -25.5 ± 0.15 | -25.2 ± 0.11 | -25.0 ± 0.14 | 2 600 ± 62.56c | 11.9 ± 0.05c |
平均值 Mean | -26.33 | -26.04 | -25.93 | -25.73 | 2 393 | 10.6 |
变异系数 CV (%) | 2.61 | 2.64 | 2.59 | 2.30 | 12.24 | 13.73 |
表2 旱作条件下不同基因型冬小麦旗叶的稳定碳同位素比值(δ13C)、产量和水分利用效率
Table 2 Stable carbon isotope ratio (δ13C) in flag leaves, grain yield and water use efficiency (WUE) of different genotypes of winter wheat under dryland condition
基因型 Genotype | δ13C值 δ13C value (‰) | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 WUE (kg·hm-2·mm-1) | |||
---|---|---|---|---|---|---|
5月6日 May 6 | 5月16日 May 16 | 5月31日 May 31 | 6月10日 June 10 | |||
‘陇鉴196’ ‘Longjian 196’ | -26.7 ± 0.11 | -26.6 ± 0.13 | -26.4 ± 0.15 | -26.2 ± 0.17 | 2 495 ± 103.37e | 11.3 ± 0.52d |
‘陇鉴127’ ‘Longjian 127’ | -26.8 ± 0.18 | -26.3 ± 0.21 | -26.3 ± 0.10 | -26.0 ± 0.19 | 1 826 ± 110.18k | 8.2 ± 0.37j |
‘陇鉴385’ ‘Longjian 385’ | -26.9 ± 0.09 | -26.8 ± 0.14 | -26.4 ± 0.14 | -26.1 ± 0.11 | 2 110 ± 89.03h | 8.8 ± 0.35i |
‘陇育216’ ‘Longyu 216’ | -26.5 ± 0.15 | -25.9 ± 0.11 | -26.0 ± 0.16 | -25.9 ± 0.15 | 2 480 ± 97.41e | 11.1 ± 0.26e |
‘陇原061’ ‘Longyuan 061’ | -25.4 ± 0.19 | -24.9 ± 0.09 | -24.8 ± 0.10 | -24.8 ± 0.13 | 2 786 ± 124.26b | 12.6 ± 0.64b |
‘定鉴3号’ ‘Dingjian 3’ | -25.0 ± 0.11 | -24.7 ± 0.21 | -24.7 ± 0.12 | -24.6 ± 0.13 | 2 936 ± 105.98a | 12.8 ± 0.33a |
‘宁麦5号’ ‘Ningmai 5’ | -25.5 ± 0.18 | -25.5 ± 0.19 | -25.4 ± 0.12 | -25.2 ± 0.05 | 2 645 ± 78.34c | 12.0 ± 0.07c |
‘西峰27’ ‘Xifeng 27’ | -26.6 ± 0.15 | -26.4 ± 0.09 | -26.2 ± 0.18 | -26.2 ± 0.15 | 2 191 ± 83.90i | 9.4 ± 0.13h |
‘太原10604’ ‘Taiyuan 10604’ | -26.5 ± 0.18 | -26.4 ± 0.13 | -26.4 ± 0.14 | -26.4 ± 0.09 | 2 451 ± 93.33f | 11.1 ± 0.28e |
‘05旱鉴27’ ‘05Hanjian 27’ | -27.4 ± 0.10 | -26.8 ± 0.12 | -26.8 ± 0.11 | -26.4 ± 0.19 | 2 240 ± 79.56g | 10.1 ± 0.17g |
‘长6878’ ‘Chang 6878’ | -26.6 ± 0.08 | -26.3 ± 0.09 | -26.1 ± 0.13 | -25.9 ± 0.10 | 2 190 ± 77.18j | 9.5 ± 0.30h |
‘9550’ | -25.8 ± 0.16 | -25.5 ± 0.12 | -25.4 ± 0.07 | -25.4 ± 0.21 | 2 551 ± 100.60d | 11.4 ± 0.43d |
