植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 383-387.DOI: 10.17521/cjpe.2015.0037
收稿日期:
2014-10-11
接受日期:
2015-01-17
出版日期:
2015-04-01
发布日期:
2015-04-21
通讯作者:
杨海水
作者简介:
*作者简介:E-mail:
基金资助:
YANG Hai-Shui*(), WANG Qi, GUO Yi, XIONG Yan-Qin, XU Ming-Min, DAI Ya-Jun
Received:
2014-10-11
Accepted:
2015-01-17
Online:
2015-04-01
Published:
2015-04-21
Contact:
Hai-Shui YANG
About author:
# Co-first authors
摘要:
为弄清丛枝菌根(arbuscular mycorrhiza, AM)真菌群落随宿主植物演化的变异规律,通过对MaarjAM数据库进行数据挖掘, 根据每个分子虚拟种(virtual taxa, VT)包含的DNA序列不少于5条的标准, 筛选出188种菌根植物。通过分析植物与其根内AM真菌的关系发现: AM真菌的物种丰富度随着寄主植物的分化而增加; 在不同的植物系统类群中, AM真菌的物种丰富度显著不同; 在起源时间较晚的被子植物和裸子植物中, AM真菌的物种丰富度显著高于起源较早的苔类、角苔类和蕨类植物类群, 而与寄生植物共生的AM真菌物种丰富度与早期植物无显著差异; 不同寄主植物进化类群间AM真菌组成差异显著。以上结果表明: AM真菌群落随着寄主植物进化而发生变化。在进化过程中, 寄主植物倾向于选择保留共生效率较高的AM真菌。
杨海水, 王琪, 郭伊, 熊艳琴, 许明敏, 戴亚军. 丛枝菌根真菌群落与植物系统发育的相关性分析. 植物生态学报, 2015, 39(4): 383-387. DOI: 10.17521/cjpe.2015.0037
YANG Hai-Shui,WANG Qi,GUO Yi,XIONG Yan-Qin,XU Ming-Min,DAI Ya-Jun. Correlation analysis between arbuscular mycorrhizal fungal community and host plant phylogeny. Chinese Journal of Plant Ecology, 2015, 39(4): 383-387. DOI: 10.17521/cjpe.2015.0037
图1 寄主进化分歧时间(MYA, 百万年)与根内丛枝菌根真菌(AMF)物种丰富度之间的关系。
Fig. 1 Relationship between the time of divergence of hosts (MYA, million year) and the richness of arbuscular mycorrhizal fungal (AMF) species in roots.
图2 丛枝菌根真菌(AMF)物种丰富度在不同植物系统类群之间的分布(平均值±标准误差)。不同小写字母表示不同植物系统类群间差异显著(p < 0.05)。
Fig. 2 Distribution of species richness of arbuscular mycorrhizal fungi (AMF) in different plant phylogenetic groups (mean ± SE). Different lowercase letters indicate significant differences among different plant phylogenetic groups (p < 0.05). D, dicotyledons; M, monocotyledons.
图3 不同植物进化类群根内丛枝菌根真菌群落组成的无度量多维尺度(NMDS)分析。
Fig. 3 Non-metric multidimensional scaling (NMDS) analysis of arbuscular mycorrhizal fungal community composition in different phylogenetic groups. D, dicotyledons; M, monocotyledons.
