植物生态学报 ›› 2022, Vol. 46 ›› Issue (5): 580-592.DOI: 10.17521/cjpe.2021.0438
张迪1, 都业勤1, 王磊1, 陈鑫1, 闫兴富2,*(), 唐占辉1,*(
)
收稿日期:
2021-11-29
接受日期:
2022-01-18
出版日期:
2022-05-20
发布日期:
2022-02-10
通讯作者:
闫兴富,唐占辉
作者简介:
* (tangzh789@nenu.edu.cn);基金资助:
ZHANG Di1, DU Ye-Qin1, WANG Lei1, CHEN Xin1, YAN Xing-Fu2,*(), TANG Zhan-Hui1,*(
)
Received:
2021-11-29
Accepted:
2022-01-18
Online:
2022-05-20
Published:
2022-02-10
Contact:
YAN Xing-Fu,TANG Zhan-Hui
Supported by:
摘要:
植物的花期物候与花部综合特征均体现了其对生存环境的适应, 是与周围生物及非生物环境长期适应进化产生的结果。大花百合(Lilium concolor var. megalanthum)野外种群中具有雄性植株和两性植株两种不同性别表型。该研究以人为干扰较弱的孤山屯湿地以及人为干扰较强的金川湿地的大花百合为材料, 通过对两种生境间不同性别表型植株的花期物候、花部综合特征以及主要传粉昆虫的访花行为进行比较研究, 探究大花百合的开花及传粉特征在两种生境间的差异。结果表明: 孤山屯湿地内大花百合种群的始花期、盛花期、末花期均早于金川湿地。孤山屯湿地内大花百合的雄性植株在初开时花粉活力高于金川湿地, 而两种生境间的大花百合两性植株的花粉活力总体变化趋势一致。孤山屯湿地内大花百合雄性植株初开时的花蜜含量较高, 而后缓慢下降; 而在金川湿地内则是先增长, 48 h后开始下降。孤山屯湿地内大花百合两性植株的花蜜含量在开花24 h后开始下降, 金川湿地内则是48 h后才开始下降。孤山屯湿地内大花百合无论是雄性植株还是两性植株, 糖含量达到峰值的时间均比金川湿地晚。两种生境中大花百合两性植株的柱头可授性均保持较高水平。两种生境分布的大花百合主要传粉昆虫为中华蜜蜂(Apis cerana)、蓝灰蝶(Everes argiades)和老豹蛱蝶(Argyronome laodice)。孤山屯湿地内中华蜜蜂及蓝灰蝶对大花百合的访花频率均显著低于金川湿地, 但老豹蛱蝶的访花频率显著高于金川湿地。3种访花昆虫中, 中华蜜蜂的访花效率最高, 蓝灰蝶与老豹蛱蝶起到补充授粉的作用。两种生境间大花百合花期物候和花部综合特征的变化与当地小气候和传粉昆虫数量有关, 这种变化是大花百合经过长期适应而产生的。
张迪, 都业勤, 王磊, 陈鑫, 闫兴富, 唐占辉. 两种生境间大花百合不同性别表型开花及传粉特征的差异. 植物生态学报, 2022, 46(5): 580-592. DOI: 10.17521/cjpe.2021.0438
ZHANG Di, DU Ye-Qin, WANG Lei, CHEN Xin, YAN Xing-Fu, TANG Zhan-Hui. Differences in flowering and pollination characteristics of two gender phenotypes of Lilium concolor var. megalanthum between two habitats. Chinese Journal of Plant Ecology, 2022, 46(5): 580-592. DOI: 10.17521/cjpe.2021.0438
图1 两种生境间大花百合不同性别表型植株的7月花期物候。GH, 孤山屯两性植株; GM, 孤山屯雄性植株; GP, 孤山屯种群; JH, 金川两性植株; JM, 金川雄性植株; JP, 金川种群。
Fig. 1 Flowering phenology of different gender phenotypes of Lilium concolor var. megalanthum in two habitats. GH, hermaphroditic plants in Gushantun; GM, male plants in Gushantun; GP, population in Gushantun; JH, hermaphroditic plants in Jinchuan; JM, male plants in Jinchuan; JP, population in Jinchuan.
