植物生态学报 ›› 2010, Vol. 34 ›› Issue (1): 89-99.DOI: 10.3773/j.issn.1005-264x.2010.01.012
收稿日期:
2009-05-13
接受日期:
2009-08-03
出版日期:
2010-05-13
发布日期:
2010-01-01
通讯作者:
李庆军
作者简介:
* E-mail: qjli@xtbg.ac.cn
ZHANG Bo1,2, SUN Shan1, ZHANG Zhi-Qiang3, LI Qing-Jun1,*()
Received:
2009-05-13
Accepted:
2009-08-03
Online:
2010-05-13
Published:
2010-01-01
Contact:
LI Qing-Jun
摘要:
对被子植物一类特化雄蕊——杠杆状雄蕊的结构多样性及其进化生态学意义进行了归纳总结。植物的花在进化过程中, 常会发生雄蕊群的改变, 包括雄蕊数目及其形态结构的变化, 同时雄蕊功能也会发生相应的适应性转变。杠杆状雄蕊是指结构特化为杠杆状或距状, 在传粉过程中具有类似杠杆功能的一类特化的雄蕊类型。目前, 已在唇形科不同亚科以及姜科6个属中发现杠杆状雄蕊, 根据其结构和形态发生方式总体上可分为2大类: 一类是唇形科中以鼠尾草属(Salvia)为代表的, 由2个可育雄蕊平行发育、药隔组织增长所形成的杠杆状雄蕊; 另一类是姜科植物中由一个可育雄蕊特化形成的带有距状附属体的雄蕊类型。在生态功能上, 两类雄蕊均能通过传粉者推动其距状下臂做杠杆运动进行传粉, 被认为是一种促进异交的传粉机制, 可通过精确传粉和花粉分发等途径影响植物的繁殖成功。杠杆状雄蕊在不同的类群中是独立起源与进化的; 仅在唇形科鼠尾草属中, 杠杆状雄蕊发生了3次独立进化, 而且它可能是触发该属物种适应性辐射的关键性状。将来需在宏观进化和微观进化两个水平深入探讨杠杆状雄蕊的进化生态学意义。
张勃, 孙杉, 张志强, 李庆军. 杠杆状雄蕊及其进化生态学意义. 植物生态学报, 2010, 34(1): 89-99. DOI: 10.3773/j.issn.1005-264x.2010.01.012
ZHANG Bo, SUN Shan, ZHANG Zhi-Qiang, LI Qing-Jun. A review of the evolutionary and ecological significance of lever-like stamens. Chinese Journal of Plant Ecology, 2010, 34(1): 89-99. DOI: 10.3773/j.issn.1005-264x.2010.01.012
图1 杠杆状雄蕊及其花部结构(张勃摄)。A, 毛地黄鼠尾草(Salvia digitaloides)的杠杆状雄蕊(上唇瓣被切除)。B, 象牙参(Roscoea schneideriana)花药基生的杠杆状(或距状)雄蕊 (花裂片剥离)。C, 极苦姜黄(Curcuma amarissima)花药背生的杠杆状(或距状)雄蕊(花裂片剥离)。a, 花药; f, 花丝; fth, 可育药室; j, 花丝与药隔形成的扭力关节; la, 雄蕊杠杆下臂或距状附属体(B, C); s, 花柱; st, 柱头; sth, 不育药室; ua, 雄蕊杠杆上臂。
Fig. 1 Lever-like stamens and floral structures (Photo by Zhang Bo). A, Lever-like stamens of Salvia digitaloides (removed upper lip). B, Lever-like or spurred stamens with basified anther in Roscoea schneideriana (unwrapped lobes). C, Lever- like or spurred stamen with dorsifixed anther in Curcuma amarissima (unwrapped lobes). a, anthers; f, filaments; fth, fertile thecae; j, torsional joints between filament and connective; la, lower lever arms of stamens or spur-like appendages (B, C); s, styles; st, stigmas; sth, sterile thecae; ua, upper lever arms of stamens.
图2 鼠尾草属杠杆状雄蕊的结构多样性(Cla?en-Bockhoff et al., 2004a)。A, 双药室杠杆状雄蕊。B, 杠杆臂弯曲的单药室雄蕊。C, 杠杆臂直伸的单药室雄蕊。D, 杠杆下臂退化的雄蕊。E, 具有三维下臂结构的雄蕊。图中阴影区为杠杆臂或增长的药隔, 深色区域为花粉囊或药室, 空白区为花丝。
Fig. 2 Morphologic diversity of lever-like stamens in Salvia (Cla?en-Bockhoff et al., 2004a). A, Bithecate lever-like stamen. B, Monothecate stamen of curved connective arms. C, Monothecate stamen of straight connective arms. D, Stamen of reduced lower connective arm. E, Stamen of three-dimensional lower connective arm. Shaded area represents elongated connective arms, black area for thecae, clear area for filament.
