植物生态学报 ›› 2013, Vol. 37 ›› Issue (10): 950-960.DOI: 10.3724/SP.J.1258.2013.00098
丁继军1,2(),潘远智1,*(),李丽3,刘柿良1,崔明峰1,4,高佩刚1
收稿日期:
2013-03-07
接受日期:
2013-08-20
出版日期:
2013-03-07
发布日期:
2013-09-29
通讯作者:
潘远智
作者简介:
E-mail: 基金资助:
DING Ji-Jun1,2(),PAN Yuan-Zhi1,*(),LI Li3,LIU Shi-Liang1,CUI Ming-Feng1,4,GAO Pei-Gang1
Received:
2013-03-07
Accepted:
2013-08-20
Online:
2013-03-07
Published:
2013-09-29
Contact:
PAN Yuan-Zhi
摘要:
为了探讨外源谷胱甘肽(GSH)对地被植物镉(Cd)毒害的缓解效应, 采用温室盆栽土培的方法, 研究了不同浓度(0、20、40、60、80、100 mg·L -1)的外源GSH处理对50 mg·kg -1 Cd胁迫下石竹(Dianthus chinensis)幼苗生长的影响。结果发现, 50 mg·kg -1 Cd显著抑制了石竹幼苗的生长。喷施外源GSH后, 一定浓度范围内(≤60 mg·L -1)的外源GSH可显著缓解石竹幼苗的Cd胁迫, 过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDAR)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)的活性, 抗坏血酸(AsA)和GSH含量以及生物量、株高、分蘖数都显著高于无外源GSH处理的石竹幼苗, 而丙二醛(MDA)含量、细胞膜透性、Cd含量、O2· -的产生速率以及H2O2的积累量则显著低于无外源GSH处理的石竹幼苗, 但随着外源GSH喷施浓度的增加, 缓解效应有下降的趋势。试验表明55-65 mg·L -1的外源GSH缓解效果最佳。
丁继军,潘远智,李丽,刘柿良,崔明峰,高佩刚. 外源谷胱甘肽对石竹幼苗镉毒害的缓解效应. 植物生态学报, 2013, 37(10): 950-960. DOI: 10.3724/SP.J.1258.2013.00098
DING Ji-Jun,PAN Yuan-Zhi,LI Li,LIU Shi-Liang,CUI Ming-Feng,GAO Pei-Gang. Mitigation effects of exogenous glutathione on the growth of Dianthus chinensis seedlings under Cd stress. Chinese Journal of Plant Ecology, 2013, 37(10): 950-960. DOI: 10.3724/SP.J.1258.2013.00098
处理 Treatment | CK | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|---|
镉 Cd (mg·kg-1) | 0 | 50 | 50 | 50 | 50 | 50 | 50 |
谷胱甘肽 Glutathione (mg·L-1) | 0 | 0 | 20 | 40 | 60 | 80 | 100 |
表1 试验设计
Table 1 Design of this experiment
处理 Treatment | CK | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|---|
镉 Cd (mg·kg-1) | 0 | 50 | 50 | 50 | 50 | 50 | 50 |
谷胱甘肽 Glutathione (mg·L-1) | 0 | 0 | 20 | 40 | 60 | 80 | 100 |
处理 Treatment | 生物量 Biomass (g DW·pot-1) | 株高 Plant height (cm) | 分蘖数 Tiller number | 抗性系数 Coefficient | |||
---|---|---|---|---|---|---|---|
地下部 Root | 地上部 Shoot | 整株 Whole plant | |||||
CK | 1.89 ± 0.11a | 13.66 ± 0.30a | 15.56 ± 0.37a | 27.50 ± 2.38a | 11.8 ± 2.08a | - | |
I | 1.44 ± 0.05b | 10.59 ± 0.26c | 12.02 ± 0.21d | 17.37 ± 1.62d | 5.3 ± 1.53b | 0.77 | |
II | 1.44 ± 0.08b | 10.75 ± 0.38c | 12.18 ± 0.32d | 18.93 ± 0.26cd | 5.3 ± 2.52b | 0.78 | |
III | 1.59 ± 0.06b | 11.30 ± 0.29b | 12.90 ± 0.31c | 20.16 ± 2.15c | 7.7 ± 1.54b | 0.83 | |