‘1R2’ | -26.2 ± 0.13 | -26.1 ± 0.08 | -26.0 ± 0.16 | -25.7 ± 0.11 | 2 285 ± 81.23j | 10.3 ± 0.19f |
‘1R8’ | -27.2 ± 0.12 | -26.9 ± 0.20 | -26.8 ± 0.13 | -26.2 ± 0.07 | 2 110 ± 79.47i | 8.7 ± 0.21i |
‘1R17’ | -25.9 ± 0.14 | -25.5 ± 0.15 | -25.2 ± 0.11 | -25.0 ± 0.14 | 2 600 ± 62.56c | 11.9 ± 0.05c |
平均值 Mean | -26.33 | -26.04 | -25.93 | -25.73 | 2 393 | 10.6 |
变异系数 CV (%) | 2.61 | 2.64 | 2.59 | 2.30 | 12.24 | 13.73 |
基因型 Genotype | δ13C值 δ13C Value (‰) | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 WUE (kg·hm-2·mm-1) | 补偿供水效应 SIE | |||
---|---|---|---|---|---|---|---|
5月6日 May 6 | 5月16日 May 16 | 5月31日 May 31 | 6月10日 June 10 | ||||
‘陇鉴196’ ‘Longjian 196’ | -26.9 ± 0.08 | -26.6 ± 0.12 | -26.4 ± 0.13 | -26.2 ± 0.10 | 4 251 ± 79.07g | 12.4 ± 0.16e | 1.41 ± 0.08d |
‘陇鉴127’ ‘Longjian 127’ | -27.0 ± 0.13 | -27.0 ± 0.18 | -26.7 ± 0.13 | -26.3 ± 0.12 | 3 725 ± 84.66k | 10.5 ± 0.03j | 1.80 ± 0.11a |
‘陇鉴385’ ‘Longjian 385’ | -26.9 ± 0.12 | -26.8 ± 0.11 | -26.5 ± 0.18 | -26.2 ± 0.08 | 4 315 ± 90.30f | 12.5 ± 0.08de | 1.77 ± 0.05ab |
‘陇育216’ ‘Longyu 216’ | -26.8 ± 0.18 | -26.7 ± 0.13 | -26.4 ± 0.20 | -26.4 ± 0.13 | 4 101 ± 93.75i | 11.7 ± 0.12g | 1.38 ± 0.07d |
‘陇原061’ ‘Longyuan 061’ | -26.1 ± 0.09 | -26.0 ± 0.17 | -25.6 ± 0.14 | -25.4 ± 0.18 | 4 325 ± 66.41ef | 12.5 ± 0.07de | 1.23 ± 0.05f |
‘定鉴3号’ ‘Dingjian 3’ | -25.7 ± 0.13 | -25.7 ± 0.09 | -25.4 ± 0.17 | -25.0 ± 0.11 | 4 551 ± 72.07b | 13.1 ± 0.11b | 1.23 ± 0.09f |
‘宁麦5号’ ‘Ningmai 5 ’ | -26.0 ± 0.15 | -26.0 ± 0.13 | -25.7 ± 0.06 | -25.4 ± 0.17 | 4 180 ± 70.28h | 12.1 ± 0.06f | 1.27 ± 0.08ef |
‘西峰27’ ‘Xifeng 27’ | -26.6 ± 0.12 | -26.5 ± 0.11 | -26.3 ± 0.23 | -26.3 ± 0.09 | 4 260 ± 82.23g | 12.2 ± 0.21f | 1.70 ± 0.06b |
‘太原10604’ ‘Taiyuan 10604’ | -26.7 ± 0.10 | -26.6 ± 0.18 | -26.3 ± 0.17 | -26.3 ± 0.17 | 3 950 ± 91.16j | 11.6 ± 0.06h | 1.29 ± 0.03e |
‘05旱鉴27’ ‘05Hanjian 27’ | -27.4 ± 0.19 | -27.1 ± 0.17 | -26.9 ± 0.16 | -26.6 ± 0.14 | 3 171 ± 97.40l | 9.5 ± 0.13k | 0.99 ± 0.05g |
‘长6878’ ‘Chang 6878’ | -26.6 ± 0.08 | -26.6 ± 0.08 | -26.4 ± 0.11 | -26.1 ± 0.12 | 4 395 ± 69.53d | 12.7 ± 0.11c | 1.74 ± 0.04ab |
