植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 206-221.DOI: 10.3773/j.issn.1005-264x.2009.01.023
收稿日期:
2008-01-16
接受日期:
2008-05-15
出版日期:
2009-01-16
发布日期:
2009-01-30
作者简介:
E-mail: gcm228@163.com
基金资助:
GONG Chun-Mei1(), NING Peng-Bo2, WANG Gen-Xuan3, LIANG Zong-Suo1
Received:
2008-01-16
Accepted:
2008-05-15
Online:
2009-01-16
Published:
2009-01-30
摘要:
高等植物大多为C3植物, C4植物和景天酸代谢(Crassulacean acid metabolism, CAM)植物是由C3植物进化而来的。C4途径的多源进化表明, 光合途径由C3途径向C4途径的转变相对简单。该文分析研究了植物光合途径的进化前景, 指出C4植物是从C3植物进化而来的高光效种类, 且地质时期以来降低的大气CO2浓度和升高的大气温度以及干旱和盐渍化是C4途径进化的外部动力。C3植物的C4途径的发现说明植物的光合途径并非是一成不变的, C3和C4植物的光合特征具有极大的可塑性, 某些环境的变化会引起植物光合途径在C3和C4途径之间转变。C3植物具有的C4途径是环境调控的产物, 是对逆境的适应性进化结果, 因而光合途径的转变也适用于干旱地区植被的适应性生存机理研究。该文还利用国外最新的C4光合进化模型介绍了植物在进化C4途径中所经历的7个重要时期(从分子基础到形态基础、结构基础, 再到物质代谢水平、光合酶活水平, 直到C3和C4途径协调运转时期, 最后达到形态与功能最优化阶段), 并结合全球气候变化的特点对国内外相关领域的研究进行了分析, 总结了植物光合途径的适应性转变和进化的研究成果, 为今后的相关工作提出建议。
龚春梅, 宁蓬勃, 王根轩, 梁宗锁. C3和C4植物光合途径的适应性变化和进化. 植物生态学报, 2009, 33(1): 206-221. DOI: 10.3773/j.issn.1005-264x.2009.01.023
GONG Chun-Mei, NING Peng-Bo, WANG Gen-Xuan, LIANG Zong-Suo. A REVIEW OF ADAPTABLE VARIATIONS AND EVOLUTION OF PHOTOSYNTHETIC CARBON ASSIMILATING PATHWAY IN C3 AND C4 PLANTS. Chinese Journal of Plant Ecology, 2009, 33(1): 206-221. DOI: 10.3773/j.issn.1005-264x.2009.01.023
图1 第三纪以来大气CO2浓度的变化(引自Sage(2004), 略有改动) ○: 硼同位素测定的大气CO2浓度 Atmospheric CO2 concentration measured by using boron isotopes method : 烯酮片断中的碳同位素比率 Carbon isotope ratio in alkenone fragments : 4千万年前大气CO2浓度的变化 The best-fit regression to the CO2 data older than 40 million years : C4植物发生发展的关键时期 Key developmental period in the history of C4 plants
Fig. 1 Changes in atmospheric CO2 concentration since the beginning of the Tertiary Period (ca. 65 million years ago)(Adapted from Sage, 2004)
图2 C4途径在被子植物分类学上的进化路线 (引自Sage (2004), 略有改动) 被子植物进化C4途径的目的顺序用粗体字表示, 直线右侧是每一目主要的C4科、属, 括号中的数字是估计的C4属/种数或物种数 Angiosperm orders with C4 photosynthetic carbon assimilating pathway are shown in bold. Lines to the right of these orders indicate families and principal C4 genera within a lineage. Numbers in parentheses refer to estimates of genera/species numbers or, where relevant, just species numbers
Fig. 2 Evolutional course of C4 pathway in the taxonomic orders of angiosperms (Adapted from Sage, 2004)
图3 两种单一光合细胞的C4植物叶解剖结构(引自Sage (2004), 略有改动) A: 异子蓬 Borszczowia aralocaspica B: Bienertia cycloptera P: PEPCase的分布区 Distribution region of PEPCase R: Rubisco的分布区 Distribution region of Rubisco
Fig. 3 Leaf anatomy of the two single-celled plants with the C4 pathway of organic acid flux in each cell highlighted (Adapted from Sage, 2004)
图4 包含C4途径主要进化时期的最简金字塔模型(引自Sage (2004), 略有改动)
Fig. 4 An ascending pyramid of C4 pathway: a simplistic model of the main phases of C4 evolution (Adapted from Sage, 2004)
[1] |
Ali S, Taylor WC (2001). The 3′ non-coding region of C4 photosynthesis gene increases transgene expression when combined with heterologous promoters. Plant Molecular Biology, 46, 325-333.