图2 两种生境间大花百合不同性别表型个体花粉活力随时间的变化(平均值±标准误, n = 9)。A, 雄性植株。B, 两性植株。不同字母表示对应的花粉活力在0.05水平差异显著。大小写字母分别代表两种生境。Unopen, 未开花。
Fig. 2 Comparison of temporal patterns of pollen viability of Lilium concolor var. megalanthum between two habitats (mean ± SE, n = 9). A, Male plants. B, Hermaphroditic plants. Different letters indicate significant differences in pollen viability among different periods at α = 0.05 level. Upper- and lowercase letters represent two habitats. Unopen, the flowers are not open.
时间 Time | 孤山屯 Gushantun | 金川 Jinchuan | ||||
---|---|---|---|---|---|---|
柱头周围气泡 Bubbles around the stigma | 柱头颜色 Stigma color | 柱头可授性 Stigma receptivity | 柱头周围气泡 Bubbles around the stigma | 柱头颜色 Stigma color | 柱头可授性 Stigma receptivity | |
未开花 Unopen | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
0 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
2 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
6 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
12 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
24 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
2 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
3 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
4 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
5 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
6 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
表1 两种生境间大花百合柱头可授性动态变化
Table 1 Dynamic changes of stigma receptivity of Lilium concolor var. megalanthum in two habitats
时间 Time | 孤山屯 Gushantun | 金川 Jinchuan | ||||
---|---|---|---|---|---|---|
柱头周围气泡 Bubbles around the stigma | 柱头颜色 Stigma color | 柱头可授性 Stigma receptivity | 柱头周围气泡 Bubbles around the stigma | 柱头颜色 Stigma color | 柱头可授性 Stigma receptivity | |
未开花 Unopen | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
0 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
2 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
6 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
12 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
24 h | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
2 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大气泡较多 Numerous large bubbles | 蓝 Blue | +++ |
3 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
4 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
5 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
6 d | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ | 大量小气泡 Numerous small bubbles | 浅蓝 Light blue | ++ |
图3 两种生境间不同性别表型大花百合泌蜜动态(平均值±标准误, n = 3)。A, B, 孤山屯雄性植株。C, D, 金川雄性植株。E, F,孤山屯两性植株。G, H, 金川两性植株。图中虚线表示标准误差曲线, 不同字母表示在0.05水平上对应参数差异显著。Unopen, 未开花。
Fig. 3 Nectar secretion dynamics of different gender phenotypes of Lilium concolor var. megalanthum in two habitats (mean ± SE, n = 3). A, B, Male plants in Gushantun. C, D, Male plants in Jinchuan. E, F, Hermaphroditic plants in Gushantun. G, H, Hermaphroditic plants in Jinchuan. The dotted line represents the standard error curve. Different letters indicate significant differences of corresponding parameters among different periods at α = 0.05 level. Unopen, the flowers are not open.
图4 两种生境间大花百合开花后8 h内主要访花者的访花频率(平均值±标准误)。A, 孤山屯雄性植株。B, 孤山屯两性植株。C, 金川雄性植株。D, 金川两性植株。
Fig. 4 Visiting frequency of main visitors of Lilium concolor var. megalanthum in two habitats within 8 h after flowering (mean ± SE). A, Male plants in Gushantun. B, Hermaphroditic plants in Gushantun. C, Male plants in Jinchuan. D, Hermaphroditic plants in Jinchuan.