IV | 1.53 ± 0.21b | 13.21 ± 0.14a | 14.73 ± 0.14b | 23.36 ± 0.42b | 8.3 ± 0.58b | 0.95 | |
V | 1.59 ± 0.08b | 11.34 ± 0.19b | 12.93 ± 0.26c | 19.31 ± 0.06cd | 6.7 ± 1.53b | 0.83 | |
VI | 1.49 ± 0.03b | 11.66 ± 0.27b | 13.15 ± 0.28c | 20.22 ± 0.20c | 7.3 ± 1.53b | 0.85 |
表2 Cd胁迫下外源谷胱甘肽对石竹幼苗生长的影响(平均值±标准偏差)
Table 2 Effects of the exogenous glutathione on the growth of Dianthus chinensis seedlings under Cd stress (mean ± SD)
处理 Treatment | 生物量 Biomass (g DW·pot-1) | 株高 Plant height (cm) | 分蘖数 Tiller number | 抗性系数 Coefficient | |||
---|---|---|---|---|---|---|---|
地下部 Root | 地上部 Shoot | 整株 Whole plant | |||||
CK | 1.89 ± 0.11a | 13.66 ± 0.30a | 15.56 ± 0.37a | 27.50 ± 2.38a | 11.8 ± 2.08a | - | |
I | 1.44 ± 0.05b | 10.59 ± 0.26c | 12.02 ± 0.21d | 17.37 ± 1.62d | 5.3 ± 1.53b | 0.77 | |
II | 1.44 ± 0.08b | 10.75 ± 0.38c | 12.18 ± 0.32d | 18.93 ± 0.26cd | 5.3 ± 2.52b | 0.78 | |
III | 1.59 ± 0.06b | 11.30 ± 0.29b | 12.90 ± 0.31c | 20.16 ± 2.15c | 7.7 ± 1.54b | 0.83 | |
IV | 1.53 ± 0.21b | 13.21 ± 0.14a | 14.73 ± 0.14b | 23.36 ± 0.42b | 8.3 ± 0.58b | 0.95 | |
V | 1.59 ± 0.08b | 11.34 ± 0.19b | 12.93 ± 0.26c | 19.31 ± 0.06cd | 6.7 ± 1.53b | 0.83 | |
VI | 1.49 ± 0.03b | 11.66 ± 0.27b | 13.15 ± 0.28c | 20.22 ± 0.20c | 7.3 ± 1.53b | 0.85 |
指标 Index | PB | PH | NT | CdRoot | CdStem | CdLeaf | Con | MDA含量 MDA content | O2·-产生速率 O2·- production rate | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | 0.523 | 0.446 | 0.417 | -0.837 | -0.899 | -0.888 | 0.619 | 0.804 | 0.875 | ||||||
b | 0.138* | 0.027 | 0.021 | -0.209** | -0.083** | -0.081** | -0.075** | -0.009** | -0.027** | ||||||
a | 12.293 | 18.562 | 5.730 | 54.481 | 15.510 | 14.786 | 31.240 | 5.486 | 5.477 | ||||||
指标 Index | H2O2含量 H2O2 content | POD活性 POD activity | SOD活性 SOD activity | CAT活性 CAT activity | APX活性 APX activity | MDAR活性 MDAR activity | DHAR活性 DHAR activity | GR活性 GR activity | AsA含量 AsA content | GSH含量 GSH content | |||||
r | 0.840 | 0.417 | 0.122 | 0.721 | 0.204 | 0.672 | 0.462 | 0.637 | 0.565 | 0.757 | |||||
b | -0.025** | 0.187 | 0.049 | 0.101** | 0.001 | 0.003** | 0.001 | 0.001** | 0.002* | 0.002** | |||||
a | 4.338 | 220.339 | 130.075 | 29.968 | 1.477 | 1.270 | 0.483 | 0.347 | 0.643 | 0.311 |
表3 Cd胁迫下石竹幼苗各指标与外源谷胱甘肽浓度之间的相关性与线性回归分析