URL PMID |
[2] | Badger MR, Price GD (1992). The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiologia Plantarum, 84, 606-615. |
[3] |
Biehler K, Fock H (1996). Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought stressed wheat. Plant Physiology, 112, 265-272.
URL PMID |
[4] | Bjorkman O, Nobs M, Pearcy R, Boynton J, Berry J (1971). Characteristics of hybrids between C3 and C4 species of Atriplex. In: Hatch MD, Osmond CB, Slatyer RO eds. Photosynthesis and Photorespiration. Wiley-Interscience, New York, 105-119. |
[5] | Bläsing OE, Ernst K, Streubel M, Westhoff P, Svensson P (2002). The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia - implications for the evolution of C4 photosynthesis. Planta, 215, 448-456. |
[6] | Bota J, Medrano H, Flexas J (2004). Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist, 162, 671-681. |
[7] | Bowes G (1993). Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 309-332. |
[8] | Bowes G, Salvucci ME (1989). Plasticity in the photosynthetic carbon metabolism of submerged aquatic macrophytes. Aquatic Botany, 34, 233-266. |
[9] | Brown HA (1999). Agronomic implications of C4 photosynthesis. In: Sage RF, Monson RK eds. C4 Plant Biology. Academic Press, San Diego, CA, USA, 473-508. |
[10] |
Brown RH, Hattersley PW (1989). Leaf anatomy of C3-C4 species as related to evolution of C4 photosynthesis. Plant Physiology, 91, 1543-1550.
DOI URL PMID |
[11] |
Brown NJ, Parsley K, Hibberd JM (2005). The future of C4 research — maize, Flaveria or Cleome? Trends in Plant Science, 10, 215-221.
DOI URL PMID |
[12] | Carolin RC, Jacobs SWL, Vesk M (1975). Leaf structure in Chenopodiaceae. Botanische Jahrbücher für Systematische Pflanzengeschichte und Pflanzengeographie, 95, 226-255. |
[13] | Carolin RC, Jacobs SWL, Vesk M (1978). Kranz cells and mesophyll in Chenopodiaceae. Australian Journal of Plant Physiology, 26, 683-698. |
[14] |
Cheng SH, Moore BD, Edwards GE, Ku MSB (1988). Photosynthesis in Flaveria brownii, a C4-like species. Plant Physiology, 87, 867-873.
DOI URL |
[15] |
Cheng SH, Moore BD, Wu J, Edwards GE, Ku MSB (1989). Photosynthetic plasticity in Flaveria brownii. Growth irradiance and the expression of C4 photosynthesis. Plant Physiology, 89, 1129-1135.
URL PMID |
[16] |
Chollet R, Vidal J, O’Leary MH (1996). Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 273-298.
DOI URL PMID |
[17] |
Cornic G, Fresneau C (2002). Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany, 89, 887-894.
DOI URL PMID |
[18] |
Cushman JC, Bohnert HJ (2000). Genomics approaches to plant stress. Current Opinion in Plant Biology, 3, 117-124.
URL PMID |
[19] | Dengler NG, Nelson T (1999). Leaf structure and development in C4 plants. In: Sage RF, Monson RK eds. C4 Plant Biology. Academic Press, San Diego, CA, USA, 133-172. |
[20] |
Doebley J, Lukens L (1998). Transcriptional regulators and the evolution of plant form. The Plant Cell, 10, 1075-1082.
URL PMID |
[21] |
Drincovich MF, Casati P, Andreo CS, Chessin SJ, Franceschi VR, Edwards GE, Ku MSB (1998). Evolution of C4 photosynthesis in Flaveria species: isoforms of NADP-malic enzyme. Plant Physiology, 117, 733-744.
DOI URL PMID |
[22] |
Duffus CM, Rosie R (1973). Some enzyme activities associated with the chlorophyll containing layers of the immature barley pericarp. Planta, 111, 219-226.
DOI URL PMID |
[23] |
Edwards GE, Furbank RT, Hatch MD, Osmond CB (2001). What does it take to be C4? Lessons from the evolution of C4 photosynthesis. Plant Physiology, 125, 46-49.