生境 Habitat | 昆虫种类 Insect species | 花粉移除数 Pollen removal number | 花粉移除率 Pollen removal proportion (%) | 柱头花粉沉积数 Pollen deposition number |
---|---|---|---|---|
孤山屯 Gushantun | 中华蜜蜂 Apis cerana (n = 10) | 161 792 ± 19 689a | 53.26 ± 6.73a | 727 ± 348 |
蓝灰蝶 Everes argiades (n = 0) | - | - | - | |
老豹蛱蝶 Argyronome laodice (n = 3) | 62 642 ± 59 315b | 15.97 ± 15.13b | 939 ± 328 | |
金川 Jinchuan | 中华蜜蜂 Apis cerana (n = 19) | 199 293 ± 15 253a | 51.89 ± 4.36a | 1 063 ± 248 |
蓝灰蝶 Everes argiades (n = 6) | 18 364 ± 8 861b | 8.10 ± 3.91b | - | |
老豹蛱蝶 Argyronome laodice (n = 0) | - | - | - |
表2 两种生境下大花百合主要传粉昆虫的花粉移除率及花粉沉积数(平均值±标准误)
Table 2 Pollen removal proportion and pollen deposition of main pollinators of Lilium concolor var. megalanthum in two habitats (mean ± SE)
生境 Habitat | 昆虫种类 Insect species | 花粉移除数 Pollen removal number | 花粉移除率 Pollen removal proportion (%) | 柱头花粉沉积数 Pollen deposition number |
---|---|---|---|---|
孤山屯 Gushantun | 中华蜜蜂 Apis cerana (n = 10) | 161 792 ± 19 689a | 53.26 ± 6.73a | 727 ± 348 |
蓝灰蝶 Everes argiades (n = 0) | - | - | - | |
老豹蛱蝶 Argyronome laodice (n = 3) | 62 642 ± 59 315b | 15.97 ± 15.13b | 939 ± 328 | |
金川 Jinchuan | 中华蜜蜂 Apis cerana (n = 19) | 199 293 ± 15 253a | 51.89 ± 4.36a | 1 063 ± 248 |
蓝灰蝶 Everes argiades (n = 6) | 18 364 ± 8 861b | 8.10 ± 3.91b | - | |
老豹蛱蝶 Argyronome laodice (n = 0) | - | - | - |
[1] |
Barrett SCH, Hough J (2013). Sexual dimorphism in flowering plants. Journal of Experimental Botany, 64, 67-82.
DOI URL |
[2] |
Bawa KS, Kang H, Grayum MH (2003). Relationships among time, frequency, and duration of flowering in tropical rain forest trees. American Journal of Botany, 90, 877-887.
DOI URL |
[3] |
Bhattacharya A (2011). Does canopy height determine the pollen viability and stigma receptivity? A cross-population observation on Shorea robusta Gaertn. f. Our Nature, 9, 41-48.
DOI URL |
[4] |
Biella P, Akter A, Ollerton J, Tarrant S, Janeček Š, Jersáková J, Klecka J (2019). Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging. Scientific Reports, 9, 7376. DOI: 10.1038/s41598-019-43553-4.
DOI PMID |
[5] |
Bogdziewicz M, Pesendorfer M, Crone EE, Pérez-Izquierdo C, Bonal R (2020). Flowering synchrony drives reproductive success in a wind-pollinated tree. Ecology Letters, 23, 1820-1826.
DOI URL |
[6] |
Chen M, Zhao XY, Zuo XA (2019). Comparative pollen limitation and pollinator activity of Caragana korshinskii Kom in natural and fragmented habitats. Science of the Total Environment, 654, 1056-1063.
DOI |
[7] | Corbet SA, Willmer PG, Beament JWL, Unwin DM, Prŷs-jones OE (1979). Post-secretory determinants of sugar concentration in nectar. Plant, Cell & Environment, 2, 293-308. |
[8] | Dafni A (1992). Pollination Ecology: a Practical Approach. Oxford University Press, New York. 1-57. |
[9] |
Debussche M, Garnier E, Thompson JD (2004). Exploring the causes of variation in phenology and morphology in Mediterranean geophytes: a genus-wide study of Cyclamen. Botanical Journal of the Linnean Society, 145, 469-484.
DOI URL |
[10] |
Donaldson J, Nänni I, Zachariades C, Kemper J (2002). Effects of habitat fragmentation on pollinator diversity and plant reproductive success in renosterveld shrublands of South Africa. Conservation Biology, 16, 1267-1276.
DOI URL |
[11] |
Du YQ, Zhang D, Wang S, Wang L, Yan XF, Tang ZH (2021). Sexual system characteristics of Lilium concolor var. megalanthum in peatland. Biodiversity Science, 29, 1321-1335.
DOI URL |
[ 都业勤, 张迪, 王赛, 王磊, 闫兴富, 唐占辉 (2021). 湿地植物大花百合种群的性系统特征. 生物多样性, 29, 1321-1335.]
DOI |
|
[12] |
Dunnell KL, Travers SE (2011). Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years. American Journal of Botany, 98, 935-945.