图3 近掌脉鼠尾草(Salvia subpalmatinervis)杠杆状雄蕊的背部传粉机制(张勃摄)。A, 传粉者访花时触发雄蕊杠杆运动, 使其背部承载花粉。B, 传粉者结束访花, 离开花冠时杠杆状雄蕊恢复原位。实箭表示传粉者退离花冠的方向。虚箭表示传粉者退出花冠时, 雄蕊杠杆运动的方向。a, 花药(可育药室); la, 雄蕊杠杆下臂; st, 柱头; ua, 雄蕊杠杆上臂。
Fig. 3 Dorsal pollen transfer with lever-like stamens in Salvia subpalmatinervis (Photo by Zhang Bo). A, Pollen loading on pollinator’s back through triggering stamen levers’ movement while pollinator visiting flower. B, Stamen levers restore its original position when pollinator finishing foraging. Solid arrows indicate the direction of pollinator quitting corolla after foraging. Dotted arrows show the movement direction of lever arms when pollinator quitting corolla. a, anthers (fertile thecae); la, lower lever arms of stamens; st, stigma; ua, upper lever arms of stamens.
[1] |
Armbruster WS, Muchhala N (2009). Associations between floral specialization and species diversity: cause, effect, or correlation? Evolutionary Ecology, 23, 159-179.
DOI URL |
[2] | Armbruster WS, Pérez-Barrales R, Arroyo J, Edwards ME, Vargas P (2006). Three-dimensional reciprocity of floral morphs in wild flax ( Linum suffruticosum): a new twist on heterostyly. New Phytologist, 171, 581-590. |
[3] | Barrett SCH (2002a). The evolution of plant sexual diversity. Nature Review Genetics, 3, 274-284. |
[4] |
Barrett SCH (2002b). Sexual interference of the floral kind. Heredity, 88, 154-159.
DOI URL PMID |
[5] | Barrett SCH, Graham S (1997). Adaptive radiation in the aquatic plant family Pontederiaceae: insights from phylogenetic analysis. In: Givnish T, Sytsma K eds. Molecular Evolution and Adaptive Radiation. Cambridge University Press, Cambridge, UK 225. |
[6] | Barrett SCH, Jesson LK, Baker AM (2000). The evolution and function of stylar polymorphisms in flowering plants. Annals of Botanty, 85(Suppl. A), 253-265. |
[7] | Bell G (1985). On the function of flowers. Proceedings of the Royal Society of London-Biological Sciences, 224, 223-265. |
[8] | Bentham G (1833). Salvia. Labiatarum Genera et Species. James Ridgway and Sons, Piccadilly, London. |
[9] | Cantino P (1992). Evidence for a polyphyletic origin of the Labiatae. Annals of the Missouri Botanical Garden, 79, 361-379. |
[10] |
Caruso CM (2006). The ecological genetics of floral traits. Heredity, 97, 86-87.
DOI URL PMID |
[11] | Claßen-Bockhoff R, Crone M, Baikova E (2004a). Stamen development in Salvia: homology reinvestigated. International Journal of Plant Sciences, 165, 475-498. |
[12] |
Claßen-Bockhoff R, Speck T, Tweraser E, Wester P, Thimm S, Reith M (2004b). The staminal lever mechanism in Salvia (Lamiaceae): a key innovation for adaptive radiation? Organisms, Diversity and Evolution, 4, 189-205.
DOI URL |
[13] |
Claßen-Bockhoff R, Wester P, Tweraser E (2003). The staminal lever mechanism in Salvia (Lamiaceae): a review. Plant Biology (Stuttgart), 5, 33-41.
DOI URL |
[14] | Cowley EJ (1982). A revision of Roscoea (Zingiberaceae). Kew Bulletion, 36, 747-777. |
[15] | Dieringer G, Ramamoorthy TP, Tenorio Lezama P (1991). Floral visitors and their behavior to sympatric Salvia species (Lamiaceae) in Mexico. Acta Botanica Mexicana, 13, 75-83. |
[16] | El-Gazzar A, Watson L, Williams W, Lance G (1968). The taxonomy of Salvia: a test of two radically different numerical methods. Journal of the Linnean Society of London, Botany, 60, 237-250. |
[17] | Endress PK (1999). Symmetry in flowers: diversity and evolution. International Journal of Plant Sciences, 160(Suppl.), S3-S23. |
[18] |
Erwin D (1992). A preliminary classification of evolutionary radiations. Historical Biology, 6, 133-147.