‘9550’ | -25.9 ± 0.16 | -25.7 ± 0.14 | -25.3 ± 0.18 | -25.1 ± 0.09 | 4 780 ± 63.85a | 13.5 ± 0.09a | 1.66 ± 0.07bc |
‘1R2’ | -26.4 ± 0.11 | -26.3 ± 0.14 | -26.1 ± 0.07 | -25.8 ± 0.06 | 4 336 ± 66.31e | 12.6 ± 0.08d | 1.63 ± 0.05c |
‘1R8’ | -27.2 ± 0.14 | -27.1 ± 0.21 | -26.5 ± 0.13 | -26.4 ± 0.11 | 3 936 ± 87.26j | 11.2 ± 0.13i | 1.64 ± 0.04c |
‘1R17’ | -26.0 ± 0.14 | -26.0 ± 0.10 | -25.4 ± 0.13 | -25.3 ± 0.15 | 4 460 ± 72.19c | 13.1 ± 0.09b | 1.42 ± 0.09d |
平均值 Mean | -26.55 | -26.45 | -26.13 | -25.92 | 4 182 | 12.1 | 1.48 |
变异系数CV (%) | 1.93 | 1.80 | 1.96 | 2.06 | 9.13 | 8.72 | 16.65 |
表3 拔节期有限补灌条件下不同基因型冬小麦旗叶的稳定碳同位素比值(δ13C)、产量、水分利用效率和补偿供水效应
Table 3 Stable carbon isotope ratio (δ13C) in flag leaves, grain yield, water use efficiency (WUE) and supplemental irrigation effect (SIE) of different genotypes of winter wheat under supplemental irrigation at jointing stage
基因型 Genotype | δ13C值 δ13C Value (‰) | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 WUE (kg·hm-2·mm-1) | 补偿供水效应 SIE | |||
---|---|---|---|---|---|---|---|
5月6日 May 6 | 5月16日 May 16 | 5月31日 May 31 | 6月10日 June 10 | ||||
‘陇鉴196’ ‘Longjian 196’ | -26.9 ± 0.08 | -26.6 ± 0.12 | -26.4 ± 0.13 | -26.2 ± 0.10 | 4 251 ± 79.07g | 12.4 ± 0.16e | 1.41 ± 0.08d |
‘陇鉴127’ ‘Longjian 127’ | -27.0 ± 0.13 | -27.0 ± 0.18 | -26.7 ± 0.13 | -26.3 ± 0.12 | 3 725 ± 84.66k | 10.5 ± 0.03j | 1.80 ± 0.11a |
‘陇鉴385’ ‘Longjian 385’ | -26.9 ± 0.12 | -26.8 ± 0.11 | -26.5 ± 0.18 | -26.2 ± 0.08 | 4 315 ± 90.30f | 12.5 ± 0.08de | 1.77 ± 0.05ab |
‘陇育216’ ‘Longyu 216’ | -26.8 ± 0.18 | -26.7 ± 0.13 | -26.4 ± 0.20 | -26.4 ± 0.13 | 4 101 ± 93.75i | 11.7 ± 0.12g | 1.38 ± 0.07d |
‘陇原061’ ‘Longyuan 061’ | -26.1 ± 0.09 | -26.0 ± 0.17 | -25.6 ± 0.14 | -25.4 ± 0.18 | 4 325 ± 66.41ef | 12.5 ± 0.07de | 1.23 ± 0.05f |
‘定鉴3号’ ‘Dingjian 3’ | -25.7 ± 0.13 | -25.7 ± 0.09 | -25.4 ± 0.17 | -25.0 ± 0.11 | 4 551 ± 72.07b | 13.1 ± 0.11b | 1.23 ± 0.09f |
