植物生态学报 ›› 2010, Vol. 34 ›› Issue (10): 1220-1226.DOI: 10.3773/j.issn.1005-264x.2010.10.011
收稿日期:
2009-12-21
接受日期:
2010-03-01
出版日期:
2010-12-21
发布日期:
2010-10-31
通讯作者:
杨万勤
作者简介:
* E-mail: scyangwq@163.com
WU Fu-Zhong, YANG Wan-Qin*(), ZHANG Jian, ZHOU Li-Qiang
Received:
2009-12-21
Accepted:
2010-03-01
Online:
2010-12-21
Published:
2010-10-31
Contact:
YANG Wan-Qin
摘要:
桂花(Osmanthus fragrans var. thunbergii)是长江流域镉污染地区普遍栽植兼具绿化、观赏和净化环境等重要价值的园林树种之一。为了解镉胁迫条件下桂花生长适应特性, 采用盆栽试验研究了不同镉浓度处理下(CK: 0 mg·kg-1; I: 25 mg·kg-1; II: 50 mg·kg-1; III: 100 mg·kg-1; IV: 200 mg·kg-1)一个生长季节内一年生桂花生物量生产、生物量分配格局以及C、N、P积累、分配与利用特征。植物各器官生物量生产及C、N和P积累量均表现出随镉处理浓度的增加而降低的趋势, 较高浓度镉处理(II、III、IV)明显抑制了桂花的生物量生产、C、N和P的积累, 显著改变了生物量及其C、N和P积累量的分配格局, 但相对较低浓度镉处理(I)对桂花生物量生产以及C、N和P的积累与分配特征影响并不显著。一定浓度的镉胁迫处理(I、II、III)表现出提高桂花N的利用效率而降低P的利用效率的趋势, 但重度镉胁迫(IV)均降低了桂花N和P的利用效率。结果表明桂花具有一定的抗镉胁迫能力, 但较高程度的镉胁迫显著影响了桂花生长及养分格局。
吴福忠, 杨万勤, 张健, 周利强. 镉胁迫对桂花生长和养分积累、分配与利用的影响. 植物生态学报, 2010, 34(10): 1220-1226. DOI: 10.3773/j.issn.1005-264x.2010.10.011
WU Fu-Zhong, YANG Wan-Qin, ZHANG Jian, ZHOU Li-Qiang. Effects of cadmium stress on growth and nutrient accumulation, distribution and utilization in Osmanthus fragrans var. thunbergii. Chinese Journal of Plant Ecology, 2010, 34(10): 1220-1226. DOI: 10.3773/j.issn.1005-264x.2010.10.011
叶生物量 Leaf biomass (g) | 茎生物量 Stem biomass (g) | 根生物量 Root biomass (g) | 凋落叶生物量 Litter leave biomass (g) | 总生物量 Total biomass (g) | 根/茎比 Ratio of root to stem | |
---|---|---|---|---|---|---|
CK | 17.96 ± 1.46a 27.35% | 25.38 ± 3.99a 38.65% | 20.72 ± 4.06a 31.55% | 1.61 ± 0.60a 2.45% | 65.67 ± 4.58a 100% | 0.82 ± 0.08a |
I | 14.82 ± 2.08a 25.11% | 22.28 ± 4.44ab 37.74% | 20.65 ± 3.75a 34.98% | 1.28 ± 0.44a 2.17% | 59.03 ± 5.12a 100% | 0.93 ± 0.09b |
II | 5.62 ± 2.97b 29.94% | 5.83 ± 1.53bc 31.06% | 6.05 ± 1.79b 32.23% | 1.27 ± 0.54a 6.77% | 18.77 ± 3.43b 100% | 1.04 ± 0.09b |
III | 4.70 ± 2.10b 27.50% | 5.53 ± 1.76bc 32.36% | 5.60 ± 0.96b 32.77% | 1.26 ± 0.31a 7.37% | 17.09 ± 3.54b 100% | 1.01 ± 0.12b |
IV | 3.61 ± 1.73b 36.35% | 2.52 ± 0.52c 25.38% | 2.55 ± 1.11c 25.68% | 1.25 ± 0.47a 12.59% | 9.93 ± 2.18c 100% | 1.01 ± 0.11b |
表1 不同镉浓度处理下桂花生物量及其分配特征(平均值±标准偏差, n = 5)
Table 1 Biomass and its components of Osmanthus fragrans var. thunbergii under different Cd concentration treatments (means ± SD, n = 5)
叶生物量 Leaf biomass (g) | 茎生物量 Stem biomass (g) | 根生物量 Root biomass (g) | 凋落叶生物量 Litter leave biomass (g) | 总生物量 Total biomass (g) | 根/茎比 Ratio of root to stem | |