URL PMID |
[24] | Edwards GE, Ku MSB (1987). Biochemistry of C3-C4 intermediates. In: Stumpf PK, Conn EE eds. The Biochemistry of Plants, Vol. 10. Academic Press, New York, 275-325. |
[25] | Edwards GE, Walker DA (1983). C3,C4: Mechanisms, and Cellular and Environmental Regulation of Photosynthesis. Blackwell Scientific Publications, Oxford. |
[26] |
Ehleringer JR, Cerling TE, Helliker BR (1997). C4 photosynthesis, atmospheric CO2 and climate. Oecologia, 112, 285-299.
DOI URL PMID |
[27] | Feng L (封玲) (2007). The changes of forest resource and its influence to ecological environment in Manasi River Basin of Xinjiang. Ecology and Environment (生态环境), 2, 372-376. (in Chinese with English abstract) |
[28] |
Gillon J, Yakir D (2001). Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science, 291, 2584-2587.
DOI URL PMID |
[29] |
Gimenez C, Mitchell VJ, Lawlor DW (1992). Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiology, 98, 516-524.
DOI URL PMID |
[30] | Gong CM, Gao XW, Cheng DL, Wang GX (2006). C4 photosynthetic characteristics and antioxidative protection of C3 desert shrub Hedysarum scoparium in Northwest China. Pakistan Journal of Botany, 38, 647-661. |
[31] |
Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M (2004). cis-Regulatory elements for mesophyll specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. The Plant Cell, 16, 1077-1090.
URL PMID |
[32] |
Gunasekera D, Berkowitz GA (1993). Use of transgenic plants with ribulose-1,5-bisphosphate carboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesis under water stress. Plant Physiology, 103, 629-635.
DOI URL PMID |
[33] |
Guy RD, Reid DM, Krouse HR (1986). Factors affecting 13C/ 12C ratios of inland halophytes. I. Controlled studies on growth and isotopic composition of Puccinellia nuttalliana. Canadian Journal of Botany, 64, 2693-2699.
DOI URL |
[34] | Han JM (韩家懋), Wang GA (王国安), Liu DS (刘东生) (2002). Appearance of C4 plants and global changes. Earth Science Frontiers (地学前缘), 9, 233-243. (in Chinese with English abstract) |
[35] | Hatch MD (1987). C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta, 895, 81-106. |
[36] | Hatch MD (1992). C4 photosynthesis: an unlikely process full of surprises. Plant & Cell Physiology, 33, 333-342. |
[37] |
Hatch MD, Slack CR (1966). Photosynthesis in sugar-cane leaves: a new carboxylation reaction and the pathway of sugar formation. Biochemical Journal, 101, 103-111.
DOI URL |
[38] | Hayes JM (1994). Global methanothophy at the Archean-Proterozoic transition. In: Bengston S ed. Early Life on Earth. Columbia University Press, New York, 220-236. |
[39] |
Hegerl GC, Hasselmann K, Cubasch U, Mitchell JFB, Roeckner E, Voss R, Waszkewitz J (1997). Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change. Climate Dynamics, 13, 613-634.
DOI URL |
[40] |
Hibberd JM, Quick WP (2002). Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature, 415, 451-454.
URL PMID |
[41] |
Hibberd JM, Sheehy JE, Langdale JA (2008). Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Current Opinion in Plant Biology, 11, 228-231.
DOI URL PMID |
[42] |
Hudson GS, Mahon JD, Anderson PA, Gibbs MJ, Badgers MR, Andrews TJ, Whitfeld PR (1990). Comparisons of rbcL genes for the large subunit of ribulose-bisphosphate carboxyase from closely related C3 and C4 plant species. Journal of Biological Chemistry, 265, 808-814.
DOI URL |
[43] |
Huxman TE, Monson RK (2003). Stomatal responses of C3, C3-C4 and C4 Flaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behaviour. Plant, Cell and Environment, 26, 313-322.
DOI URL |
[44] |
IDAG (International Ad Hoc Detection and Attribution Group) (2005). Detecting and attributing external influences on the climate system: a review of recent advances. Journal of Climate, 18, 1291-1314.
DOI URL |
[45] |
Imaizumi N, Samejima M, Ishihara K (1997). Characteristics of photosynthetic carbon metabolism of spikelets in rice. Photosynthesis Research, 52, 75-82.