Table 3 Correlation and linear regression analysis between each index of Dianthus chinensis seedlings and exogenous glutathione concentration under Cd stress
指标 Index | PB | PH | NT | CdRoot | CdStem | CdLeaf | Con | MDA含量 MDA content | O2·-产生速率 O2·- production rate | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | 0.523 | 0.446 | 0.417 | -0.837 | -0.899 | -0.888 | 0.619 | 0.804 | 0.875 | ||||||
b | 0.138* | 0.027 | 0.021 | -0.209** | -0.083** | -0.081** | -0.075** | -0.009** | -0.027** | ||||||
a | 12.293 | 18.562 | 5.730 | 54.481 | 15.510 | 14.786 | 31.240 | 5.486 | 5.477 | ||||||
指标 Index | H2O2含量 H2O2 content | POD活性 POD activity | SOD活性 SOD activity | CAT活性 CAT activity | APX活性 APX activity | MDAR活性 MDAR activity | DHAR活性 DHAR activity | GR活性 GR activity | AsA含量 AsA content | GSH含量 GSH content | |||||
r | 0.840 | 0.417 | 0.122 | 0.721 | 0.204 | 0.672 | 0.462 | 0.637 | 0.565 | 0.757 | |||||
b | -0.025** | 0.187 | 0.049 | 0.101** | 0.001 | 0.003** | 0.001 | 0.001** | 0.002* | 0.002** | |||||
a | 4.338 | 220.339 | 130.075 | 29.968 | 1.477 | 1.270 | 0.483 | 0.347 | 0.643 | 0.311 |
图1 Cd胁迫下外源谷胱甘肽对石竹幼苗各部分Cd含量的影响(平均值±标准偏差)。处理同表1。不同小写字母表示同一部位不同浓度外源谷胱甘肽处理差异显著(p < 0.05)。
Fig. 1 Effects of exogenous glutathione on the Cd content of different parts of Dianthus chinensis seedlings under Cd stress (mean ± SD). Treatment see Table 1. Different small letters indicate significant difference in the same location with different exogenous glutathione treatments (p < 0.05).
图2 Cd胁迫下外源谷胱甘肽对石竹幼苗叶片丙二醛含量和相对电导率的影响(平均值±标准偏差)。处理同表1。不同小写字母表示相同处理时间下不同浓度的外源谷胱甘肽处理间差异显著(p < 0.05)。
Fig. 2 Effects of exogenous glutathione on malondialdehyde (MDA) content and the relative conductivity of Dianthus chinensis seedling leaves under Cd stress (mean ± SD). Treatment see Table 1. Different small letters indicate significant difference between exogenous glutathione treatments of same treatment duration (p < 0.05).
图3 Cd胁迫下外源谷胱甘肽对石竹幼苗叶片O2·-产生速率和H2O2含量的影响(平均值±标准偏差)。处理同表1。不同小写字母表示相同处理时间下不同浓度的外源谷胱甘肽处理间差异显著(p < 0.05)。
Fig. 3 Effects of exogenous glutathione on superoxide anion production rate and H2O2 content of Dianthus chinensis seedling leaves under Cd stress (mean ± SD). Treatment see Table 1. Different small letters indicate significant difference between exogenous glutathione treatments of same treatment duration (p < 0.05).