---|---|---|---|---|---|---|
CK | 17.96 ± 1.46a 27.35% | 25.38 ± 3.99a 38.65% | 20.72 ± 4.06a 31.55% | 1.61 ± 0.60a 2.45% | 65.67 ± 4.58a 100% | 0.82 ± 0.08a |
I | 14.82 ± 2.08a 25.11% | 22.28 ± 4.44ab 37.74% | 20.65 ± 3.75a 34.98% | 1.28 ± 0.44a 2.17% | 59.03 ± 5.12a 100% | 0.93 ± 0.09b |
II | 5.62 ± 2.97b 29.94% | 5.83 ± 1.53bc 31.06% | 6.05 ± 1.79b 32.23% | 1.27 ± 0.54a 6.77% | 18.77 ± 3.43b 100% | 1.04 ± 0.09b |
III | 4.70 ± 2.10b 27.50% | 5.53 ± 1.76bc 32.36% | 5.60 ± 0.96b 32.77% | 1.26 ± 0.31a 7.37% | 17.09 ± 3.54b 100% | 1.01 ± 0.12b |
IV | 3.61 ± 1.73b 36.35% | 2.52 ± 0.52c 25.38% | 2.55 ± 1.11c 25.68% | 1.25 ± 0.47a 12.59% | 9.93 ± 2.18c 100% | 1.01 ± 0.11b |
图1 不同镉浓度处理下桂花各器官C、N和P含量的差异(平均值±标准偏差, n = 5)。 不同字母表示处理间的差异显著(p < 0.05)。CK、I、II、III、IV, 同表1。
Fig. 1 Variations of C, N and P concentrations of Osmanthus fragrans var. thunbergii under different Cd concentration treatments. Different letters indicate significant differences among the treatments (p < 0.05) (mean ± SD, n = 5). CK, I, II, III, IV, see Table 1.
新鲜叶积累量 Fresh leaf accumulation (mg) | 茎积累量 Stem accumulation (mg) | 根积累量 Root accumulation (mg) | 凋落叶积累量 Litter leaves accumulation (mg) | 总积累量 Total accumulation (mg) | ||
---|---|---|---|---|---|---|
C | CK | 8 471.24 ± 256.38a | 12 092.25 ± 523.24a | 8605.03 ± 486.77a | 741.21 ± 65.21a | 29 909.73 ± 1 125.96a |
I | 8 272.35 ± 367.24a | 8 621.32 ± 124.67b | 8483.74 ± 256.45a | 560.17 ± 74.16b | 25 937.58 ± 968.75b | |
II | 2 541.27 ± 185.69b | 2 592.14 ± 186.75c | 2342.23 ± 212.33b | 532.38 ± 55.65bc | 8 008.02 ± 582.65c | |
III | 2 430.74 ± 205.36b | 2 483.27 ± 109.01c | 2264.45 ± 156.67b | 476.32 ± 85.21c | 7 654.78 ± 610.20c | |
IV | 1 881.35 ± 212.12c | 1 116.25 ± 213.55d | 2041.02 ± 274.14b | 481.14 ± 58.85c | 5 519.76 ± 498.12d | |
N | CK | 183.02 ± 26.75a | 47.11 ± 5.69a | 65.14 ± 11.25a | 16.25 ± 4.35a | 311.52 ± 41.11a |
I | 131.42 ± 33.21b | 33.23 ± 7.32b | 57.71 ± 9.82a | 14.63 ± 2.19a | 236.99 ± 23.55b | |
II | 32.55 ± 6.75c | 11.14 ± 2.65c | 21.37 ± 4.56b | 11.16 ± 3.12b | 76.22 ± 11.26c | |
III | 31.43 ± 7.14c | 9.72 ± 3.17c | 17.15 ± 3.25b | 10.02 ± 2.14c | 68.32 ± 10.75c | |
IV | 19.28 ± 5.12d | 5.31 ± 1.20d | 15.36 ± 3.33b | 10.31 ± 3.15c | 50.26 ± 8.95d | |
P | CK | 18.37 ± 2.35a | 19.07 ± 2.85a | 15.12 ± 2.15a | 1.74 ± 0.56a | 54.30 ± 9.12a |