‘宁麦5号’ ‘Ningmai 5 ’ | -26.0 ± 0.15 | -26.0 ± 0.13 | -25.7 ± 0.06 | -25.4 ± 0.17 | 4 180 ± 70.28h | 12.1 ± 0.06f | 1.27 ± 0.08ef |
‘西峰27’ ‘Xifeng 27’ | -26.6 ± 0.12 | -26.5 ± 0.11 | -26.3 ± 0.23 | -26.3 ± 0.09 | 4 260 ± 82.23g | 12.2 ± 0.21f | 1.70 ± 0.06b |
‘太原10604’ ‘Taiyuan 10604’ | -26.7 ± 0.10 | -26.6 ± 0.18 | -26.3 ± 0.17 | -26.3 ± 0.17 | 3 950 ± 91.16j | 11.6 ± 0.06h | 1.29 ± 0.03e |
‘05旱鉴27’ ‘05Hanjian 27’ | -27.4 ± 0.19 | -27.1 ± 0.17 | -26.9 ± 0.16 | -26.6 ± 0.14 | 3 171 ± 97.40l | 9.5 ± 0.13k | 0.99 ± 0.05g |
‘长6878’ ‘Chang 6878’ | -26.6 ± 0.08 | -26.6 ± 0.08 | -26.4 ± 0.11 | -26.1 ± 0.12 | 4 395 ± 69.53d | 12.7 ± 0.11c | 1.74 ± 0.04ab |
‘9550’ | -25.9 ± 0.16 | -25.7 ± 0.14 | -25.3 ± 0.18 | -25.1 ± 0.09 | 4 780 ± 63.85a | 13.5 ± 0.09a | 1.66 ± 0.07bc |
‘1R2’ | -26.4 ± 0.11 | -26.3 ± 0.14 | -26.1 ± 0.07 | -25.8 ± 0.06 | 4 336 ± 66.31e | 12.6 ± 0.08d | 1.63 ± 0.05c |
‘1R8’ | -27.2 ± 0.14 | -27.1 ± 0.21 | -26.5 ± 0.13 | -26.4 ± 0.11 | 3 936 ± 87.26j | 11.2 ± 0.13i | 1.64 ± 0.04c |
‘1R17’ | -26.0 ± 0.14 | -26.0 ± 0.10 | -25.4 ± 0.13 | -25.3 ± 0.15 | 4 460 ± 72.19c | 13.1 ± 0.09b | 1.42 ± 0.09d |
平均值 Mean | -26.55 | -26.45 | -26.13 | -25.92 | 4 182 | 12.1 | 1.48 |
变异系数CV (%) | 1.93 | 1.80 | 1.96 | 2.06 | 9.13 | 8.72 | 16.65 |
变异来源 Source of variance | 平方和 SS | 自由度 df | 平均方 MS | F值 F value | p值 p value |
---|---|---|---|---|---|
基因型 Genotype (G) | 61.62 | 14 | 4.40 | 93.05 | < 0.001 |
灌浆期 Grain filling stage (S) | 0.78 | 3 | 0.26 | 4.33 | 0.039 |
基因型×灌浆期 G × S | 2.94 | 42 | 0.07 | 1.78 | 0.108 |
表4 旱作条件下冬小麦基因型和灌浆期对旗叶的稳定碳同位素比值(δ13C)影响的方差分析
Table 4 ANOVA for genotypes and grain filling stages on stable carbon isotope ratio (δ13C) in flag leaves of winter wheat under dryland condition
变异来源 Source of variance | 平方和 SS | 自由度 df | 平均方 MS | F值 F value | p值 p value |
---|---|---|---|---|---|
基因型 Genotype (G) | 61.62 | 14 | 4.40 | 93.05 | < 0.001 |
灌浆期 Grain filling stage (S) | 0.78 | 3 | 0.26 | 4.33 | 0.039 |
基因型×灌浆期 G × S | 2.94 | 42 | 0.07 | 1.78 | 0.108 |
变异来源 Source of variance | 平方和 SS | 自由度 df | 平均方 MS | F值 F value | p值 p value |