DOI URL |
[46] |
Izui K, Matsumura H, Furumoto T, Kai Y (2004). Phosphoenolpyruvate carboxylase: a new era of structural biology. Annual Review of Plant Biology, 55, 69-84.
DOI URL PMID |
[47] |
Jordan DB, Ogren WL (1984). The CO2/O2 specificity of ribulose-1, 5-bisphosphate concentration, pH and temperature. Planta, 161, 308-313.
DOI URL PMID |
[48] |
Keeley JE (1998). C4 photosynthetic modifications in the evolutionary transition from land to water in aquatic grasses. Oecologia, 116, 85-97.
URL PMID |
[49] | Keeley JE (1999). Chaparral. In: Barbour MB, Billings WD eds. North American Terrestrial Vegetation. Cambridge University Press, Cambridge, 201-251. |
[50] | Kellogg EA (1999). Phylogenetic aspects of the evolution of C4 photosynthesis. In: Sage RF, Monson RK eds. C4 Plant Biology. Academic Press, San Diego, CA, USA, 411-444. |
[51] | Kicheva MI, Tsonev TD, Popova LP (1994). Stomatal and non-stomatal limitations to photosynthesis in two wheat cultivars subjected to water stress. Photosynthetica, 30, 107-116. |
[52] |
Kirchhamer CV, Yuh CH, Davidson EH (1996). Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples. Proceedings of the National Academy of Sciences of the United States of America, 93, 9322-9328.
DOI URL PMID |
[53] |
Kocacinar F, Sage RF (2003). Photosynthetic pathway alters xylem structure and hydraulic function in annual plants. Plant, Cell and Environment, 26, 2015-2026.
DOI URL |
[54] |
Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology, 17, 76-80.
DOI URL PMID |
[55] | Ku MSB, Cho D, Ranade U, Hsu TP, Li X, Jiao DM, Ehleringer J, Miyao M, Matsuoka M (2000). Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzymes. In: Sheehy JE, Mitchell PL, Hardy B eds. Redesigning of Rice Photosynthesis to Increase Yield. Elsevier Science Publishers, Amsterdam, The Netherlands, 193-204. |
[56] |
Ku MSB, Wu JR, Dai ZY, Scott RA, Chu C, Edwards GE (1991). Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiology, 96, 518-528.
DOI URL PMID |
[57] |
Laetsch WM (1974). The C4 syndrome: a structural analysis. Annual Review of Plant Physiology, 25, 27-52.
DOI URL |
[58] |
Lai LB, Tausta L, Nelson TM (2002). Differential regulation of transcripts encoding cytosolic NADP-malic enzyme in C3 and C4 Flaveria species. Plant Physiology, 128, 140-149.
URL PMID |
[59] | Langdale JA, Taylor WC, Nelson T (1991). Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site greater than 3 kb upstream of the gene. Molecular Genetics and Genomics, 225, 49-55. |
[60] | Latzko E, Kelly GJ (1983). The many-faceted function of phosphoenolpyruvate carboxylase in C3 plant. Physiologie Vegetale, 21, 805-815. |
[61] | Lawlor DW (1995). The effects of water deficit on photosynthesis. In: Smirnoff N ed. Environment and Plant Metabolism. Bios Scientific Publishers, Oxford, 129-160. |
[62] |
Lawlor DW (2002). Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the ATP. Annals of Botany, 89, 871-885.
URL PMID |
[63] | Li WH (李卫华), Hao NB (郝乃斌), Ge QY (戈巧英), Zhang QD (张其德) (1999). Advances in study on C4 pathway in C3 plant. Chinese Bulletin of Botany (植物学通报), 16, 97-106. (in Chinese with English abstract) |
[64] | Li WH (李卫华), Lu QT (卢庆陶), Hao NB (郝乃斌), Ge QY (戈巧英), Zhang QD (张其德), Jiang GM (蒋高明), Du WG (杜维广), Kuang TY (匡廷云) (2000). The relation between C4 pathway enzymes and PSII photochemical function in soybean. Acta Botanica Sinica (植物学报), 42, 689-692. (in Chinese with English abstract) |
[65] | Li ZL (李正理), Li RA (李荣敖) (1981). Anatomical observation of assimilating branches of nine xerophytes in Gansu. Acta Botanica Sinica (植物学报), 23, 181-185. (in Chinese with English abstract) |
[66] |
Majumdar S, Ghosh S, Glick BR, Dumbroff EB (1991). Activities of chlorophyllase, phosphoenolpyruvate carboxylase and ribulose-1,5-biphosphate carboxylase in the primary leaves of soybean during senescence and drought. Physiologia Plantarum, 81, 473-480.