DOI PMID |
[13] |
Ehrlén J, Raabova J, Dahlgren JP (2015). Flowering schedule in a perennial plant; life-history trade-offs, seed predation, and total offspring fitness. Ecology, 96, 2280-2288.
PMID |
[14] |
Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007). Time after time: flowering phenology and biotic interactions. Trends in Ecology & Evolution, 22, 432-439.
DOI URL |
[15] |
Fang Q, Huang SQ (2013). A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology, 94, 1176-1185.
DOI URL |
[16] |
Fenner M (1998). The phenology of growth and reproduction in plants. Perspectives in Plant Ecology, Evolution and Systematics, 1, 78-91.
DOI URL |
[17] |
Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403.
DOI URL |
[18] | Flora of China Editorial Committee of Chinese Academy of Sciences (1980). Flora of China. Tomus. 14. Science Press, Beijing. 133. |
[ 中国科学院中国植物志编辑委员会 (1980). 中国植物志, 第14卷. 科学出版社, 北京. 133.] | |
[19] |
Forrest J, Thomson JD (2010). Consequences of variation in flowering time within and among individuals of Mertensia fusiformis (Boraginaceae), an early spring wildflower. American Journal of Botany, 97, 38-48.
DOI URL |
[20] |
Forrest JRK (2014). Plant size, sexual selection, and the evolution of protandry in dioecious plants. The American Naturalist, 184, 338-351.
DOI URL |
[21] |
Fricke U, Lucas-Barbosa D, Douma JC (2019). No evidence of flowering synchronization upon floral volatiles for a short lived annual plant species: revisiting an appealing hypothesis. BMC Ecology, 19, 29. DOI: 10.1186/s12898-019-0245-9.
DOI PMID |
[22] |
Gezon ZJ, Inouye DW, Irwin RE (2016). Phenological change in a spring ephemeral: implications for pollination and plant reproduction. Global Change Biology, 22, 1779-1793.
DOI URL |
[23] |
Goodwillie C, Sargent RD, Eckert CG, Elle E, Geber MA, Johnston MO, Kalisz S, Moeller DA, Ree RH, Vallejo- Marin M, Winn AA (2010). Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185, 311-321.
DOI PMID |
[24] | Grant V, Grant KA (1965). Flower Pollination in the Phlox Family. Columbia University Press, New York. |
[25] | Guo HC, Yan C, Wei Y (2014). Study on the flowering dynamic, pollen viability and stigma receptivity of Kochia prostrate. Acta Prataculturae Sinica, 23, 87-93. |
[ 郭红超, 严成, 魏岩 (2014). 木地肤的开花动态与花粉活力及柱头可授性研究. 草业学报, 23, 87-93.] | |
[26] |
Han Y, Dai C, Yang CF, Wang QF, Motley TJ (2008). Anther appendages of Incarvillea trigger a pollen-dispensing mechanism. Annals of Botany, 102, 473-479.
DOI PMID |
[27] |
Harder LD, Thomson JD (1989). Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. The American Naturalist, 133, 323-344.
DOI URL |
[28] | Huang SQ (2014). Most effective pollinator principle of floral evolution: evidence and query. Chinese Bulletin of Life Sciences, 26, 118-124. |
[ 黄双全 (2014). 花部特征演化的最有效传粉者原则: 证据与疑问. 生命科学, 26, 118-124.] | |
[29] |
Hülber K, Winkler M, Grabherr G (2010). Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Functional Ecology, 24, 245-252.
DOI URL |
[30] |
Ison JL, Wagenius S, Reitz D, Ashley MV (2014). Mating between Echinacea angustifolia (Asteraceae) individuals increases with their flowering synchrony and spatial proximity. American Journal of Botany, 101, 180-189.
DOI URL |
[31] |
Jackson MT (1966). Effects of microclimate on spring flowering phenology. Ecology, 47, 407-415.
DOI URL |
[32] |
Jang TS, Moon HK, Hong SP (2015). Sex expression, population structure, and floral dimorphism in a gynodioecious herb, Agastache rugosa (Lamiaceae) in Korea. Flora, 215, 23-32.
DOI URL |
[33] |
König P, Tautenhahn S, Cornelissen JHC, Kattge J, Bönisch G, Römermann C (2018). Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Global Ecology and Biogeography, 27, 310-321.