指标 Index | Cdroot | Con | $\text{O}_{\text{2}}^{\overline{\bullet }}$ | H2O2 | POD | SOD | CAT | APX | MDAR | DHAR | GR | AsA | GSH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cdroot | 1 | ||||||||||||
Con | 0.70** | 1 | |||||||||||
O2·- | 0.91** | 0.72** | 1 | ||||||||||
H2O2 | 0.72** | 0.52* | 0.72** | 1 | |||||||||
POD | -0.52* | -0.74** | -0.56** | -0.33 | 1 | ||||||||
SOD | 0.66** | 0.66** | 0.49* | 0.42 | -0.50* | 1 | |||||||
CAT | -0.37 | -0.10 | -0.6** | -0.42 | 0.14 | 0.27 | 1 | ||||||
APX | -0.11 | -0.19 | -0.35 | 0.08 | 0.39 | 0.03 | 0.47* | 1 | |||||
MDAR | -0.85** | -0.73** | -0.84** | -0.62** | 0.57** | -0.40 | 0.48* | 0.19 | 1 | ||||
DHAR | -0.71** | -0.70** | -0.76** | -0.49* | 0.46* | -0.33 | 0.45* | 0.29 | 0.78** | 1 | |||
GR | -0.78** | -0.56** | -0.84** | -0.61** | 0.45* | -0.28 | 0.59** | 0.24 | 0.72** | 0.83** | 1 | ||
AsA | -0.74** | -0.66** | -0.83** | -0.48* | 0.55** | -0.25 | 0.52* | 0.47* | 0.81** | 0.87** | 0.84** | 1 | |
GSH | -0.49* | -0.39 | -0.65** | -0.59** | 0.52* | 0.06 | 0.73** | 0.28 | 0.58** | 0.54* | 0.68** | 0.65** | 1 |
表4 石竹幼苗各指标间的相关系数
Table 4 Correlation coefficients between various indicators of Dianthus chinensis seedlings
指标 Index | Cdroot | Con | $\text{O}_{\text{2}}^{\overline{\bullet }}$ | H2O2 | POD | SOD | CAT | APX | MDAR | DHAR | GR | AsA | GSH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cdroot | 1 | ||||||||||||
Con | 0.70** | 1 | |||||||||||
O2·- | 0.91** | 0.72** | 1 | ||||||||||
H2O2 | 0.72** | 0.52* | 0.72** | 1 | |||||||||
POD | -0.52* | -0.74** | -0.56** | -0.33 | 1 | ||||||||
SOD | 0.66** | 0.66** | 0.49* | 0.42 | -0.50* | 1 | |||||||
CAT | -0.37 | -0.10 | -0.6** | -0.42 | 0.14 | 0.27 | 1 | ||||||
APX | -0.11 | -0.19 | -0.35 | 0.08 | 0.39 | 0.03 | 0.47* | 1 | |||||
MDAR | -0.85** | -0.73** | -0.84** | -0.62** | 0.57** | -0.40 | 0.48* | 0.19 | 1 | ||||
DHAR | -0.71** | -0.70** | -0.76** | -0.49* | 0.46* | -0.33 | 0.45* | 0.29 | 0.78** | 1 | |||
GR | -0.78** | -0.56** | -0.84** | -0.61** | 0.45* | -0.28 | 0.59** | 0.24 | 0.72** | 0.83** | 1 | ||
AsA | -0.74** | -0.66** | -0.83** | -0.48* | 0.55** | -0.25 | 0.52* | 0.47* | 0.81** | 0.87** | 0.84** | 1 | |
GSH | -0.49* | -0.39 | -0.65** | -0.59** | 0.52* | 0.06 | 0.73** | 0.28 | 0.58** | 0.54* | 0.68** | 0.65** | 1 |
图4 Cd胁迫下外源谷胱甘肽对石竹幼苗叶片过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶活性的影响(CAT) (平均值±标准偏差)。处理同表1。不同小写字母表示相同处理时间下不同浓度的外源谷胱甘肽处理间差异显著(p < 0.05)。
Fig. 4 Effects of exogenous glutathione on peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities of Dianthus chinensis seedling leaves under Cd stress (mean ± SD). Treatment see Table 1. Different small letters indicate significant difference between exogenous glutathione treatments of same treatment duration (p < 0.05).