DOI URL |
[67] |
Marshall JS, Stubbs JD, Taylor WC (1996). Two genes encode highly similar chloroplastic NADP-malic enzymes in Flaveria. Plant Physiology, 111, 1251-1261.
DOI URL PMID |
[68] | Metcalfe CR, Chalk L (1979). Anatomy of the Dicotyledons, Vol. 1: Systematic Anatomy of the Leaf and Stem. Oxford Science Publishers, Oxford. |
[69] |
Miyao M (2003). Molecular evolution and genetic engineering of C4 photosynthetic enzymes. Journal of Experimental Botany, 54, 179-189.
DOI URL PMID |
[70] |
Monson RK (2003). Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. International Journal of Plant Sciences, 164, S43-S54.
DOI URL |
[71] |
Monson RK, Teeri JA, Ku MSB, Gurevitch J, Mets LJ, Dudley S (1988). Carbon-isotope discrimination by leaves of Flaveria species exhibiting different amounts of C3- and C4-cycle co-function. Planta, 174, 145-151.
DOI URL PMID |
[72] | Monson RK (1999). The origins of C4 genes and evolutionary pattern in the C4 metabolic phenotype. In: Sage RF, Monson RK eds. C4 Plant Biology. Academic Press, San Diego, CA, USA, 377-410. |
[73] | Monson RK, Rawsthorne S (2000). CO2 assimilation in C3-C4 intermediate plants. In: Leegood RC, Sharkey TD, von Caemmerer SC eds. Photosynthesis: Physiology and Metabolism. Advances in Photosynthesis and Respiration, Vol. 9. Kluwer Academic Publishers, Dordrecht, The Netherlands, 533-555. |
[74] | Moore BD, Ku MSB, Edwards GE (1989). Expression of C4-like photosynthesis in several species of Flaveria. Plant, Cell and Environment, 112, 541-549. |
[75] | Niu SL (牛书丽), Jiang GM (蒋高明), Li YG (李永庚) (2004). Environmental regulations of C3 and C4 plants. Acta Ecologica Sinica (生态学报), 24, 308-314. (in Chinese with English abstract) |
[76] |
Niu S, Li Z, Xia J, Han Y, Wu M, Wan S (2008). Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany, 63, 91-101.
DOI URL |
[77] |
Nomura M, Katayama K, Nishimura A, Ishida Y, Ohta S, Komari T, Miyao-Tokutomi M, Tajima S, Matsuoka M (2000). The light promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression. Plant Molecular Biology, 44, 99-106.
DOI URL PMID |
[78] | Pan RC (潘瑞炽), Dong YD (董愚得) (2001). Plant Physiology (植物生理学) 4th edn. Higher Education Press, Beijing, 91-95. (in Chinese) |
[79] | Pan RC (潘瑞炽), Dong YD (董愚得) (2004). Plant Physiology (植物生理学) 5th edn. Higher Education Press, Beijing, 56-57, 84-86. (in Chinese) |
[80] |
Parry MAJ, Androlojc PJ, Khan S, Lea PJ, Keys AJ (2002). Rubisco activity: effects of drought stress. Annals of Botany, 89, 833-839.
DOI URL PMID |
[81] | Parry MAJ, Delgado E, Vadell J, Keys AJ, Lawlor DW, Medrano H (1993). Water stress and the diurnal activity of ribulose-1,5-bisphosphate carboxylase in field grown Nicotiana tabacum genotypes selected for survival at low CO2 concentrations. Plant Physiology and Biochemistry, 31, 113-120. |
[82] | Portis AR (1992). Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Annual Review of Plant Physiology, 43, 415-422. |
[83] |
Pyankov VI, Artyusheva EG, Edwards GE, Black Jr CC, Soltis PS (2001). Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: implications for the evolution of photosynthesis types. American Journal of Botany, 88, 1189-1198.