DOI URL |
[34] | Kudoh H, Nagano AJ (2013). Memory of temperature in the seasonal control of flowering time:an unexplored link between meteorology and molecular biology//Pontarotti P. Evolutionary Biology: Exobiology and Evolutionary Mechanisms. Springer, Berlin. 195-215. |
[35] |
Lay CR, Linhart YB, Diggle PK (2011). The good, the bad and the flexible: plant interactions with pollinators and herbivores over space and time are moderated by plant compensatory responses. Annals of Botany, 108, 749-763.
DOI PMID |
[36] | Leng CC (2019). Phytolith Record of High Resolution Climate Change in Gushantun Peatland since Late Glacial Age. Master degree dissertation, Northeast Normal University, Changchun. |
[ 冷程程 (2019). 晚冰期以来孤山屯泥炭地高分辨率气候变化的植硅体记录. 硕士学位论文, 东北师范大学, 长春.] | |
[37] | Liu LD, Zhang HJ, Zhu N, Shen JH (2001). Pollen viability and stigma receptivity of Eleutherococcus senticosus (Araliaceae). Bulletin of Botanical Research, 21, 375-379. |
[ 刘林德, 张洪军, 祝宁, 申家恒 (2001). 刺五加花粉活力和柱头可授性的研究. 植物研究, 21, 375-379.] | |
[38] | Ma L (2020). Study on Eco-hydrology and Ecosystem Health Diagnosis of Peatland in Northeast China. PhD dissertation, Northeast Normal University, Changchun. |
[ 马良 (2020). 东北地区泥炭地水文动态与生态系统健康诊断研究. 博士学位论文, 东北师范大学, 长春.] | |
[39] |
McIntosh ME (2002). Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae). Plant Ecology, 159, 1-13.
DOI URL |
[40] |
Miryeganeh M, Yamaguchi M, Kudoh H (2018). Synchronisation of Arabidopsis flowering time and whole-plant senescence in seasonal environments. Scientific Reports, 8, 10282. DOI: 10.1038/s41598-018-28580-x.
DOI PMID |
[41] |
Montagna T, Silva JZ, Pikart TG, Reis MS (2018). Reproductive ecology of Ocotea catharinensis, an endangered tree species. Plant Biology, 20, 926-935.
DOI PMID |
[42] |
Munguia-Rosas MA, Ollerton J, Parra-tabla V (2011). Phenotypic selection on flowering phenology and size in two dioecious plant species with different pollen vectors. Plant Species Biology, 26, 205-212.
DOI URL |
[43] |
Olesen JM, Bascompte J, Elberling H, Jordano P (2008). Temporal dynamics in a pollination network. Ecology, 89, 1573-1582.
PMID |
[44] |
Ollerton J, Lack A (1998). Relationships between flowering phenology, plant size and reproductive success in shape Lotus corniculatus (Fabaceae). Plant Ecology, 139, 35-47.
DOI URL |
[45] | Pacini E, Nepi M (2007). Nectar production and presentation// Nicolson SW, Nepi M, Pacini E. Nectaries and Nectar. Springer, Dordrecht, the Netherland. 167-214. |
[46] |
Page T, Moore GM, Will J, Halloran GM (2006). Onset and duration of stigma receptivity in Kunzea pomifera (Myrtaceae). Australian Journal of Botany, 54, 559-563.
DOI URL |
[47] | Paterson GB, Smart G, McKenzie P, Cook S (2019). Prioritising sites for pollinators in a fragmented coastal nectar habitat network in Western Europe. Landscape Ecology, 34, 2791-2805. |
[48] |
Pool-Chalé M, Ramírez-Morillo I, Fernández-Concha GC, Hornung-Leoni CT (2018). Reproductive biology of Aechmea bracteata (Sw.) Griseb. (Bromelioideae: Bromeliaceae). Plant Biology, 20, 113-120.
DOI PMID |
[49] |
Real LA, Rathcke BJ (1991). Individual variation in nectar production and its effect on fitness in Kalmia latifolia. Ecology, 72, 149-155.
DOI URL |
[50] |
Robertson JL, Wyatt R (1990). Evidence for pollination ecotypes in the yellow-fringed orchid, Platanthera ciliaris. Evolution, 44, 121-133.