L | H | F | G | NPM | M | NPD | D | |
---|---|---|---|---|---|---|---|---|
L | - | 0.02 | <0.01 | 0.46 | <0.01 | <0.01 | <0.01 | <0.01 |
H | - | 0.02 | 0.02 | 0.01 | <0.01 | <0.01 | <0.01 | |
F | - | 0.07 | 0.01 | <0.01 | <0.01 | <0.01 | ||
G | - | 0.21 | 0.58 | <0.01 | 0.68 | |||
NPM | - | <0.01 | <0.01 | <0.01 | ||||
M | - | <0.01 | 0.94 | |||||
NPD | - | <0.01 | ||||||
D | - |
表1 不同植物进化类群根内丛枝菌根真菌群落组成的单因素非参数MANOVA分析
Table 1 One-way NPMANOVA of arbuscular mycorrhizal fungal community composition in different phylogenetic groups of host plants
L | H | F | G | NPM | M | NPD | D | |
---|---|---|---|---|---|---|---|---|
L | - | 0.02 | <0.01 | 0.46 | <0.01 | <0.01 | <0.01 | <0.01 |
H | - | 0.02 | 0.02 | 0.01 | <0.01 | <0.01 | <0.01 | |
F | - | 0.07 | 0.01 | <0.01 | <0.01 | <0.01 | ||
G | - | 0.21 | 0.58 | <0.01 | 0.68 | |||
NPM | - | <0.01 | <0.01 | <0.01 | ||||
M | - | <0.01 | 0.94 | |||||
NPD | - | <0.01 | ||||||
D | - |
[1] | Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sersic A, Leake JR, Read DJ (2002). Epiparasitic plants specialized on arbuscular mycorrhizal fungi.Nature, 419, 389-392. |
[2] | Borowicz VA (2001). Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology, 82, 3057-3068. |
[3] | Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ (2012). Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated palaeozoic CO2 decline.Nature Communica- tions, 3, 1-8. |
[4] | Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V (2011). Diversification of land plants: Insights from a family-level phylogenetic analysis.BMC Evolutionary Biology, 11, 341. |
[5] | Fonseca HMAC, Berbara RLL (2008). Does Lunularia cruciata form symbiotic relationships with either Glomus proliferum or G. intraradices?Mycological Research, 112, 1063-1068. |
[6] | Franke T, Beenken L, Döring M, Kocyan A, Agerer R (2006). Arbuscular mycorrhizal fungi of the Glomus-group A lineage (Glomerales; Glomeromycota) detected in myco- heterotrophic plants from tropical Africa.Mycological Progress, 5, 24-31. |
[7] | Hammer Ø, Harper DAT, Ryan PD (2001). PAST: Paleontolo- gical statistics software package for education and data analysis.Palaeontologia Electronica, 4, 1-9. |
[8] | Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010). Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants.Nature Communications, 1, 103. |
[9] | Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis.Science, 333, 880-882. |
[10] | Koide R, Dickie I (2002). Effects of mycorrhizal fungi on plant populations.Plant and Soil, 244, 307-317. |
[11] | Kottke I, Nebel M (2005). The evolution of mycorrhiza-like associations in liverworts: An update.New Phytologist, 167, 330-334. |
[12] | Kovács GM, Balázs T, Pénzes Z (2007). Molecular study of arbuscular mycorrhizal fungi colonizing the sporophyte of the eusporangiate rattlesnake fern (Botrychium virginian- um, Ophioglossaceae). Mycorrhiza, 17, 597-605. |
[13] | Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007). Glomeromycotean associations in liverworts: A molecular, cellular, and taxonomic analysis.American Journal of Botany, 94, 1756-1777. |
[14] | Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010). The online database Maarj AM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromy- cota).New Phytologist, 188, 223-241. |
[15] | Pirozynski KA, Malloch DW (1975). The origin of land plants: Amatter of mycotrophism.Biosystems, 6, 153-164. |
[16] | Read D, Duckett J, Francis R, Ligrone R, Russell A (2000). Symbiotic fungal associations in “lower” land plants.Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 355, 815-831. |
[17] | Redecker D, Kodner R, Graham LE (2000). Glomalean fungi from the Ordovician.Science, 289, 1920-1921. |
[18] | Remy W, Taylor TN, Hass H, Kerp H (1994). Four hundred- million-year-old vesicular arbuscular mycorrhizae.Proceedings of the National Academy of Sciences of the United of America, 91, 11841-11843. |
[19] | Russell J, Bulman S (2005). The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus.New Phytologist, 165, 567-579. |
[20] | Sanderson MJ (2003). r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock.Bioinformatics, 19, 301-302. |
[21] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. 3rd edn. Academic Press, San Diego, USA. |
[22] | Stamatakis A (2006). RAxML-VI-HPC: Maximum likelihood- based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics, 22, 2688-2690. |
[23] | van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.Nature, 396, 69-72. |
[24] | van der Heijden MGA, Scheublin TR, Brader A (2004). Taxon- omic and functional diversity in arbuscular mycorrhizal fungi―Is there any relationship?New Phytologist, 164, 201-204. |
[25] | Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011). Mycorrhizal fungal identity and diversity relaxes plant-plant competition.Ecology, 92, 1303-1313. |
[26] | Wang B, Yeun LH, Xue JY, Liu Y, Ané JM, Qiu YL (2010). Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants.New Phytologist, 186, 514-525. |
[27] | Winther JL, Friedman WE (2007). Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae).American Journal of Botany, 94, 1248-1255. |
[28] | Wu JP, Liu ZF, Wang XL, Sun YX, Zhou LX, Lin YB, Fu SL (2011). Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China.Functional Ecology, 25, 921-931. |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[4] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[5] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[6] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[9] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[10] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[11] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[12] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[13] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[14] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[15] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19