---|---|---|---|---|---|
基因型 Genotype (G) | 44.07 | 14 | 3.15 | 172.18 | < 0.001 |
灌浆期 Grain filling stage (S) | 0.96 | 3 | 0.32 | 4.41 | 0.033 |
基因型×灌浆期 G × S | 0.46 | 42 | 0.11 | 2.02 | 0.097 |
表5 拔节期有限补灌条件下冬小麦基因型和灌浆期对旗叶的稳定碳同位素比值(δ13C)影响的方差分析
Table 5 ANOVA for genotypes and grain filling stages on stable carbon isotope ratio (δ13C) in flag leaves of winter wheat under supplemental irrigation at jointing stage
变异来源 Source of variance | 平方和 SS | 自由度 df | 平均方 MS | F值 F value | p值 p value |
---|---|---|---|---|---|
基因型 Genotype (G) | 44.07 | 14 | 3.15 | 172.18 | < 0.001 |
灌浆期 Grain filling stage (S) | 0.96 | 3 | 0.32 | 4.41 | 0.033 |
基因型×灌浆期 G × S | 0.46 | 42 | 0.11 | 2.02 | 0.097 |
变异来源 Source of variance | 平方和 SS | 自由度 df | 平均方 MS | F值 F value | p值 p value |
---|---|---|---|---|---|
水分条件 Water condition | 1.93 | 1 | 1.93 | 33.47 | < 0.01 |
表6 不同水分条件对冬小麦旗叶的稳定碳同位素比值(δ13C)影响的方差分析
Table 6 ANOVA for different water condition on stable carbon isotope ratio (δ13C) in flag leaves of winter wheat
变异来源 Source of variance | 平方和 SS | 自由度 df | 平均方 MS | F值 F value | p值 p value |
---|---|---|---|---|---|
水分条件 Water condition | 1.93 | 1 | 1.93 | 33.47 | < 0.01 |
图1 旱作条件下小麦不同灌浆期旗叶稳定碳同位素比值与籽粒产量、水分利用效率的关系。*, p < 0.01; **, p < 0.05。
Fig. 1 Regression of stable carbon isotope ratio (δ13C) value in flag leaves of wheat and grain yield, water use efficiency (WUE) during different grain filling stages under dryland condition. *, p < 0.01; **, p < 0.05.
图2 有限补灌条件下小麦不同灌浆期旗叶稳定碳同位素比值与籽粒产量、水分利用效率的关系。*, p < 0.01; **, p < 0.05。
Fig. 2 Regression of stable carbon isotope ratio (δ13C) value in flag leaves of wheat and grain yield, water use efficiency (WUE) during different grain filling stages under irrigation condition. *, p < 0.01; **, p < 0.05.
[1] | Bacon MA (2004). Water Use Efficiency in Plant Biology. Blackwell Publishing, Oxford,UK. 1-27. |
[2] |
Boutton TW (1983). Comparison of quartz and pyrex tubes for combustion of organic samples for stable carbon isotope analysis. Analytical Chemistry, 55, 1832-1833.