DOI URL |
[19] | Faegri K, van der Pijl L (1979). The Principles of Pollination Ecology. Pergamon Press, Oxford. |
[20] | Fisher RA (1930). The Genetical Theory of Natural Selection. Oxford University Press, Oxford. |
[21] | Gao JY (高江云), Xia YM (夏永梅), Huang JY (黄加元), Li QJ (李庆军) (2006). Gingers of China (中国姜科花卉). Science Press, Beijing. 24. (in Chinese) |
[22] | Gould S (1990). Wonderful Life: the Burgess Shale and the Nature of History. W. W. Norton & Company, New York. |
[23] | Grant KA, Grant V (1964). Mechanical isolation of Salvia apiana and Salvia mellifera (Labiatae). Evolution, 18, 196-212. |
[24] |
Grant V (1994). Modes and origins of mechanical and ethological isolation in angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 91, 3-10.
URL PMID |
[25] | Grant V, Grant KA (1965). Flower Pollination in the Phlox Family. Columbia University Press, New York. |
[26] | Guerin G (2005). Floral biology of Hemigenia and Microcorys (Lamiaceae). Australian Journal of Botany, 53, 147-162. |
[27] | Harder LD, Thomson JD (1989). Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. American Naturalist, 133, 323-344. |
[28] | Harder LD, Wilson WG (1994). Floral evolution and male reproductive success: optimal dispensing schedules for pollen dispersal by animal-pollinated plants. Evolutionary Ecology, 8, 542-559. |
[29] | Heard S, Hauser D (1995). Key evolutionary innovations and their ecological mechanisms. Historical Biology, 10, 151-173. |
[30] | Hildebrand F (1865). Ueber die Befruchtung der Salviaarten mit Hilfe von Insekten. Jahrbücher für wissenschaftliche Botanik, 4, 451-476. |
[31] | Himmelbaur W, Stibal E (1932-1934). Entwicklungs-richtungen in der blütenregion der gattung Salvia I-III. Biologia Generalis, 8, 9, 10, 449-474, 129-150, 17- 48. |
[32] | Hodges S, Arnold M (1995). Spurring plant diversification: Are floral nectar spurs a key innovation? Proceedings of the Royal Society of London: Biological Sciences, 262, 343-348. |
[33] | Holttum R (1950). The Zingiberiaceae of the Malay Peninsula. The Garden’s Bulletin Singapore, 13, 1-249. |
[34] | Huck RB (1992). Overview of pollination biology in the Lamiaceae. In: Harley RM, Reynolds T eds. Advances in Labiate Science. Royal Botanic Garden, Kew. 167-181. |
[35] |
Hunter JP (1998). Key innovations and the ecology of macroevolution. Trends in Ecology & Evolution, 13, 31-36.
DOI URL PMID |
[36] | Klinkhamer PGL, deJong TL (1993). Attaractiveness to pollinators: a plant’s dilemma. Oikos, 66, 180-184. |
[37] | Lu T (陆婷), Tan DY (谭敦炎) (2007). Evolutionary implications of pollen presentation schedules in animal-pollinated plants. Biodiversity Science (生物多样性), 15, 673-679. (in Chinese with English abstract) |
[38] | Luo ZL (罗中莱), Zhang DX (张奠湘) (2005). A review of heteranthery in flowering plants. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 13, 536-542. (in Chinese with English abstract) |
[39] | Lynch R (1882). On a contrivance for cross-fertilisation in Roscoea purpurea: with identical reference to the structure of Salvia Grahami. Journal of the Linnean Society, 19, 204-206. |
[40] | Mabberley DJ (1997). The Plant-Book 2nd edn. Cambridge University Press, Cambridge, UK. |
[41] | Mangaly JK, Sabu M (1993). A taxonomic revision of the south Indian species of Curcuma (Zingiberaceae). Rheedea, 3, 139-171. |
[42] | Mayr E (1982). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Belknap Press of Harvard University Press, Cambridge, UK. |
[43] | Miyake YC, Sakai S (2005). Effects of number of flowers per raceme and number of racemes in a plant on bumblebee visits and female reproductive success in Salvia nipponica (Labiatae). Ecological Research, 20, 395-403. |
[44] | Ngamriabsakul C (2005). Morphological study of the versatile anther group in the tribe Zingibereae (Zingiberaceae). Walailak Journal of Science and Technology, 2, 11-12. |
[45] | Ngamriabsakul C, Newman MF, Cronk QCB (2000). Phylogeny and disjunction in Roscoea (Zingiberaceae). Edinburgh Journal of Botany, 57, 39-61. |
[46] | Ohashi K (2002). Consequences of floral complexity for bumblebee-mediated geitonogamous self-pollination in Salvia nipponica (Labiatae). Evoultion, 56, 2414-2423. |
[47] |
Orr HA (2000). Adaptation and the cost of complexity. Evolution, 54, 13-20.