I | 17.14 ± 2.78a | 17.46 ± 4.56a | 14.23 ± 4.13a | 0.96 ± 0.12b | 49.79 ± 5.50a | |
II | 5.34 ± 1.96b | 5.12 ± 1.41b | 4.15 ± 1.15b | 1.32 ± 0.15c | 15.93 ± 4.86b | |
III | 4.63 ± 1.56b | 4.47 ± 1.52b | 3.80 ± 1.16b | 1.25 ± 0.10c | 14.15 ± 3.25b | |
IV | 2.91 ± 0.82c | 1.74 ± 0.68c | 3.21 ± 1.12b | 0.67 ± 0.09d | 8.53 ± 2.18c |
表2 不同镉浓度处理下桂花各器官的C、N和P贮量(平均值±标准偏差, n = 5)
Table 2 C, N and P accumulations of Osmanthus fragrans var. thunbergii under different Cd concentration treatments (means ± SD, n = 5)
新鲜叶积累量 Fresh leaf accumulation (mg) | 茎积累量 Stem accumulation (mg) | 根积累量 Root accumulation (mg) | 凋落叶积累量 Litter leaves accumulation (mg) | 总积累量 Total accumulation (mg) | ||
---|---|---|---|---|---|---|
C | CK | 8 471.24 ± 256.38a | 12 092.25 ± 523.24a | 8605.03 ± 486.77a | 741.21 ± 65.21a | 29 909.73 ± 1 125.96a |
I | 8 272.35 ± 367.24a | 8 621.32 ± 124.67b | 8483.74 ± 256.45a | 560.17 ± 74.16b | 25 937.58 ± 968.75b | |
II | 2 541.27 ± 185.69b | 2 592.14 ± 186.75c | 2342.23 ± 212.33b | 532.38 ± 55.65bc | 8 008.02 ± 582.65c | |
III | 2 430.74 ± 205.36b | 2 483.27 ± 109.01c | 2264.45 ± 156.67b | 476.32 ± 85.21c | 7 654.78 ± 610.20c | |
IV | 1 881.35 ± 212.12c | 1 116.25 ± 213.55d | 2041.02 ± 274.14b | 481.14 ± 58.85c | 5 519.76 ± 498.12d | |
N | CK | 183.02 ± 26.75a | 47.11 ± 5.69a | 65.14 ± 11.25a | 16.25 ± 4.35a | 311.52 ± 41.11a |
I | 131.42 ± 33.21b | 33.23 ± 7.32b | 57.71 ± 9.82a | 14.63 ± 2.19a | 236.99 ± 23.55b | |
II | 32.55 ± 6.75c | 11.14 ± 2.65c | 21.37 ± 4.56b | 11.16 ± 3.12b | 76.22 ± 11.26c | |
III | 31.43 ± 7.14c | 9.72 ± 3.17c | 17.15 ± 3.25b | 10.02 ± 2.14c | 68.32 ± 10.75c | |
IV | 19.28 ± 5.12d | 5.31 ± 1.20d | 15.36 ± 3.33b | 10.31 ± 3.15c | 50.26 ± 8.95d | |
P | CK | 18.37 ± 2.35a | 19.07 ± 2.85a | 15.12 ± 2.15a | 1.74 ± 0.56a | 54.30 ± 9.12a |
I | 17.14 ± 2.78a | 17.46 ± 4.56a | 14.23 ± 4.13a | 0.96 ± 0.12b | 49.79 ± 5.50a | |
II | 5.34 ± 1.96b | 5.12 ± 1.41b | 4.15 ± 1.15b | 1.32 ± 0.15c | 15.93 ± 4.86b | |
III | 4.63 ± 1.56b | 4.47 ± 1.52b | 3.80 ± 1.16b | 1.25 ± 0.10c | 14.15 ± 3.25b | |
IV | 2.91 ± 0.82c | 1.74 ± 0.68c | 3.21 ± 1.12b | 0.67 ± 0.09d | 8.53 ± 2.18c |
图2 不同镉浓度处理下桂花各器官中C、N和P贮量占植株总贮量的比例。 CK、I、II、III、IV, 同表1。
Fig. 2 Percentages of C, N and P in each organ to total plant of Osmanthus fragrans var. thunbergii under different Cd concentration treatments. CK, I, II, III, IV, see Table 1.