URL PMID |
[84] | Pyankov VI, Black Jr CC, Artyusheva EG, Voznesenskaya EV, Ku MSB, Edwards GE (1999). Features of photosynthesis in Haloxylon species of Chenopodiaceae that are dominant plants in Central Asian deserts. Plant & Cell Physiology, 40, 125-134. |
[85] | Raghavendra AS (1980). Characteristics of plant species intermediate between C3 and C4 pathways of photosynthesis: their focus of mechanism and evolution of C4 syndrome. Photosynthetica, 14, 271-273. |
[86] |
Raven PH, Evert RF, Eichhorn SE (1992). Biology of Plants 5th edn. Worth Publishers, New York.
DOI URL PMID |
[87] |
Rawsthorne S (1992). C3-C4 intermediate photosynthesis: linking physiology to gene expression. The Plant Journal, 2, 267-274.
DOI URL |
[88] |
Reiskind JB, Madsen TV, van Ginkel LC, Bowes G (1997). Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant, Cell and Environment, 20, 211-220.
DOI URL |
[89] |
Rosche E, Westhoff P (1995). Genomic structure and expression of the pyruvate, orthophosphate dikinase gene of the dicotyledonous C4 plant Flaveria trinervia(Asteraceae). Plant Molecular Biology, 29, 663-678.
DOI URL PMID |
[90] |
Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: a review. Annals of Botany, 87, 553-566.
DOI URL |
[91] |
Sage RF (2001). Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biology, 3, 202-213.
DOI URL |
[92] |
Sage RF (2004). The evolution of C4 photosynthesis. New Phytologist, 161, 341-370.
DOI URL |
[93] | Sage RF (1999). Why C4 photosynthesis? In: Sage RF, Monson RK eds. C4 Plant Biology. Academic Press, San Diego, CA, USA, 3-16. |
[94] | Sage RF, Wedin DA, Li MR (1999). The biogeography of C4 photosynthesis patterns and controlling factors. In: Sage RF, Monson RK eds. C4 Plant Biology. Academic Press, San Diego, CA, USA, 313-373. |
[95] |
Sayre RT, Kennedy RA, Pringnitz DJ (1979). Photosynthetic enzyme activities and localization in Mollugo verticillata population differing on the leaves of C3 and C4 cycle operations. Plant Physiology, 64, 293-299.
URL PMID |
[96] |
Sage RF, Kubien DS (2003). Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynthesis Research, 77, 209-225.
URL PMID |
[97] |
Schäffner AR, Sheen J (1991). Maize rbcS promoter activity depends on sequence elements not found in dicot rbcS promoters. The Plant Cell, 3, 997-1012.
DOI URL PMID |
[98] | Schulze ED, Hall AE (1982). Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology II: Water Relations and Carbon Assimilation. Springer-Verlag, Berlin, 181-230. |
[99] |
Sharkey TD, Seemann JR (1989). Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bis-phosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiology, 89, 1060-1065.
DOI URL PMID |
[100] | Sheehy JE, Mitchell PL, Hardy B (2000). Redesigning Rice Photosynthesis to Increase Yields. Elsevier Science Publishers, Amsterdam, The Netherlands. |
[101] |
Sheen J (1999). C4 gene expression. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 187-217.
DOI URL PMID |
[102] | Shields LM (1950). Leaf xeromorphy as related to physiological and structural influences. Botanical Review, 16, 299-340. |
[103] |
Soros CL, Dengler NG (2001). Ontogenetic derivation and cell differentiation in photosynthetic tissues of C3 and C4 Cyperaceae. American Journal of Botany, 88, 992-1005.
URL PMID |
[104] | Stott PA (2003). Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophysical Research Letters, 30, 1724. |
[105] |
Svensson P, Blsing OE, Westhoff P (2003). Evolution of C4 phosphoenolpyruvate carboxylase. Archives of Biochemistry and Biophysics, 414, 180-188.
DOI URL PMID |
[106] |
Tang AC, Kawamitsu Y, Kanechi M, Boyer JS (2002). Photosynthesis oxygen evolution of low water potential in leaf discs lacking an epidermis. Annals of Botany, 89, 861-870.
DOI URL PMID |
[107] | Taiz L, Zeiger E (1991). Plant Physiology. The Benjamin/Cammings Publishing Company Inc., Redwood City, CA, USA. |
[108] |
Takeda T, Ueno O, Samejima M, Ohtani T (1985). An investigation for the occurrence of C4 photosynthesis in the Cyperaceae from Australia. The Botanical Magazine Tokyo, 98, 393-411.