DOI URL PMID |
[48] |
Rahmanzadeh R, Müller K, Fischer E, Bartels D, Borsch T (2005). The Linderniaceae and Gratiolaceae are further lineages distinct from the Scrophulariaceae (Lamiales). Plant Biology, 7, 67-78.
URL PMID |
[49] | Reisfield AS (1987). Systematic Studies in Salvia (Lamiaceae) with Special Emphasis on Subgenus Calosphace Benth. Section Dusenostachys Epling. PhD dissertation, University of Wisconsin, Madison, USA. |
[50] |
Reith M, Baumann G, Claßen-Bockhoff R, Speck T (2007). New insights into the functional morphology of the lever mechanism of Salvia pratensis (Lamiaceae). Annals of Botany, 100, 393-400.
DOI URL PMID |
[51] | Reith M, Claßen-Bockhoff R, Speck T (2006). Biomechanics of Salvia flowers: the role of lever and flower tube in specialization on pollinators. In: Herrel A, Speck T, Rowe NP eds. Ecology and Biomechanics: a Mechanical Approach to the Ecology of Animals and Plants. CRC Press, Boca Raton, FL, USA. 123-147. |
[52] | Ren MX (任明迅) (2008). Stamen fusion in plants: diversity, adaptive significance, and taxonomic implications. Journal of Systematics and Evolution (植物分类学报), 46, 452-466. (in Chinese with English abstract) |
[53] | Ren MX (任明迅) (2009). Intrafloral stamen differentiations and their adaptive significances. Chinese Journal of Plant Ecology (植物生态学报), 33, 222-236. (in Chinese with English abstract) |
[54] | Ronse Decraene LP, Smets EF (1992). Complex polyandry in the Magnoliatae: definition, distribution and systematic value. Nordic Journal of Botany, 12, 621-649. |
[55] | Schluter D (2000). The Ecology of Adaptive Radiation. Oxford University Press, New York. |
[56] | Simpson G (1953). The Major Features of Evolution. Columbia University Press, New York. |
[57] | Sprengel CK (1793). Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Vieweg, Berlin. (in German) |
[58] |
Stanton M, Snow A, Handel S (1986). Floral evolution: attractiveness to pollinators increases male fitness. Science, 232, 1625-1627.
DOI URL PMID |
[59] | Stebbins GL (1974). Flowering Plants: Evolution Above the Species Level. Belknap (Harvard University), Cambridge, Massachusetts, USA. |
[60] | Torchio PF (1974). Mechanisms involved in the pollination of Penstemon visited by the masarid wasp, Pseudomasaris vespoides (Cresson). Pan-Pacific Entomologist, 50, 226-234. |
[61] | Troll W (1929). Roscoea purpurea Sm., eine Zingiberacee mit Hebelmechanismus in den Blüten. Mit Bemerkungen über die Entfaltungsbewegungen der fertilen Staubblätter von Salvia. Planta, 7, 1-28. (in German) |
[62] | Wagstaff SJ, Hickerson L, Spangler R, Reeves PA, Olmstead RG (1998). Phylogeny in Labiatae s.l., inferred from cpDNA sequences. Plant Systematics and Evolution, 209, 265-274. |
[63] |
Wagstaff SJ, Olmstead RG, Cantino PD (1995). Parsimony analysis of cpDNA restriction site variation in subfamily Nepetoideae (Labiatae). American Journal of Botany, 82, 886-892.
DOI URL |
[64] |
Walker-Larsen J, Harder LD (2000). The evolution of staminodes in angiosperms: patterns of stamen reduction, loss, and functional re-invention 1. American Journal of Botany, 87, 1367-1384.
URL PMID |
[65] |
Walker-Larsen J, Harder LD (2001). Vestigial organs as opportunities for functional innovation: the example of the Penstemon staminode. Evolution, 55, 477-487.
DOI URL PMID |
[66] |
Walker JB, Sytsma KJ (2007). Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Annals of Botany, 100, 375-391.