图5 Cd胁迫下外源谷胱甘肽对石竹幼苗叶片抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDAR)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)活性的影响(平均值±标准偏差)。处理同表1。不同小写字母表示相同处理时间下不同浓度的外源谷胱甘肽处理间差异显著(p < 0.05)。
Fig. 5 Effects of exogenous glutathione on ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities of Dianthus chinensis seedling leaves under Cd stress (mean ± SD). Treatment see Table 1. Different small letters indicate significant difference between exogenous glutathione treatments of same treatment duration (p < 0.05).
图6 Cd胁迫下外源谷胱甘肽对石竹幼苗叶片抗坏血酸(AsA)和谷胱甘肽(GSH)含量的影响(平均值±标准偏差)。处理同表1。不同小写字母表示相同处理时间下不同浓度的外源谷胱甘肽处理间差异显著(p < 0.05)。
Fig. 6 Effects of exogenous glutathione on ascorbic acid (AsA) and glutathione (GSH) content of Dianthus chinensis seedling leaves under Cd stress (mean ± SD). Treatment see Table 1. Different small letters indicate significant difference between exogenous glutathione treatments of same treatment duration (p < 0.05).
[1] | Anderson ME(1998). Glutathione: an overview of biosynthesis and modulation. Chemico-Biological Interactions, 111-112, 1-14. |
[2] | Chen Q, Liu YL (2000). Effect of exogenous GSH on growth of barley seedlings under salt stress. Acta Agronomica Sinica, 4, 193-197. (in Chinese with English abstract) |
[ 陈沁, 刘友良 (2000). 外源GSH对盐胁迫下大麦幼苗生长的影响. 作物学报, 4, 193-197.] | |
[3] | Du HR, Yang TT, Lü RF (2010). Effects of fluoride pollution on the growth and physiological character- istics of maize seedlings. Journal of Agro-Enviroment Science, 29, 216-222. (in Chinese with English abstract) |
[ 杜海荣, 杨田甜, 吕荣芳 (2010). 氟污染对玉米幼苗生长及生理特性的影响. 农业环境科学学报, 29, 216-222.] | |
[4] | Ellman GL(1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77. |
[5] | Ha SB, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS, Smith AP(1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. The Plant Cell, 11, 1153-1164. |
[6] | He D, Liu YG, Huang YE, Lian XJ, Zhang W(2007). Effects of calcium on chlorophyll and antioxidant enzymes in Phragmite ausralis under cadmium stress. Journal of Agro-Enviroment Science, 26, 197-201. |
[7] | Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N(2006). Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie, 88, 1751-1765. |
[8] | Jiang YD, Wang ZH, Gao JP (2010). Effects of GSH on tolerance to water deficit stress in cut rose. Acta Horticulturae Sinica, 37, 597-606. (in Chinese with English abstract) |
[ 姜玉东, 王子华, 高俊平 (2010). 谷胱甘肽对切花月季“Samantha”失水胁迫耐性的影响. 园艺学报, 37, 597-606.] | |
[9] | Jin YH, Tao DL, Hao ZQ, Ye J, Du YJ, Liu HL, Zhou YB(2003). Environmental stresses and redox status of ascorbate. Acta Botanica Sinica, 45, 795-801. |
[10] | Li HS (2000). Principle and Technology of Plant Physiology and Biochemistry Experiment. Higher Education Press, Beijing. (in Chinese) |
[ 李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.] | |
[11] | Lu LL (2006). Study on the Alleviatory Effect of GSH on Limonium bicolor Under NaCl Stress. Master degree dissertation, Shandong Normal University, Jinan.(in Chinese with English abstract) |
[ 鲁丽丽 (2006). GSH对NaCl胁迫下二色补血草盐害缓冲机制的研究. 硕士学位论文, 山东师范大学, 济南.] | |
[12] | Luo Y, Tang HR, Zhang Y (2007). Effect of low temperature stress on activities of SOD and enzymes of ascorbate-glutathione cycle. Acta Horticulturae Sinica, 34, 1405-1410. (in Chinese with English abstract) |
[ 罗娅, 汤浩茹, 张勇 (2007). 低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响. 园艺学报, 34, 1405-1410.] | |
[13] | Manisha G, Ann C, Jaco V, Herman C(1999). Copper effects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus oulgaris. Physiologia Plantarum, 106, 262-267. |
[14] | Mittova V, Volokita M, Guy M, Tai M(2000). Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 100, 42-51. |
[15] | Nakano Y, Kozi A(1981). Hydrogen peroxide is scavenged by ascrorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. |
[16] |
Peng XY, Chang B, Xu SR (2012). Effects of glutathione on alleviation of copper toxicity and its correlation with accumulation of nitrogen, sulfur and phosphorus in wheat seedlings. Journal of Agro-Enviroment Science, 31, 867-873. (in Chinese with English abstract)
DOI URL PMID |
[ 彭向永, 常宝, 徐术人 (2012). 谷胱甘肽对小麦幼苗铜毒害的缓解作用及其与氮、硫、磷积累的相关性. 农业环境科学学报, 31, 867-873.]