DOI PMID |
[51] |
Schrader J, Franzén M, Sattler C, Ferderer P, Westphal C (2018). Woody habitats promote pollinators and complexity of plant-pollinator interactions in homegardens located in rice terraces of the Philippine Cordilleras. Paddy and Water Environment, 16, 253-263.
DOI URL |
[52] | Strauss SY, Whittall JB (2006). Non-pollinator agents of selection on floral traits//Harder LD, Barrett SCH. Ecology and Evolution of Flowers. Oxford University Press, New York. 120-138. |
[53] |
Sun XH, Wang F, Cui R, Liu X, Li XX, Dong JB, Sun L, Qin SQ, Wang RQ, Zheng PM, Wang H (2020). Studies on reproductive strategies of Vitex negundo L. var. heterophylla (Franch.) Rehder (Lamiaceae) based on morphological characteristics and SSR markers. Ecology and Evolution, 10, 5270-5280.
DOI URL |
[54] |
Suzuki K, Dohzono I, Hiei K, Fukuda Y (2002). Pollination effectiveness of three bumblebee species on flowers of Hosta sieboldiana (Liliaceae) and its relation to floral structure and pollinator sizes. Plant Species Biology, 17, 139-146.
DOI URL |
[55] |
Tang J, Quan QM, Chen JZ, Wu T, Huang SQ (2019). Pollinator effectiveness and importance between female and male mining bee (Andrena). Biology Letters, 15, 20190479. DOI: 10.1098/rsbl.2019.0479.
DOI |
[56] |
Wester P, Claßen-Bockhoff R (2011). Pollination syndromes of new world Salvia species with special reference to bird pollination. Annals of the Missouri Botanical Garden, 98, 101-155.
DOI URL |
[57] | Willmer P (2011). Pollination and Floral Ecology. Princeton University Press, New York, USA. |
[58] | Yao XH (2021). Study on Ecosystem Stability of Peatland in Jilin Longwan National Nature Reserve. Master degree dissertation, Northeast Normal University, Changchun. |
[ 姚晓寒 (2021). 吉林龙湾泥炭沼泽湿地生态系统稳定性研究. 硕士学位论文, 东北师范大学, 长春.] | |
[59] |
Ye X, Zhou HK, Liu GH, Yao BQ, Zhao XQ (2014). Responses of phenological characteristics of major plants to nutrient and water additions in Kobresia humilis alpine meadow. Chinese Journal of Plant Ecology, 38, 147-158.
DOI URL |
[ 叶鑫, 周华坤, 刘国华, 姚步青, 赵新全 (2014). 高寒矮生嵩草草甸主要植物物候特征对养分和水分添加的响应. 植物生态学报, 38, 147-158.]
DOI |
|
[60] | Zhang D, Du YQ, Wang S, Wang L, Yan XF, Tang ZH (2021). Flowering strategy and pollination differences in different sexual phenotypes of Lilium concolor var. megalanthum. Chinese Journal of Applied and Environmental Biology, 28(4), 1-10. |
[ 张迪, 都业勤, 王赛, 王磊, 闫兴富, 唐占辉 (2021). 大花百合不同性别表型植株的开花策略及传粉差异. 应用与环境生物学报, 28(4), 1-10.] | |
[61] |
Zhang WL, Gao JY (2021). A comparative study on the reproductive success of two rewarding Habenaria species (Orchidaceae) occurring in roadside verge habitats. BMC Plant Biology, 21, 187. DOI: 10.1186/s12870-021-02968-w.
DOI URL |
[62] | Zhang ZL (2000). Experimental Guidance in Plant Physiology. Higher Education Press, Beijing. |
[ 张志良 (2000). 植物生理学实验指导. 高等教育出版社, 北京.] | |
[63] | Zhang ZQ, Li QJ (2009). Review of evolutionary ecology of floral longevity. Chinese Journal of Plant Ecology, 33, 598-606. |
[ 张志强, 李庆军 (2009). 花寿命的进化生态学意义. 植物生态学报, 33, 598-606.]
DOI |
|
[64] |
Zhao HL, Li XQ, Hall VA (2015). Holocene vegetation change in relation to fire and volcanic events in Jilin, Northeastern China. Science China Earth Sciences, 58, 1404-1419.
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19