URL PMID |
[67] |
Walker JB, Sytsma KJ, Treutlein J, Wink M (2004). Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. American Journal of Botany, 91, 1115-1125.
DOI URL PMID |
[68] | Webb CJ, Lloyd DG (1986). The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany, 24, 163-178. |
[69] | Weberling F (1989). Morphology of Flowers and Inflorescences. Cambridge University Press, Cambridge, UK. |
[70] | Wester P, Claßen-Bockhoff R (2006a). Bird pollination in South African Salvia species. Flora, 201, 396-406. |
[71] | Wester P, Claßen-Bockhoff R (2006b). Hummingbird pollination in Salvia haenkei (Lamiaceae) lacking the typical lever mechanism. Plant Systematics and Evolution, 257, 133-146. |
[72] |
Wester P, Claßen-Bockhoff R (2007). Floral diversity and pollen transfer mechanisms in bird-pollinated Salvia species. Annals of Botany, 100, 401-421.
DOI URL PMID |
[73] | Zhang DY (张大勇) (2004). Plant Life-History Evolution and Reproductive Ecology (植物生活史进化与繁殖生态学). Science Press, Beijing. (in Chinese) |
[74] |
Zhang ZQ, Li QJ (2008). Autonomous selfing provides reproductive assurance in an alpine ginger Roscoea schneideriana (Zingiberaceae). Annals of Botany, 102, 531-538.
DOI URL PMID |
[75] | Zhang ZQ (张志强) (2008). Reproductive Strategies and Isolation Mechanisms of Roscoea Species (Zingiberaceae) (象牙参属植物的繁殖策略与生殖隔离机制). PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan. (in Chinese with English abstract) |
[1] | 哈里布努尔, 古丽扎尔·阿不都克力木, 热依拉穆·麦麦提吐尔逊, 艾沙江·阿不都沙拉木. 黑果枸杞两种花型的花部综合征与传粉特性[J]. 植物生态学报, 2022, 46(9): 1050-1063. |
[2] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[3] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[4] | 张迪, 都业勤, 王磊, 陈鑫, 闫兴富, 唐占辉. 两种生境间大花百合不同性别表型开花及传粉特征的差异[J]. 植物生态学报, 2022, 46(5): 580-592. |
[5] | 阿依古丽•阿卜杜热伊木, 焦芳芳, 张爱勤. 异型花柱植物喀什补血草的传粉者功能群与花粉转移效率[J]. 植物生态学报, 2021, 45(1): 51-61. |
[6] | 范紫腾, 毋钰灵, 王新菊, 李太强, 高江云. 共生真菌对兰科植物种间杂交后代种子萌发的效应[J]. 植物生态学报, 2019, 43(4): 374-382. |
[7] | 张亭, 王波, 苗白鸽, 彭艳琼. 榕树隐头花序挥发物组成及其传粉榕小蜂寄主识别行为[J]. 植物生态学报, 2017, 41(5): 549-558. |
[8] | 黄艳波, 魏宇昆, 王琦, 肖月娥, 叶喜阳. 舌瓣鼠尾草退化杠杆雄蕊的相关花部特征及传粉机制[J]. 植物生态学报, 2015, 39(7): 753-761. |
[9] | 吴云, 刘玉蓉, 彭瀚, 杨勇, 刘光立, 操国兴, 张强. 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究[J]. 植物生态学报, 2015, 39(1): 1-13. |
[10] | 田润炜,陆嘉惠,李学禹,余营,谢良碧,秦忠立. 光果甘草二体雄蕊的发育及其适应意义[J]. 植物生态学报, 2013, 37(7): 641-649. |
[11] | 张勃, 孙杉, 方强恩, 白小明. 鼠尾草属不同物种的雄蕊杠杆机制对传粉者空间变异的进化响应[J]. 植物生态学报, 2012, 36(7): 681-689. |
[12] | 任明迅. 两性花的雄蕊运动: 多样性和适应意义[J]. 植物生态学报, 2010, 34(7): 867-875. |
[13] | 侯勤正, 段元文, 司庆文, 杨慧玲. 青藏高原晚期开花植物线叶龙胆的传粉生态学[J]. 植物生态学报, 2009, 33(6): 1156-1164. |
[14] | 张志强, 李庆军. 花寿命的进化生态学意义[J]. 植物生态学报, 2009, 33(3): 598-606. |
[15] | 任明迅. 雄蕊合生植物半边莲的花部综合征与繁育系统[J]. 植物生态学报, 2009, 33(2): 361-368. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19