DOI URL PMID |
|
[17] | Peng XY, Song M (2011). Effects of exogenous cysteine on growth, copper accumulation and antioxidative systems in wheat seedlings under Cu stress. Acta Ecologica Sinica, 31, 3504-3511. (in Chinese with English abstract) |
[ 彭向永, 宋敏 (2011). 外源半胱氨酸对铜胁迫下小麦幼苗生长、铜积累量及抗氧化系统的影响. 生态学报, 31, 3504-3511.] | |
[18] | Qian M, Zhu CH (2010). Alleviation of glutathione on copper toxicity of Elsholtzia haichowensis Sun. Plant Physiology Journal, 46, 1243-1246. (in Chinese with English abstract) |
[ 钱猛, 朱昌华 (2010). 外源GSH对海州香薷铜毒害的缓解作用. 植物生理学通讯, 46, 1243-1246.] | |
[19] | Smirnoff N(2000). Ascorbate biosynthesis and function in photoprotection. Philosophical Transactions of the Royal Society: Biological Science, 355, 1455-1464. |
[20] | Stasolla C, Yeung EC(2001). Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiologia Plantarum, 111, 196-205. |
[21] | Tanaka K, Suda Y, Kondo N(1985). Ozone tolerance and the ascorbate-dependent hydrogen peroxide decompo- sing system in chloroplasts. Plant and Cell Physiology, 26, 1425-1431. |
[22] | Wang AG, Luo GH(1990). Quantitive relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology Communications, (6), 55-57. |
[23] | Xiong QE (2003). Experimental Guidance of Plant Physiology. Sichuan Science and Technology Press, Chengdu. (in Chinese) |
[ 熊庆娥 (2003). 植物生理学试验教程. 四川科学技术出版社, 成都.] | |
[24] | Xu BJ, Shi GX, Xu QS (2006). Protective effects of exogenous ascorbic acid on antioxidant system in Hydrilla verticillata under Cd 2+ stress. Chinese Journal of Applied Ecology, 17, 1768-1770. (in Chinese with English abstract) |
[ 许丙军, 施国新, 徐勤松 (2006). 外源抗坏血酸对镉胁迫下黑藻抗氧化系统的保护作用. 应用生态学报, 17, 1768-1770.] | |
[25] | Yang MS, Wang YF, Gan XX (2012). Effects of exogenous nitric oxide on growth, antioxidant system and photosynthetic characteristics in seedling of cotton cultivar under chilling injury stress. Scientia Agricultura Sinica, 45, 3058-3067. (in Chinese with English abstract) |
[ 杨美森, 王雅芳, 干秀霞 (2012). 外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响. 中国农业科学, 45, 3058-3067.] |
[1] | 刘富俊, 黎云祥, 廖咏梅, 陈劲松, 权秋梅, 龚新越. 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响[J]. 植物生态学报, 2011, 35(8): 864-871. |
[2] | 魏国平, 朱月林, 刘正鲁, 张古文, 杨立飞. 硝酸钙胁迫对营养液栽培嫁接茄子叶片抗坏血酸-谷胱甘肽循环的影响[J]. 植物生态学报, 2008, 32(5): 1023-1030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19