DOI URL |
[109] | Teng NJ (滕年军), Chen T (陈彤), Ling JX (林金星) (2006). A review on responses of plant sexual reproduction to elevated CO2. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 1054-1063. (in Chinese with English abstract) |
[110] | Tett SFB, Stott PA, Allen MR, Ingram W, Mitchell J (1999). Causes of twentieth-century temperature change near the Earth’s surface. Nature, 339, 569-572. |
[111] | Tezara W, Lawlor DW (1995). Effects of water stress on the biochemistry and physiology of photosynthesis in sunflower. In: Mathis P ed. Photosynthesis from Light to Biosphere, Vol Ⅳ. Kluwer Academy Publishers, Hague, The Netherlands, 625-628. |
[112] |
Tezara W, Mitchell VJ, Driscoll SP, Lawlor DW (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401, 914-917.
DOI URL |
[113] | Toh H, Kawamura T, Izui K (1994). Molecular evolution of phosphoenolpyruvate carboxylase. Plant & Cell Physiology, 17, 31-43. |
[114] |
Ueno O (1998). Induction of Kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid. The Plant Cell, 10, 571-583.
DOI URL PMID |
[115] | Ueno O, Samejima M, Muto S, Miyachi S (1988). Photosynthesis characteristics of an amphibious plant, Eleocharis vivipara: expression of C4 and C3 modes in contrasting environments. Proceedings of the National Academy of Sciences of the United States of America, 85, 719-728. |
[116] |
Uhl D, Mosbrugger V (1999). Leaf venation density as a climate and environmental proxy: a critical review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 15-26.
DOI URL |
[117] | von Caemmerer S (2000). Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Collingwood, Australia. |
[118] |
Voznesenskaya EV, Franceschi KO, Freitag H, Edwards GE (2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature, 414, 543-546.
DOI URL PMID |
[119] |
Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002). Evidence for C4 photosynthesis without Kranz anatomy in Bienertia cycloptera(Chenopodiaceae). The Plant Journal, 31, 649-662.
DOI URL PMID |
[120] | Wang ZP (王智平), Chen QS (陈全胜) (2005). Recently photosynthesized carbon allocation and turnover: a minor review of the literature. Acta Phytoecologica Sinica (植物生态学报), 29, 845-850. (in Chinese with English abstract) |
[121] |
Weiner H, Burnell JN, Woodrow IE, Heldt HW, Hatch MD (1988). Metabolite diffusion into bundle sheath cells from C4 plant. Plant Physiology, 88, 815-822.
DOI URL PMID |
[122] | Xin ZB (信忠保), Xu JX (许炯心), Zheng W (郑伟) (2007). The effect of climate change and human activity on variational cover of vegetation in Loess Plateau. Science in China Series D (中国科学 D 辑), 37, 1504-1514. (in Chinese) |
[123] | Yin LJ (殷立娟), Wang P (王萍) (1997). Distribution of C3 and C4 photosynthetic pathways of plants on the steppe of Northeastern China. Acta Ecologica Sinica (生态学报), 17, 113-123. (in Chinese with English abstract) |
[124] | Yun JY (云建英), Yang JD (杨甲定), Zhao HL (赵哈林) (2006). Research progress in the mechanism for drought and high temperature to affect plant photosynthesis. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 26, 641-648. (in Chinese with English abstract) |
[125] | Zhang JW (张经炜) (2006). C4 plants, one of the ways of desertification control. Arid Zone Research (干旱区研究), 23, 384-387. (in Chinese with English abstract) |
[126] |
Zhang X, Zwiers FW, Stott PA (2006). Multi-model multi-signal climate change detection at regional scale. Journal of Climate, 19, 4294-4307.
DOI URL |
[127] |
Zheng WJ, Zheng XP, Zhang CL (2000). A survey of photosynthetic carbon metabolism in 4 ecotypes of Phragmites australis in Northwest China: leaf anatomy, ultrastructure, and activities of ribulose 1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase and glycollate oxidase. Physiologia Plantarum, 110, 201-208.
DOI URL |
[128] | Zheng XP (郑学平), Zhang CL (张承烈), Chen GC (陈国仓) (1993). Investigation on the adaptation of photosynthetic carbon metabolism pathway to environment of Phragmites communis in Hexi Corridor of Gansu Province. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 17, 1-8. (in Chinese with English abstract) |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[4] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[5] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[6] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[7] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[8] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[9] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[10] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[11] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[12] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[13] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[14] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[15] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19