叶C/N Leaf C/N | 叶N/P Leaf N/P | C/N | N/P | N利用效率 NUEN (g mass·g-1) | P利用效率 NUEP (g mass·g-1)s | |
---|---|---|---|---|---|---|
CK | 46.29 ± 6.25a | 9.96 ± 2.51a | 96.01 ± 8.92a | 5.74 ± 1.35a | 210.81 ± 36.45ab | 1209.39 ± 98.85a |
I | 62.95 ± 10.17b | 7.67 ± 1.704b | 109.45 ± 15.26b | 4.76 ± 2.06a | 249.08 ± 29.16a | 1185.58 ± 78.52a |
II | 78.07 ± 9.18c | 6.10 ± 3.25ab | 105.06 ± 10.71b | 4.78 ± 1.72a | 246.26 ± 33.18a | 1178.28 ± 109.46a |
III | 77.34 ± 8.28c | 6.79 ± 1.05b | 112.04 ± 9.10b | 4.83 ± 1.36a | 250.15 ± 42.10a | 1207.77 ± 115.55a |
IV | 97.58 ± 6.40d | 6.63 ± 2.10b | 109.82 ± 10.11b | 5.89 ± 2.33a | 197.57 ± 28.55b | 1164.13 ± 153.68a |
表3 不同镉浓度处理下桂花叶C/N、叶N/P、总C/N、总N/P、N利用效率和P利用效率差异(平均值±标准偏差, n = 5)
Table 3 Leaf C/N, leaf N/P, C/N, N/P, N use efficiency (NUEN) and P use efficiency (NUEP) of Osmanthus fragrans var. thunbergii under different treatments with different Cd concentrations (means ± SD, n = 5)
叶C/N Leaf C/N | 叶N/P Leaf N/P | C/N | N/P | N利用效率 NUEN (g mass·g-1) | P利用效率 NUEP (g mass·g-1)s | |
---|---|---|---|---|---|---|
CK | 46.29 ± 6.25a | 9.96 ± 2.51a | 96.01 ± 8.92a | 5.74 ± 1.35a | 210.81 ± 36.45ab | 1209.39 ± 98.85a |
I | 62.95 ± 10.17b | 7.67 ± 1.704b | 109.45 ± 15.26b | 4.76 ± 2.06a | 249.08 ± 29.16a | 1185.58 ± 78.52a |
II | 78.07 ± 9.18c | 6.10 ± 3.25ab | 105.06 ± 10.71b | 4.78 ± 1.72a | 246.26 ± 33.18a | 1178.28 ± 109.46a |
III | 77.34 ± 8.28c | 6.79 ± 1.05b | 112.04 ± 9.10b | 4.83 ± 1.36a | 250.15 ± 42.10a | 1207.77 ± 115.55a |
IV | 97.58 ± 6.40d | 6.63 ± 2.10b | 109.82 ± 10.11b | 5.89 ± 2.33a | 197.57 ± 28.55b | 1164.13 ± 153.68a |
[1] | Benavides MP, Gallego SM, Tomaro ML (2005). Cadmium toxicity in plants. Brazil Journal of Plant Physiology, 17, 21-34. |
[2] |
Boussama N, Ouariti O, Ghorbal MH (1999). Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 22, 731-752.
DOI URL |
[3] |
Broadley MR, Escobar-Gutiérrez AJ, Burns A (2000). What are the effects of nitrogen deficiency on growth components of lettuce? New Phytologist, 147, 519-526.
DOI URL |
[4] | Cao L (曹玲), Wang QC (王庆成), Cui DH (崔东海) (2006). Impact of soil cadmium contamination on chlorophyll fluorescence characters and biomass accumulation of four broad-leaved tree species seedlings. Chinese Journal of Applied Ecology (应用生态学报), 17, 769-772. (in Chinese with English abstract) |
[5] | Chen HG (陈洪国), Zhou KB (周开兵), Zhang HY (张红艳) (2008). Studies on the increment, flower and mineral nutrient change of three cultivars of Osmanthus fragrans Lout. Journal of Wuhan Botanical Research (武汉植物学研究), 26, 108-112. (in Chinese with English abstract) |
[6] |
Chien HF, Kao CH (2000). Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Science, 156, 111-115.