DOI URL |
[3] | Chen T (陈拓), Feng HY (冯虎元), Xu SJ (徐世建), Qiang WY (强维亚), An LZ (安黎哲) (2002). Stable carbon isotope composition of desert plant leaves and water-use efficiency. Journal of Desert Research (中国沙漠), 22, 288-291. (in Chinese with English abstract) |
[4] | Chen YH (陈英华), Hu J (胡俊), Li YH (李裕红), Xue B (薛博), Yan CL (严重玲) (2004). Application of stable carbon isotope techniques to research into water stress. Acta Ecologica Sinica (生态学报), 24, 1027-1033. (in Chinese with English abstract) |
[5] |
Condon AG, Richards RA (1992). Broad sense heritability and genotype × environment interaction for carbon isotope discrimination in field-grown wheat. Australian Journal of Agricultural Research, 43, 921-934.
DOI URL |
[6] |
Condon AG, Richards RA, Farquhar GD (1987). Carbon isotope discrimination is positively correlation with grain yield and dry matter production in field-grown wheat. Crop Science, 27, 996-1001.
DOI URL |
[7] | Condon AG, Richards RA, Rebetzke GJ (2004). Breeding for high water-use efficiency. Journal of Experimental Botany, 407, 2447-2460. |
[8] | Damesin C, Lelarge C (2003). Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant, Cell and Environment, 26, 207-219. |
[9] |
Delucia EH, Schlesinger WH (2001). Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants. Ecology, 72, 51-58.
DOI URL |
[10] | Ding MM (丁明明), Su XH (苏晓华), Huang QJ (黄秦军) (2005). Application of stable carbon isotope techniques in genetic improvement of forest. World Forestry Research (世界林业研究), 18(5), 21-26. (in Chinese with English abstract) |
[11] | Ehleringer JR (1993). Carbon and water relation in desert plants, an isotope perspective. In: Ehleringer JR, Hall AE, Farquhar GD eds. Stable Isotope and Plant Carbon-Water Relation. Academic Press, San Diego. 155-172. |
[12] |
Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Molecular Biology, 40, 503-537.
DOI URL |
[13] | Farquhar GD, O’Leary MH, Berry JA (1982). On the relationship between carbon dioxide discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121-137. |
[14] | Farquhar GD, Richards RA (1984). Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 11, 539-552. |
[15] | Feng X, Epstein S (1995). Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochimical et Cosmochimica Acta, 59, 2559-2608. |
[16] | Hubick KT, Farquhar GD (1987). Carbon isotope discrimination-selecting for water use efficiency. Australian Cotton Grower, 8, 66-68. |
[17] | Lin ZF (林植芳) (1990). Application of stable isotope technique on plant ecophysiology. Plant Physiology Communications (植物生理学通讯), 3, 1-6. (in Chinese with English abstract) |
[18] | Lin ZF (林植芳), Peng CL (彭长连), Lin GZ (林桂珠) (2001). Carbon isotope discrimination and water use efficiency in different soybean and wheat genotypes. Acta Agronomica Sinica (作物学报), 27, 439-441. (in Chinese with English abstract) |
[19] | Liu XB (刘晓冰), Li WX (李文雄) (1996). Preliminary studies on the accumulation of grain starch and protein during grain filling in wheat. Acta Agronomica Sinica (作物学报), 22, 736-740. (in Chinese with English abstract) |
[20] | Ma LM (马利民), Liu Y (刘禹), Zhao JF (赵建夫) (2002). Response of stable-carbon isotope composition of different treering compounds to climatic change. Acta Ecologica Sinica (生态学报), 23, 2607-2613. (in Chinese with English abstract) |
[21] | Mao ZQ (毛振强), Zhang YS (张银锁), Yu ZR (宇振荣) (2003). Water requirement and irrigation scenarios of summer maize production aided by crop growth simulation model. Acta Agronomica Sinica (作物学报), 29, 419-426. (in Chinese with English abstract) |
[22] | McDowell N, Brooks JR, Fitzgerald SA (2003). Carbon isotope discrimination and growth response of old Pinus ponderosa trees to stand density reductions. Plant, Cell & Environment, 26, 631-644. |
[23] |
Midgley GF, Moll EJ (1993). Gas exchange in arid-adapted shrubs: When is efficient water use a disadvantage? South African Journal of Botany, 59, 491-495.
DOI URL |
[24] |
Mook WG, Bommerson JC, Staverman WH (1974). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 22, 169-175.
DOI URL |
[25] | O’Leary MH (1984). Measurement of the isotope fractionation associated with diffusion of carbon dioxide in aqueous solution. Journal of Physical Chemistry, 88, 823-825. |
[26] |
Paneth P, O’Leary MH (1985). Carbon isotope effect on dehydration of bicarbonate ion catalyzed by carbonic anhydrase. Biochemistry, 24, 5143-5147.
DOI URL PMID |
[27] | Pate JS (2001). Carbon isotope discrimination and plant water- use efficiency. In: Unkovich M, Pate JS, McNeill A, Gibbs DJ eds. Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Kluwer, Boston. 19-36. |
[28] | Saranga Y, Flash I, Paterson AH (1999). Carbon isotope ratio in cotton varies with growth stage and plant organ. Plant Science, 142, 782-787. |
[29] |
Scartazza A, Mata C, Matteucci G (2004). Comparisons of δ13C photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia, 140, 340-351.
DOI URL |
[30] | Shan L (山仑) (2003). Water-saving agriculture and of crop high efficient use of water. Journal of Henan University (Natural Science) (河南大学学报(自然科学版)), 33(1), 1-5. (in Chinese with English abstract) |
[31] |
van de Water PK, Leavitt SW, Betancourt JL (1994). Trends in stomatal density and13C/12C ratios of Pinus flexilis needles during the last glacial-interglacial cycle. Science, 264, 239-243.
DOI URL |
[32] |
Wright GC, Rao RCN, Farquhar GD (1994). Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Science, 34, 92-97.
DOI URL |
[33] | Xu X (许兴), Zhu L (朱林), Li SH (李树华), He J (何军), Jing JH (景继海), Dong JL (董建力) (2007). Study on relationship between carbon isotope discrimination and ash content, specific leaf weight, harvest index of wheat in different ecological areas in Ningxia. Journal of Agricultural Sciences (农业科学研究), 28, 1-4. (in Chinese with English abstract) |
[34] | Xue CY (薛昌颖), Yang XG (杨晓光), Deng W (邓伟), Zhang QP (张秋平), Run WX (闰伟兄), Wang HQ (王化琪), Bouma BAM (2008). Establishing optimum irrigation schedules for aerobic rice in Beijing using ORYZA2000 model. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 24(4), 76-82. (in Chinese with English abstract) |
[35] | Yan CR (严昌荣), Han XG (韩兴国), Chen LZ (陈灵芝) (1998). Foliar δ13C within temperate deciduous forest: its spatial change and interspecies variation. Acta Botanica Sinica (植物学报), 40, 853-859. (in Chinese with English abstract) |
[36] | Yi XF (易现峰), Kong XS (孔祥生), Shi GA (史国安), Huang H (黄华) (2005). Attempt of using stable carbon isotope to teach photosynthetic carbon metabolism. Plant Physiology Communications (植物生理学通讯), 41, 665-668. (in Chinese with English abstract) |
[37] | Zhang SQ (张岁歧), Shan L (山仑) (2003). Difference of water use efficiency of diploidy wheat species with different chromosome set and its relationship with root system growth. Acta Agronomica Sinica (作物学报), 29, 569-573. |
[38] |
Zhao FJ, Gao RF, Shen YB (2006). Foliar carbon isotope composition (δ13C) and water use efficiency of different Populus deltoids clones under water stress. Frontiers of Forestry in China, 1(1), 89-94.
DOI URL |
[39] | Zheng SX (郑淑霞), Shangguan ZP (上官周平) (2005). Variation in the δ13C value of typical plants of Loess Plateau over the last 70 years. Acta Phytoecologica Sinica (植物生态学报), 29, 289-295. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[3] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[4] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[5] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[6] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[7] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[8] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[9] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[10] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[11] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[12] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[13] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[14] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[15] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19