URL PMID |
[7] | Feng L (冯丽), Zhang JG (张景光), Zhang ZS (张志山), Guo Q (郭群), Li XR (李新荣) (2009). Growth and biomass allocation dynamics of Artemisia ordosica in sand fixing vegetation of the Tengger desert of China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1132-1139. (in Chinese with English abstract) |
[8] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[9] | Liu ZH (刘志华), Yi XY (伊晓云), Zeng QL (曾其龙), Wang HY (王火焰), Shen RF (沈仁芳) (2008). Study on growth and accumulation of nutrient elements in Chinese cabbage at seedling stage under low Cd stress. Soils (土壤), 40, 630-634. (in Chinese with English abstract) |
[10] | Liu ZL (刘周莉), He XY (何兴元), Chen W (陈玮) (2009). Effects of cadmium stress on the growth and physiological characteristics of Lonicera japonica. Chinese Journal of Applied Ecology (应用生态学报), 20, 40-44. (in Chinese with English abstract) |
[11] | Lu RK (鲁如坤) (2000). Soil and Agro-Chemical Analytical Methods (土壤农业化学分析方法). China Agricultural Science and Technology Press, Beijing. 318-379. (in Chinese) |
[12] |
Nedjimi B, Daoud Y (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora, 204, 316-324.
DOI URL |
[13] |
Patterson TB, Guy RD, Dang QL (1997). Whole-plant nitrogen- and water-relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species. Oecologia, 110, 160-168.
URL PMID |
[14] | Ren HY (任海彦), Zheng SX (郑淑霞), Bai YF (白永飞) (2009). Effects of grazing on foliage biomass allocation of grassland communities in Xilin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology (植物生态学报), 33, 1065-1074. (in Chinese with English abstract) |
[15] | Wang X (王欣), Liu YG (刘云国), Aibibu N (艾比布·努扎艾提), Zhang DM (张东梅), Xu WH (徐卫华), Zhou M (周鸣), Chai LY (柴立元) (2007). Endurance mechanism of ramie to Cd and the alleviating effect of exogenous spermine. Journal of Agro-Environment Science (农业环境科学学报), 26, 487-493. (in Chinese with English abstract) |
[16] | Wu FZ (吴福忠), Bao WK (包维楷), Wu N (吴宁) (2008). Growth, accumulation and partitioning of biomass, C, N and P of Sophora davidii seedlings in response to N supply in dry valley of upper Minjiang River. Acta Ecologica Sinica (生态学报), 28, 3817-3824. (in Chinese with English abstract) |
[17] | Wu FZ (吴福忠), Wang KY (王开运), Yang WQ (杨万勤), Lu YJ (鲁叶江), Qiao YZ (乔匀周) (2005). Effects of Fargesia denudata density on seasonal changes in litter nutrient concentrations and their potential retranslocation. Acta Phytoecologica Sinica (植物生态学报), 29, 537-542. (in Chinese with English abstract) |
[18] |
Wu FZ, Yang WQ, Wang KY, Wu N, Lu YJ (2009a). Effect of stem density on leaf nutrient dynamics and nutrient use efficiency of dwarf bamboo. Pedosphere, 19, 496-504.
DOI URL |
[19] |
Wu FZ, Yang WQ, Zhang J, Zhou LQ (2009b). Cadmium accumulation and growth responses of a poplar (Populus deltoids× Populus nigra) in cadmium contaminated purple soil and alluvial soil. Journal of Hazardous Material, 177, 268-273.
DOI URL |
[20] | Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air & Soil Pollution, 197, 23-34. |
[21] | Zhang J (张健) (2009). Integrated Management on Soil and Water Loss in the Hilly Area and Regional Sustainable Development in Sichuan Province (四川盆地低山丘陵区水土流失综合治理及区域可持续发展). Sichuan Science & Technology Press, Chengdu. 105. (in Chinese) |
[22] | Zhou QX (周启星), Song YF (宋玉芳) (2004). Principles and Methods of Contaminated Soil Remediation (污染土壤修复原理与方法). Science Press, Beijing. 76. (in Chinese) |
[1] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[2] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[3] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[4] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[5] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[6] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[7] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[8] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[9] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[10] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[11] | 祁鲁玉 陈浩楠 库丽洪·赛热别力 籍天宇 孟高德 秦慧颖 王宁 宋逸欣 刘春雨 杜宁 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略分析[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[12] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[13] | 薛峰, 江源, 董满宇, 王明昌, 丁新原, 杨显基, 崔明皓, 康慕谊. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响——以白扦为例[J]. 植物生态学报, 2021, 45(8): 880-890. |
[14] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[15] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19